1
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
2
|
Sun T, Zhang Z, Cui D, Mu G, Sun X, Su X, Shi Y. Quantitative 3D Temperature Rendering of Deep Tumors by a NIR-II Reversibly Responsive W-VO 2@PEG Photoacoustic Nanothermometer to Promote Precise Cancer Photothermal Therapy. ACS NANO 2023; 17:14604-14618. [PMID: 37471572 DOI: 10.1021/acsnano.3c01723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Accurately monitoring the three-dimensional (3D) temperature distribution of the tumor area in situ is a critical task that remains challenging in precision cancer photothermal (PT) therapy. Here, by ingeniously constructing a polyethylene glycol-coated tungsten-doped vanadium dioxide (W-VO2@PEG) photoacoustic (PA) nanothermometer (NThem) that linearly and reversibly responds to the thermal field near the human-body-temperature range, the authors propose a method to realize quantitative 3D temperature rendering of deep tumors to promote precise cancer PT therapy. The prepared NThems exhibit a mild phase transition from the monoclinic phase to the rutile phase when their temperature grows from 35 to 45 °C, with the optical absorption sharply increased ∼2-fold at 1064 nm in an approximately linear manner in the near-infrared-II (NIR-II) region, enabling W-VO2@PEG to be used as NThems for quantitative temperature monitoring of deep tumors with basepoint calibration, as well as diagnostic agents for PT therapy. Experimental results showed that the temperature measurement accuracy of the proposed method can reach 0.3 °C, with imaging depths up to 2 and 0.65 cm in tissue-mimicking phantoms and mouse tumor tissue, respectively. In addition, it was verified through PT therapy experiments in mice that the proposed method can achieve extremely high PT therapy efficiency by monitoring the temperature of the target area during PT therapy. This work provides a potential demonstration promoting precise cancer PT therapy through quantitative 3D temperature rendering of deep tumors by PA NThems with higher security and higher efficacy.
Collapse
Affiliation(s)
- Ting Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Dandan Cui
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Gen Mu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaodong Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoye Su
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Sublethal hyperthermia enhances anticancer activity of doxorubicin in chronically hypoxic HepG2 cells through ROS-dependent mechanism. Biosci Rep 2021; 41:228846. [PMID: 34060621 PMCID: PMC8200658 DOI: 10.1042/bsr20210442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023] Open
Abstract
Thermal ablation in combination with transarterial chemoembolization (TACE) has been reported to exert a more powerful antitumor effect than thermal ablation alone in hepatocellular carcinoma patients. However, the underlying mechanisms remain unclear. The purpose of the present study was to evaluate whether sublethal hyperthermia encountered in the periablation zone during thermal ablation enhances the anticancer activity of doxorubicin in chronically hypoxic (encountered in the tumor area after TACE) liver cancer cells and to explore the underlying mechanisms. In the present study, HepG2 cells precultured under chronic hypoxic conditions (1% oxygen) were treated in a 42°C water bath for 15 or 30 min, followed by incubation with doxorubicin. Assays were then performed to determine intracellular uptake of doxorubicin, cell viability, apoptosis, cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and total antioxidant capacity. The results confirmed that sublethal hyperthermia enhanced the intracellular uptake of doxorubicin into hypoxic HepG2 cells. Hyperthermia combined with doxorubicin led to a greater inhibition of cell viability and increased apoptosis in hypoxic HepG2 cells as compared with hyperthermia or doxorubicin alone. In addition, the combination induced apoptosis by increasing ROS and causing disruption of MMP. Pretreatment with the ROS scavenger N-acetyl cysteine significantly inhibited the apoptotic response, suggesting that cell death is ROS-dependent. These findings suggested that sublethal hyperthermia enhances the anticancer activity of doxorubicin in hypoxic HepG2 cells via a ROS-dependent mechanism.
Collapse
|
4
|
Lyon PC, Suomi V, Jakeman P, Campo L, Coussios C, Carlisle R. Quantifying cell death induced by doxorubicin, hyperthermia or HIFU ablation with flow cytometry. Sci Rep 2021; 11:4404. [PMID: 33623089 PMCID: PMC7902827 DOI: 10.1038/s41598-021-83845-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Triggered release and targeted drug delivery of potent anti-cancer agents using hyperthermia-mediated focused-ultrasound (FUS) is gaining momentum in the clinical setting. In early phase studies, tissue biopsy samples may be harvested to assess drug delivery efficacy and demonstrate lack of instantaneous cell death due to FUS exposure. We present an optimised tissue cell recovery method and a cell viability assay, compatible with intra-cellular doxorubicin. Flow cytometry was used to determine levels of cell death with suspensions comprised of: (i) HT29 cell line exposed to hyperthermia (30 min at 47 °C) and/or doxorubicin, or ex-vivo bovine liver tissue exposed to (ii) hyperthermia (up to 2 h at 45 °C), or (iii) ablative high intensity FUS (HIFU). Flow cytometric analysis revealed maximal cell death in HT29 receiving both heat and doxorubicin insults and increases in both cell granularity (p < 0.01) and cell death (p < 0.01) in cells recovered from ex-vivo liver tissue exposed to hyperthermia and high pressures of HIFU (8.2 MPa peak-to-peak free-field at 1 MHz) relative to controls. Ex-vivo results were validated with microscopy using pan-cytokeratin stain. This rapid, sensitive and highly quantitative cell-viability method is applicable to the small masses of liver tissue typically recovered from a standard core biopsy (5-20 mg) and may be applied to tissues of other histological origins including immunostaining.
Collapse
Affiliation(s)
- Paul Christopher Lyon
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Visa Suomi
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Philip Jakeman
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| |
Collapse
|
5
|
Shandilya U, Sharma A, Sodhi M, Mukesh M. Heat stress modulates differential response in skin fibroblast cells of native cattle (Bos indicus) and riverine buffaloes (Bubalus bubalis). Biosci Rep 2020; 40:BSR20191544. [PMID: 31994693 PMCID: PMC7012655 DOI: 10.1042/bsr20191544] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Heat stress in hot climates is a major cause that negatively affects dairy animals, leading to substantial economic loss. The present study was aimed to analyze the effect of heat stress on cellular and molecular levels in dermal fibroblast of cattle and buffaloes. Primary fibroblast culture was established using ear pinna tissue samples of cattle (Bos indicus) and riverine buffaloes (Bubalus Bubalis). The cells were exposed to thermal stress at 42°C for 1 h and subsequently allowed to recover and harvest at 37°C at different time points (0, 2, 4, 8, 16, and 24 h) along with control samples. Different cellular parameters viz., apoptosis, proliferation, mitochondrial membrane potential (ΔΨm), oxidative stress, along with expression pattern of heat responsive genes and miRNAs were determined. Cell viability and proliferation rate of heat-stressed fibroblasts decreased significantly (P < 0.05) albeit to a different extent in both species. The cell cytotoxicity, apoptosis, production of reactive oxygen species, and ΔΨm increased more significantly (P < 0.01) in heat stressed fibroblasts of buffalo than cattle. The pattern of heat shock proteins, inflammation/immune genes, and heat responsive miRNA showed differences in induction of their expression level in buffalo and native cattle fibroblasts. Conclusively, finding indicates that heat stress induces more profound impact on buffalo fibroblasts than native cattle fibroblasts. The differential response of cellular parameters, HSP genes, and miRNA expression could be due to better adaptive capacity of skin fibroblast of Bos indicus cattle in comparison with riverine buffaloes.
Collapse
Affiliation(s)
- Umesh K. Shandilya
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Ankita Sharma
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Monika Sodhi
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Manishi Mukesh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| |
Collapse
|
6
|
Chen WT, Sun YK, Lu CH, Chao CY. Thermal cycling as a novel thermal therapy to synergistically enhance the anticancer effect of propolis on PANC‑1 cells. Int J Oncol 2019; 55:617-628. [PMID: 31322205 PMCID: PMC6685589 DOI: 10.3892/ijo.2019.4844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/01/2019] [Indexed: 01/14/2023] Open
Abstract
Hyperthermia (HT) has shown potential in cancer therapy. In particular, it appears to sensitize cancer cells to chemotherapy. However, a major concern associated with HT is that the thermal dosage applied to the tumor cells may also harm the normal tissue cells. Besides, the drugs used in HT are conventional chemotherapy drugs, which may cause serious side effects. The present study demonstrated a novel methodology in HT therapy called thermal cycle (TC)‑HT. With this strategy, a therapeutic window with a maximum synergistic effect was created by combining TC‑HT with natural compounds, with minimal unwanted cell damage. The natural compound propolis was selected, and the synergistic anticancer effect of TC‑HT and propolis was investigated in pancreatic cancer cells. The present results demonstrated for the first time that TC‑HT could enhance the anticancer effect of propolis on PANC‑1 cancer cells through the mitochondria‑dependent apoptosis pathway and cell cycle arrest. Combined treatment greatly suppressed mitochondrial membrane potential, which is an important indicator of damaged and dysfunctional mitochondria. Furthermore, the cell cycle‑regulating protein cell division cycle protein 2 was downregulated upon combined treatment, which prevented cellular progression into mitosis. The present study offers the first report, to the best of our knowledge, on the combination of TC‑HT with a natural compound for pancreatic cancer treatment. It is anticipated that this methodology may be a starting point for more sophisticated cancer treatments and may thereby improve the quality of life of many patients with cancer.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 10617
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
| | - Yi-Kun Sun
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
| | - Chueh-Hsuan Lu
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 10617
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
| | - Chih-Yu Chao
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 10617
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
- Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
7
|
Jabalera Y, Sola-Leyva A, Peigneux A, Vurro F, Iglesias GR, Vilchez-Garcia J, Pérez-Prieto I, Aguilar-Troyano FJ, López-Cara LC, Carrasco-Jiménez MP, Jimenez-Lopez C. Biomimetic Magnetic Nanocarriers Drive Choline Kinase Alpha Inhibitor inside Cancer Cells for Combined Chemo-Hyperthermia Therapy. Pharmaceutics 2019; 11:E408. [PMID: 31408964 PMCID: PMC6722936 DOI: 10.3390/pharmaceutics11080408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Choline kinase α1 (ChoKα1) has become an excellent antitumor target. Among all the inhibitors synthetized, the new compound Ff35 shows an excellent capacity to inhibit ChoKα1 activity. However, soluble Ff35 is also capable of inhibiting choline uptake, making the inhibitor not selective for ChoKα1. In this study, we designed a new protocol with the aim of disentangling whether the Ff35 biological action is due to the inhibition of the enzyme and/or to the choline uptake. Moreover, we offer an alternative to avoid the inhibition of choline uptake caused by Ff35, since the coupling of Ff35 to novel biomimetic magnetic nanoparticles (BMNPs) allows it to enter the cell through endocytosis without interacting with the choline transporter. This opens the possibility of a clinical use of Ff35. Our results indicate that Ff35-BMNPs nanoassemblies increase the selectivity of Ff35 and have an antiproliferative effect. Also, we demonstrate the effectiveness of the tandem Ff35-BMNPs and hyperthermia.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana Peigneux
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Federica Vurro
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, 37134 Verona, Italy
| | - Guillermo R Iglesias
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jesus Vilchez-Garcia
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco J Aguilar-Troyano
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, 18071 Granada, Spain
| | - Luisa C López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, 18071 Granada, Spain
| | - María P Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | | |
Collapse
|
8
|
Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One 2019; 14:e0217676. [PMID: 31150487 PMCID: PMC6544372 DOI: 10.1371/journal.pone.0217676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia (HT) has shown feasibility and potency as an anticancer therapy. Administration of HT in the chemotherapy has previously enhanced the cytotoxicity of drugs against pancreatic cancer. However, the drugs used when conducting these studies are substantially conventional chemotherapeutic agents that may cause unwanted side effects. Additionally, the thermal dosage in the treatment of cancer cells could also probably harm the healthy cells. The purpose of this work was to investigate the potential of the two natural polyphenolic compounds, epigallocatechin gallate (EGCG) and chlorogenic acid (CGA), as heat synergizers in the thermal treatment of the PANC-1 cells. Furthermore, we have introduced a unique strategy entitled the thermal cycling-hyperthermia (TC-HT) that is capable of providing a maximum synergy and minimal side effect with the anticancer compounds. Our results demonstrate that the combination of the TC-HT and the CGA or EGCG markedly exerts the anticancer effect against the PANC-1 cells, while none of the single treatment induced such changes. The synergistic activity was attributed to the cell cycle arrest at the G2/M phase and the induction of the ROS-dependent mitochondria-mediated apoptosis. These findings not only represent the first in vitro thermal synergistic study of natural compounds in the treatment of pancreatic cancer, but also highlight the potential of the TC-HT as an alternative strategy in thermal treatment.
Collapse
Affiliation(s)
- Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Zhang J, Schmidt CJ, Lamont SJ. Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast- and slow-growing broilers under heat stress. BMC Genomics 2017; 18:295. [PMID: 28407751 PMCID: PMC5390434 DOI: 10.1186/s12864-017-3675-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern fast-growing broilers are susceptible to heart failure under heat stress because their relatively small hearts cannot meet increased need of blood pumping. To improve the cardiac tolerance to heat stress in modern broilers through breeding, we need to find the important genes and pathways that contribute to imbalanced cardiac development and frequent occurrence of heat-related heart dysfunction. Two broiler lines - Ross 708 and Illinois - were included in this study as a fast-growing model and a slow-growing model respectively. Each broiler line was separated to two groups at 21 days posthatch. One group was subjected to heat stress treatment in the range of 35-37 °C for 8 h per day, and the other was kept in thermoneutral condition. Body and heart weights were measured at 42 days posthatch, and gene expression in left ventricles were compared between treatments and broiler lines through RNA-seq analysis. RESULTS Body weight and normalized heart weight were significantly reduced by heat stress only in Ross broilers. RNA-seq results of 44 genes were validated using Biomark assay. A total of 325 differentially expressed (DE) genes were detected between heat stress and thermoneutral in Ross 708 birds, but only 3 in Illinois broilers. Ingenuity pathway analysis (IPA) predicted dramatic changes in multiple cellular activities especially downregulation of cell cycle. Comparison between two lines showed that cell cycle activity is higher in Ross than Illinois in thermoneutral condition but is decreased under heat stress. Among the significant pathways (P < 0.01) listed for different comparisons, "Mitotic Roles of Polo-like Kinases" is always ranked first. CONCLUSIONS The increased susceptibility of modern broilers to cardiac dysfunction under heat stress compared to slow-growing broilers could be due to diminished heart capacity related to reduction in relative heart size. The smaller relative heart size in Ross heat stress group than in Ross thermoneutral group is suggested by the transcriptome analysis to be caused by decreased cell cycle activity and increased apoptosis. The DE genes in RNA-seq analysis and significant pathways in IPA provides potential targets for breeding of heat-tolerant broilers with optimized heart function.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Stapf M, Teichgräber U, Hilger I. Methotrexate-coupled nanoparticles and magnetic nanochemothermia for the relapse-free treatment of T24 bladder tumors. Int J Nanomedicine 2017; 12:2793-2811. [PMID: 28435259 PMCID: PMC5388224 DOI: 10.2147/ijn.s120969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced thermal treatments, we elucidated the superior tumor-destructive effect of methotrexate-coupled MNPs (MTX/MNPs) in combination with magnetic heating (nanochemothermia) over the thermal treatment alone. Our studies in a murine bladder xenograft model revealed the enormous potential of nanochemothermia for a localized and relapse-free destruction of tumors which was superior to the thermal treatment alone. Nanochemothermia remarkably fostered the reduction of tumor volume. It impaired proapoptotic signaling (eg, p-p53), cell survival (eg, p-ERK1/2), and cell cycle (cyclins) pathways. Additionally, heat shock proteins (eg, HSP70) were remarkably affected. Moreover, nanochemothermia impaired the induction of angiogenic signaling by decreasing, for example, the levels of VEGF-R1 and MMP9, although an increasing tumor hypoxia was indicated by elevated Hif-1α levels. In contrast, tumor cells were able to recover after the thermal treatments alone. In conclusion, nanochemothermia on the basis of MTX/MNPs was superior to the thermal treatment due to a modification of cellular pathways, particularly those associated with the cellular survival and tumor vasculature. This allowed very efficient and relapse-free destruction of tumors.
Collapse
Affiliation(s)
- Marcus Stapf
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| | - Ulf Teichgräber
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| |
Collapse
|
11
|
Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin Cancer Biol 2016; 37-38:96-105. [PMID: 27025900 DOI: 10.1016/j.semcancer.2016.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/25/2022]
Abstract
Utilization of thermal therapy (hyperthermia) is defined as the application of exogenous heat induction and represents a concept that is far from new as it goes back to ancient times when heat was used for treating various diseases, including malignancies. Such therapeutic strategy has gained even more popularity (over the last few decades) since various studies have shed light into understanding hyperthermia's underlying molecular mechanism(s) of action. In general, hyperthermia is applied as complementary (adjuvant) means in therapeutic protocols combining chemotherapy and/or irradiation both of which can induce irreversible cellular DNA damage. Furthermore, according to a number of in vitro, in vivo and clinical studies, hyperthermia has been shown to enhance the beneficial effects of DNA targeting therapeutic strategies by interfering with DNA repair response cascades. Therefore, the continuously growing evidence supporting hyperthermia's beneficial role in cancer treatment can also encourage its application as a DNA repair mitigation strategy. In this review article, we aim to provide detailed information on how hyperthermia acts on DNA damage and repair pathways and thus potentially contributing to various adjuvant therapeutic protocols relevant to more efficient cancer treatment strategies.
Collapse
|
12
|
Stapf M, Pömpner N, Teichgräber U, Hilger I. Heterogeneous response of different tumor cell lines to methotrexate-coupled nanoparticles in presence of hyperthermia. Int J Nanomedicine 2016; 11:485-500. [PMID: 26893557 PMCID: PMC4745830 DOI: 10.2147/ijn.s94384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Today, the therapeutic efficacy of cancer is restricted by the heterogeneity of the response of tumor cells to chemotherapeutic drugs. Since those therapies are also associated with severe side effects in nontarget organs, the application of drugs in combination with nanocarriers for targeted therapy has been suggested. Here, we sought to assess whether the coupling of methotrexate (MTX) to magnetic nanoparticles (MNP) could serve as a valuable tool to circumvent the heterogeneity of tumor cell response to MTX by the combined treatment with hyperthermia. To this end, we investigated five breast cancer cell lines of different origin and with different mutational statuses, as well as a bladder cancer cell line in terms of their response to exposure to MTX as a free drug or after its coupling to MNP as well as in presence/absence of hyperthermia. We also assessed whether the effects could be connected to the cell line-specific expression of proteins related to the uptake and efflux of MTX and MNP. Our results revealed a very heterogeneous and cell line-dependent response to an exposure with MTX-coupled MNP (MTX–MNP), which was almost comparable to the efficacy of free MTX in the same cell line. Moreover, a cell line-specific and preferential uptake of MTX–MNP compared with MNP alone was found (probably by receptor-mediated endocytosis), agreeing with the observed cytotoxic effects. Opposed to this, the expression pattern of several cell membrane transport proteins noted for MTX uptake and efflux was only by tendency in agreement with the cellular toxicity of MTX–MNP in different cell lines. Higher cytotoxic effects were achieved by exposing cells to a combination of MTX–MNP and hyperthermal treatment, compared with MTX or thermo-therapy alone. However, the heterogeneity in the response of the tumor cell lines to MTX could not be completely abolished – even after its combination with MNP and/or hyperthermia – and the application of higher thermal dosages might be necessary.
Collapse
Affiliation(s)
- Marcus Stapf
- Institute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Nadine Pömpner
- Institute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
13
|
Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 2015; 10:165. [PMID: 26245485 PMCID: PMC4554295 DOI: 10.1186/s13014-015-0462-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 12/03/2022] Open
Abstract
The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.
Collapse
Affiliation(s)
- Arlene L Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Lianne E M Vriend
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Przemek M Krawczyk
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Xie X, Liu R, Xu Y, Wang L, Lan Z, Chen W, Liu H, Lu Y, Cheng J. In vitro hyperthermia studied in a continuous manner using electric impedance sensing. RSC Adv 2015. [DOI: 10.1039/c5ra04743a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A platform based on the ECIS technique was constructed for analyzing heat-cell interactions and further in vitro hyperthermia studies.
Collapse
Affiliation(s)
- Xinwu Xie
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Ran Liu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Youchun Xu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Lei Wang
- National Engineering Research Center for Beijing Biochip Technology
- Beijing 102206
- China
| | - Ziyang Lan
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Weixing Chen
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Haoran Liu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Ying Lu
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Jing Cheng
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
15
|
Iwazawa M, Acosta TJ. Effect of elevated temperatures on bovine corpus luteum function: expression of heat-shock protein 70, cell viability and production of progesterone and prostaglandins by cultured luteal cells. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Summer heat stress lowers fertility in cattle in hot environments by influencing oocyte quality, follicular activity and progesterone (P4) level in blood plasma. However, the mechanisms by which elevated temperature influences corpus luteum function remain unclear. Elevated temperature has generally been known to upregulate the gene expression of heat-shock protein (HSP) 70 in a variety of cell types. To clarify the direct effects of elevated temperature on bovine corpus luteum function, we examined the expressions of HSP70, cell viability and the production of P4 and prostaglandins (PGs) in luteal cells cultured at 37.5°C (normal temperature in our culture system), 39.0°C (moderately elevated temperature) or 41.0°C (severely elevated temperature) for 12 or 24 h. HSP70 mRNA expression was increased by incubation at 39.0°C for 12 h and at 41.0°C for 12 and 24 h, whereas HSP70 protein expression was not significantly affected. The viability of luteal cells cultured for 24 h, measured by flow cytometry with propidium iodide staining, was not significantly affected by temperature. Interestingly, the production of P4 by cultured luteal cells was higher at 39.0°C than at 37.5°C after 12 and 24 h of incubation. The production of PGF2α was higher at 39.0°C and 41.0°C than at 37.5°C after 12 and 24 h of incubation. The production of PGE2 was higher at 41.0°C than at 37.5°C after 24 h of incubation. The overall results suggested that elevated temperature does not negatively affect luteal function, and that the low fertility observed during summer is not due to a direct effect of elevated temperature on luteal cells.
Collapse
|
16
|
Zhang KS, Zhou Q, Wang YF, Liang LJ. Killing effects of different physical factors on extracorporeal HepG2 human hepatoma cells. Asian Pac J Cancer Prev 2012; 13:1025-9. [PMID: 22631632 DOI: 10.7314/apjcp.2012.13.3.1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To determine the killing effects on extracorporeal HepG2 cells under different temperatures, pressures of permeability and lengths of treatment time. METHOD According to different temperatures, pressures of permeability and lengths of treating time, extracorporeal HepG2 cells of human hepatoma cell-line were grouped to 80 groups. Cell index (CI) as the measurement of killing effect were calculated by monotetrazolium (MTT) methods, i.e., CI = 1 - (the OD value in treated group - the OD value in blank control group)/(mean of untreated control group - mean of blank control group). According to the factorial design, data were fed into SPSS 10.0 and analyzed by three-way ANOVA (analysis of variance). RESULT Temperature, pressure of permeability and length of treating time all had effects on the CI (cell index) level. Length of treating time was the most influential factor of the three. Additionally, any two of them all had statistically significant interactive effects on the CI level. When treated for 5-30 min, destilled water at 46 degrees C stably generated the highest CI. CONCLUSION The "46 degrees C-destilled water-60 min" was considered as the optimal combination of conditions which lead to highest CI. We suggest exerting celiac lavage for 15 min with stilled water at 40 degrees C-43 degrees C in surgical practice as a hyperthermia treatment to achieve ideal killing effects on free cancer cells, which is feasible, practical, and clinically effective.
Collapse
Affiliation(s)
- Kun-Song Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | | |
Collapse
|
17
|
Hu R, Zhang X, Liu X, Xu B, Yang H, Xia Q, Li L, Chen C, Tang J. Higher temperature improves the efficacy of magnetic fluid hyperthermia for Lewis lung cancer in a mouse model. Thorac Cancer 2012; 3:34-39. [PMID: 28920259 DOI: 10.1111/j.1759-7714.2011.00075.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of a higher temperature on the efficacy of magnetic fluid hyperthermia for Lewis lung cancer in a mouse model. MATERIALS AND METHODS Magnetic fluids were prepared in vitro and directly injected into tumors. Twenty-four hours later, the mice were subjected to an alternating magnetic field. The temperature in the tumor was increased to 46.0°C, higher than the usual temperature used in hyperthermia therapy. The higher temperature was maintained for 30 min with a stable strength of magnetic field. RESULTS Magnetic fluid hyperthermia with a higher temperature significantly inhibited the growth of the tumors (P < 0.05). The tumors completely regressed in four out of 12 mice. Histological analysis demonstrated that the tumor cells underwent apoptosis and necrosis, and the cells were arrested at the G1/G0 phase of the cell cycle. The lifespan of the treated animals also increased significantly (P < 0.05). CONCLUSIONS Magnetic fluid hyperthermia with a higher temperature could improve the efficacy of this therapy on lung cancer.
Collapse
Affiliation(s)
- Runlei Hu
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Xiaodong Zhang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Xuan Liu
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Bo Xu
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Hongsheng Yang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Qisheng Xia
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Liya Li
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Chunling Chen
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| | - Jintian Tang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, China Institute of Medical Physics and Engineering, Tsinghua University, Beijing, China Department of Biochemistry and Molecular Biology, China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan Province, China
| |
Collapse
|
18
|
|
19
|
Hyperthermia induced NFkappaB mediated apoptosis in normal human monocytes. Mol Cell Biochem 2009; 327:29-37. [PMID: 19219626 DOI: 10.1007/s11010-009-0039-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 01/28/2009] [Indexed: 01/09/2023]
Abstract
Conceptual approaches of heat-induced cytotoxic effects against tumor cells must address factors affecting therapeutic index, i.e., the relative toxicity for neoplastic versus normal tissues. Accordingly, we investigated the effect of hyperthermia treatment (HT) on the induction of DNA fragmentation, apoptosis, cell-cycle distribution, NFkappaB mRNA expression, DNA-binding activity, and phosphorylation of IkappaBalpha in the normal human Mono Mac 6 (MM6) cells. For HT, cells were exposed to 43 degrees C. FACS analysis showed a 48.5% increase in apoptosis, increased S-phase fraction, and reduced G2 phase fraction after 43 degrees C treatments. EMSA analysis showed a dose-dependent inhibition of NFkappaB DNA-binding activity after HT. This HT-mediated inhibition of NFkappaB was persistent even after 48 h. Immunoblotting analysis revealed dose-dependent inhibition of IkappaBalpha phosphorylation. Similarly, RPA analysis showed that HT persistently inhibits NFkappaB mRNA. These results demonstrate that apoptosis upon HT exposure of MM6 cells is regulated by IkappaBalpha phosphorylation mediated suppression of NFkappaB.
Collapse
|
20
|
Du J, Di HS, Guo L, Li ZH, Wang GL. Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biol 2008. [DOI: 10.1016/j.jtherbio.2007.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Peng YF, Zheng MH. Cellular and molecular mechanism and application of hyperthermia for tumor therapy. Shijie Huaren Xiaohua Zazhi 2007; 15:1319-1323. [DOI: 10.11569/wcjd.v15.i12.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia is effective in the treatment of neoplasm, but its mechanism remains unclear for a long time. In recent years, great advances were achieved on its mechanism. In vitro and in vivo studies show that heat-induced apoptosis plays a dominant role in mild and moderate hyperthermia while necrosis in serious one. Heat induces apoptosis through mitochondria or/and death receptor pathways, and oxidative stress, intracellular Ca2+ increase and some molecules such as p53 and Bax play important roles in this process. Based on this mechanism, new therapies have been investigated and developed, including hyperthermia combined with gene therapy, calcium- and oxidative stress-targeted therapy, or decreasing extracellular pH value, which may remarkably enhance the effect of hyperthermia.
Collapse
|