1
|
Muijlwijk T, Nijenhuis DNLM, Ganzevles SH, Ekhlas F, Ballesteros-Merino C, Peferoen LAN, Bloemena E, Fox BA, Poell JB, Leemans CR, Brakenhoff RH, van de Ven R. Immune cell topography of head and neck cancer. J Immunother Cancer 2024; 12:e009550. [PMID: 39053947 DOI: 10.1136/jitc-2024-009550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Approximately 50% of head and neck squamous cell carcinomas (HNSCC) recur after treatment with curative intent. Immune checkpoint inhibitors are treatment options for recurrent/metastatic HNSCC; however, less than 20% of patients respond. To increase this response rate, it is fundamental to increase our understanding of the spatial tumor immune microenvironment (TIME). METHODS In total, 53 HNSCC specimens were included. Using a seven-color multiplex immunohistochemistry panel we identified tumor cells, CD163+macrophages, B cells, CD8+T cells, CD4+T helper cells and regulatory T cells (Tregs) in treatment-naive surgical resection specimens (n=29) and biopsies (n=18). To further characterize tumor-infiltrating CD8+T cells, we stained surgical resection specimens (n=12) with a five-color tumor-resident panel including CD103, Ki67, CD8 and pan-cytokeratin. Secretome analysis was performed on matched tumor suspensions (n=11) to measure protein levels. RESULTS Based on CD8+T cell infiltrates, we identified four different immunotypes: fully infiltrated, stroma-restricted, immune-excluded, and immune-desert. We found higher cytokine levels in fully infiltrated tumors compared with other immunotypes. While the highest immune infiltrates were observed in the invasive margin for all immune cells, CD163+macrophages and Tregs had the highest tendency to infiltrate the tumor center. Within the tumor center, especially B cells stayed at the tumor stroma, whereas CD163+macrophages, followed by T cells, were more often localized within tumor fields. Also, B cells were found further away from other cells and often formed aggregates while T cells and CD163+macrophages tended to be more closely located to each other. Across resection specimens from various anatomical sites within the head and neck, oral cavity tumors exhibited the highest densities of Tregs. Moreover, the distance from B cells and T cells to tumor cells was shortest in oral cavity squamous cell carcinoma (OCSCC), suggesting more interaction between lymphocytes and tumor cells. Also, the fraction of T cells within 10 µm of CD163+macrophages was lowest in OCSCC, indicating fewer myeloid/T-cell suppressive interactions in OCSCC. CONCLUSIONS We comprehensively described the TIME of HNSCC using a unique data set of resection specimens. We discovered that the composition, as well as the relative localization of immune cells in the TIME, differed in distinct anatomical sites of the head and neck.
Collapse
Affiliation(s)
- Tara Muijlwijk
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dennis N L M Nijenhuis
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Sonja H Ganzevles
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Fatima Ekhlas
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Carmen Ballesteros-Merino
- Molecular and Tumor Immunology Laboratory, Providence Cancer Institute, Robert W. Franz Research Center at the Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Laura A N Peferoen
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Pathology, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Maxillofacial Surgery/ Oral Pathology, Academic Center for Dentistry, Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Pathology, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Maxillofacial Surgery/ Oral Pathology, Academic Center for Dentistry, Amsterdam, The Netherlands
| | - Bernard A Fox
- Molecular and Tumor Immunology Laboratory, Providence Cancer Institute, Robert W. Franz Research Center at the Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Jos B Poell
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - C René Leemans
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Mahmood J, Alexander AA, Samanta S, Kamlapurkar S, Singh P, Saeed A, Carrier F, Cao X, Shukla HD, Vujaskovic Z. A Combination of Radiotherapy, Hyperthermia, and Immunotherapy Inhibits Pancreatic Tumor Growth and Prolongs the Survival of Mice. Cancers (Basel) 2020; 12:cancers12041015. [PMID: 32326142 PMCID: PMC7226594 DOI: 10.3390/cancers12041015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. Unfortunately, only 10–20% of PC patients are candidates for surgery, with the vast majority of patients with locally-advanced disease undergoing chemotherapy and/or radiation therapy (RT). Current treatments are clearly inadequate and novel strategies are crucially required. We investigated a novel tripartite treatment (combination of tumor targeted hyperthermia (HT), radiation therapy (RT), and immunotherapy (IT)) to alter immunosuppressive PC-tumor microenvironment (TME). (2). Methods: In a syngeneic PC murine tumor model, HT was delivered before tumor-targeted RT, by a small animal radiation research platform (SARRP) followed by intraperitoneal injections of cytotoxic T-cell agonist antibody against OX40 (also known as CD134 or Tumor necrosis factor receptor superfamily member 4; TNFRSF4) that can promote T-effector cell activation and inhibit T-regulatory (T-reg) function. (3). Results: Tripartite treatment demonstrated significant inhibition of tumor growth (p < 0.01) up to 45 days post-treatment with an increased survival rate compared to any monotherapy. Flow cytometric analysis showed a significant increase (p < 0.01) in cytotoxic CD8 and CD4+ T-cells in the TME of the tripartite treatment groups. There was no tripartite-treatment-related toxicity observed in mice. (4). Conclusions: Tripartite treatment could be a novel therapeutic option for PC patients.
Collapse
Affiliation(s)
- Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
- Correspondence: ; Tel.: +1-410-706-5133
| | - Allen A. Alexander
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Santanu Samanta
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Shriya Kamlapurkar
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Prerna Singh
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Ali Saeed
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - France Carrier
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Xuefang Cao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hem D Shukla
- Department of Neurology and Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA;
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| |
Collapse
|
3
|
MR Thermometry Data Correlate with Pathological Response for Soft Tissue Sarcoma of the Lower Extremity in a Single Center Analysis of Prospectively Registered Patients. Cancers (Basel) 2020; 12:cancers12040959. [PMID: 32295076 PMCID: PMC7226612 DOI: 10.3390/cancers12040959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: There is a strong biologic rationale for using locoregional hyperthermia in soft tissue sarcoma and a randomized trial reported significant improvements with hyperthermia. The aim of this study was to describe the opportunities of magnetic resonance (MR)-based thermometry in a cohort of soft tissue sarcoma patients undergoing combined radiotherapy and locoregional hyperthermia. Patients and Methods: For eleven evaluable patients, tumor volume (VTu) and a separate volume for temperature analysis with reliable temperature distribution (Vtherm) were contoured for every hyperthermia treatment (103 therapies). Temperature data were recorded for all tumors and were correlated with clinical features and pathologic response data. Results: Of 48 patients with high-risk soft tissue sarcomas treated with radio(chemo)therapy and locoregional hyperthermia, MR thermometry was possible in 11 (23%) patients. For all patients, the temperature superseded by 90% of VTu (T90(VTu)) and T90 (Vtherm) were in the range of 37–43 °C and 40–45 °C, respectively. Larger tumors tended to reach higher temperatures. For tumors showing a pathologic response in the resection specimen after preoperative treatment, temperature (T90 (Vtherm)) was significantly higher than in tumors without pathologic response. Conclusion: Lower extremity sarcomas undergoing preoperative treatment with locoregional hyperthermia are especially suitable for MR thermometry. MR thermometry is a promising non-invasive way for temperature measurement during locoregional hyperthermia, showing a positive dose-response relationship.
Collapse
|
4
|
Luo M, Shi L, Zhang F, Zhou F, Zhang L, Wang B, Wang P, Zhang Y, Zhang H, Yang D, Zhang G, Chen WR, Wang X. Laser immunotherapy for cutaneous squamous cell carcinoma with optimal thermal effects to enhance tumour immunogenicity. Int J Hyperthermia 2018; 34:1337-1350. [PMID: 29482392 DOI: 10.1080/02656736.2018.1446221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Laser immunotherapy is a new anti-cancer therapy combining photothermal therapy and immunostimulation. It can eliminate the tumours by damaging tumour cells directly and promoting the release of damage-associated molecular patterns (DAMPs) to enhance tumour immunogenicity. The aim of this study was to investigate the thermal effects of laser immunotherapy and to evaluate the effectiveness and safety of laser immunotherapy for cutaneous squamous cell carcinoma (cSCC). METHODS The cell viability and the DAMPs productions of heat-treated cSCC A431 cells in different temperatures were investigated. Laser immunotherapy with the optimal thermal effect for DAMPs production was performed on SKH-1 mice bearing ultraviolet-induced cSCC and a patient suffering from a large refractory cSCC. RESULTS The temperature in the range of 45-50 °C killing half of A431 cells had an optimal thermal effect for the productions of DAMPs. The thermal effect could be further enhanced by local application of imiquimod, an immunoadjuvant. Laser immunotherapy eliminated most tumours and improved the survival rate of the ultraviolet-induced cSCC-bearing SKH-1 mice (p < 0.05). The patient with cSCC treated by laser immunotherapy experienced a significant tumour reduction after laser immunotherapy increased the amounts of infiltrating lymphocytes in the tumour. No obviously adverse effect was observed in the mice experiment or in the clinical application. CONCLUSIONS Our results strongly indicate that laser immunotherapy with optimal thermal effects is an effective and safe treatment modality for cSCC.
Collapse
Affiliation(s)
- Min Luo
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Lei Shi
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Fuhe Zhang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Feifan Zhou
- b Biophotonics Research Laboratory , Center for Interdisciplinary Biomedical Education and Research University of Central Oklahoma , Edmond , OK , USA
| | - Linglin Zhang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Bo Wang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Peiru Wang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Yunfeng Zhang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Haiyan Zhang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Degang Yang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Guolong Zhang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| | - Wei R Chen
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China.,b Biophotonics Research Laboratory , Center for Interdisciplinary Biomedical Education and Research University of Central Oklahoma , Edmond , OK , USA
| | - Xiuli Wang
- a Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai , PR China
| |
Collapse
|
5
|
Loi M, Desideri I, Greto D, Mangoni M, Sottili M, Meattini I, Becherini C, Terziani F, Delli Paoli C, Olmetto E, Bonomo P, Livi L. Radiotherapy in the age of cancer immunology: Current concepts and future developments. Crit Rev Oncol Hematol 2017; 112:1-10. [PMID: 28325250 DOI: 10.1016/j.critrevonc.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/24/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Major advances in the knowledge of cancer biology and its interactions with tumor immune environment led to the emergence, in the last five years of new immunotherapy-based treatment strategies in cancer patients. At the same time, improvement in radiation technique and progress in radiobiology allowed in the last decade to expand the applications of radiotherapy in a growing number of settings. At present, there are strong theoretical basis to propose immune-enhanced radiation therapy that may represent in the future a new paradigm of treatment, combining the intrinsic power of radiotherapy to elicit a specific, systemic, tumor-directed immune response with modern highly conformal and precise dose delivery, in order to maximize response at the major site of disease and obtain durable disease control. The aim of this review is to describe the principal mechanisms of immune modulation of response to radiation and investigational strategies to harness the potential of radiation-inducible immune response: radiation therapy is expected to be not just a local treatment but the cornerstone of a multimodal strategy that might achieve long-lasting tumor remission at the primary site and systemic efficacy metastatic lesions.
Collapse
Affiliation(s)
- Mauro Loi
- Department of Radiation Oncology, University of Florence, Florence, Italy.
| | - Isacco Desideri
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Daniela Greto
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mariangela Sottili
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Francesca Terziani
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | | | - Emanuela Olmetto
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Department of Radiation Oncology, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Datta NR, Rogers S, Ordóñez SG, Puric E, Bodis S. Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. Int J Hyperthermia 2015; 32:31-40. [PMID: 26928474 DOI: 10.3109/02656736.2015.1099746] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE A systematic review and meta-analysis was conducted to evaluate the outcome of controlled clinical trials in head and neck cancers (HNCs) using hyperthermia and radiotherapy versus radiotherapy alone. MATERIAL AND METHODS A total of 498 abstracts were screened from four databases and hand searched as per the PRISMA guidelines. Only two-arm studies treating HNCs with either radiotherapy alone, or hyperthermia and radiotherapy without concurrent chemotherapy or surgery were considered. The evaluated end point was complete response (CR). RESULTS Following a detailed screening of the titles, abstracts and full text papers, six articles fulfilling the above eligibility criteria were considered. In total 451 clinical cases from six studies were included in the meta-analysis. Five of six trials were randomised. The overall CR with radiotherapy alone was 39.6% (92/232) and varied between 31.3% and 46.9% across the six trials. With thermoradiotherapy, the overall CR reported was 62.5% (137/219), (range 33.9-83.3%). The odds ratio was 2.92 (95% CI: 1.58-5.42, p = 0.001); the risk ratio was 1.61 (95% CI: 1.32-1.97, p < 0.0001) and the risk difference was 0.25 (95% CI: 0.12-0.39, p < 0.0001), all in favour of combined treatment with hyperthermia and radiotherapy over radiotherapy alone. Acute and late grade III/IV toxicities were reported to be similar in both the groups. CONCLUSIONS Hyperthermia along with radiotherapy enhances the likelihood of CR in HNCs by around 25% compared to radiotherapy alone with no significant additional acute and late morbidities. This level I evidence should justify the integration of hyperthermia into the multimodality therapy of HNCs.
Collapse
Affiliation(s)
- Niloy R Datta
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital , Aarau , Switzerland and
| | - Susanne Rogers
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital , Aarau , Switzerland and
| | - Silvia Gómez Ordóñez
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital , Aarau , Switzerland and
| | - Emsad Puric
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital , Aarau , Switzerland and
| | - Stephan Bodis
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital , Aarau , Switzerland and.,b Department of Radiation Oncology , University Hospital , Zurich , Switzerland
| |
Collapse
|
7
|
Salimu J, Spary LK, Al-Taei S, Clayton A, Mason MD, Staffurth J, Tabi Z. Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells—A Key Role for Heat-Shock Protein 70 and Receptor CD91. Cancer Immunol Res 2015; 3:678-88. [DOI: 10.1158/2326-6066.cir-14-0079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 02/05/2015] [Indexed: 11/16/2022]
|
8
|
Towards Neuroimmunotherapy for Cancer: the Neurotransmitters Glutamate, Dopamine and GnRH-II augment substantially the ability of T cells of few Head and Neck cancer patients to perform spontaneous migration, chemotactic migration and migration towards the autologous tumor, and also elevate markedly the expression of CD3zeta and CD3epsilon TCR-associated chains. J Neural Transm (Vienna) 2014; 121:1007-27. [DOI: 10.1007/s00702-014-1242-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 01/01/2023]
|
9
|
Foulds GA, Radons J, Kreuzer M, Multhoff G, Pockley AG. Influence of tumors on protective anti-tumor immunity and the effects of irradiation. Front Oncol 2013; 3:14. [PMID: 23378947 PMCID: PMC3561630 DOI: 10.3389/fonc.2013.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer.
Collapse
Affiliation(s)
- Gemma A Foulds
- Department of Oncology, The Medical School, The University of Sheffield Sheffield, UK ; Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | | | | | |
Collapse
|
10
|
Wolff HA, Rolke D, Rave-Fränk M, Schirmer M, Eicheler W, Doerfler A, Hille A, Hess CF, Matthias C, Rödel RMW, Christiansen H. Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:145-154. [PMID: 21085979 PMCID: PMC3040826 DOI: 10.1007/s00411-010-0341-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
The purpose of this work was to analyze chemokine and chemokine receptor expression in untreated and in irradiated squamous cell carcinoma of the head and neck (SCCHN) tumor cell lines, aiming at the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy. Five low passage and 10 established SCCHN lines, as well as two normal cell lines, were irradiated at 2 Gy or sham-irradiated, and harvested between 1 and 48 h after treatment. For chemokines with CC and CXC structural motifs and their receptors, transcript levels of target and reference genes were quantified relatively by real-time PCR. In addition, CXCL1 and CXCL12 protein expression was analyzed by ELISA. A substantial variation in chemokine and chemokine receptor expression between SCCHN was detected. Practically, all cell lines expressed CCL5 and CCL20, while CCL2 was expressed in normal cells and in some of the tumor cell lines. CXCL1, CXCL2, CXCL3, CXCL10, and CXCL11 were expressed in the vast majority of the cell lines, while the expression of CXCL9 and CXCL12 was restricted to fibroblasts and few tumor cell lines. None of the analyzed cell lines expressed the chemokines CCL3, CCL4, or CCL19. Of the receptors, transcript expression of CCR1, CCR2, CCR3, CCR5, CCR7, CCXR2, and CCXR3 was not detected, and CCR6, CXCR1, and CXCR4 expression was restricted to few tumor cells. Radiation caused up- and down-regulation with respect to chemokine expressions, while for chemokine receptor expressions down-regulations were prevailing. CXCL1 and CXCL12 protein expression corresponded well with the mRNA expression. We conclude that the substantial variation in chemokine and chemokine receptor expression between SCCHN offer opportunities for the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Cell Line, Tumor
- Chemokines/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/radiotherapy
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Chemokine/genetics
- Reproducibility of Results
Collapse
Affiliation(s)
- Hendrik A. Wolff
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - David Rolke
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Markus Schirmer
- Department of Pharmacology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolfgang Eicheler
- Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annegret Doerfler
- Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrea Hille
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Clemens F. Hess
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Ralph M. W. Rödel
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Hans Christiansen
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Park YS, Bae JH, Son CH, Lee KS, Kim W, Jung MH, Yang K, Kim SH, Kang CD. Cyclophosphamide potentiates the antitumor effect of immunization with injection of immature dendritic cells into irradiated tumor. Immunol Invest 2011; 40:383-99. [PMID: 21314288 DOI: 10.3109/08820139.2011.552141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Growth of a tumor on the left flank was suppressed by direct injection of immature DCs (iDCs) into the irradiated tumor on the right thigh (IR/DC). This antitumor immune effect of IR/DC was enhanced by pretreatment with CTX (CTX+IR/DC) and this effect was related with increased number of tumor-specific IFN-γ secreting T cells and decreased ratio of CD4(+)CD25(+)/CD4(+) T cells. The treatment with CTX+IR/DC increased or decreased the levels of IL-2 or IL-10, respectively. These results demonstrated that antitumor effect of IR/DC could be augmented by pretreatment with low-dose CTX, suggesting a new antitumor therapeutic modality of chemoradioimmunotherapy.
Collapse
Affiliation(s)
- You-Soo Park
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Muthana M, Multhoff G, Pockley AG. Tumour infiltrating host cells and their significance for hyperthermia. Int J Hyperthermia 2010; 26:247-55. [PMID: 20388022 DOI: 10.3109/02656730903413375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Much information can be gained by investigating the consequences of hyperthermia on individual cell populations in vitro, however the precise effects of such a therapeutic modality in vivo depend on the tumour microenvironment and the cellular composition therein. Although the direct cytotoxic effects of hyperthermia on tumour tissue can lead to an immediate reduction in tumour volume, long-term benefits to local and distal tumour recurrence will very much depend on the induction of immunity and the capacity of effector cells to traffic to tumours and elicit their cytotoxic functions. The immunological sequelae to hyperthermia are even more important in those instances when large tumour volumes preclude the delivery of appropriate thermal damage. The development of protective anti-tumour immunity requires a plethora of interactions and responses, the vast majority of which can be influenced by temperatures that are consistent with fever-like temperatures (39 degrees -40 degrees C), as well as hyperthermia treatment (<41 degrees C). This article reviews current knowledge relating to the effects of hyperthermia treatment on aspects of the induction and manifestation of immunological responses that are most pertinent to the development and maintenance of protective anti-tumour immunity.
Collapse
Affiliation(s)
- Munitta Muthana
- Department of Infection and Immunity, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|