1
|
Li Z, Wen X, Lu S, Zheng Y, Zhao P, Mu S, Wang X, Shi Y, Qu F, Chang H. Ice-pop making inspired photothermal ultra-swelling microneedles to facilitate loading and intradermal vaccination of tumor antigen. J Control Release 2025; 379:77-88. [PMID: 39756684 DOI: 10.1016/j.jconrel.2024.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Cancer vaccines hold great promise in the fight against cancer. Here, we report an ice-pop making inspired photothermal ultra-swelling microneedle (PUSMN) patch for facilitating and enhancing cancer vaccination. The PUSMN patch consist of an array of microneedles made from photo-crosslinked methacrylated hyaluronic acid and polydopamine, a near-infrared photothermal conversion material, connected to a customized resin handle like an ice-pop stick. Using a fabrication process similar to ice-pop making, the PUSMNs exhibit a rapid swelling ratio of over 2000 %, enabling straightforward and efficient loading of tumor antigen with just a 1-min incubation in the antigen solution, followed by 15 min of drying. The handle not only ensures convenient application but also guarantees full embedding of the PUSMNs in the skin after penetration. Under near-infrared irradiation, PUSMNs efficiently generate local heat, further promoting the activation and maturation of dendritic cells. In vivo vaccination with the model antigen ovalbumin using PUSMNs combined with near-infrared irradiation elicits robust tumor antigen-specific cellular and humoral immune responses, ultimately resulting in delayed tumor growth. Given its ease of use, efficiency, and safety features, this biocompatible PUSMN patch could greatly improve cancer vaccination.
Collapse
Affiliation(s)
- Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Sijia Mu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Fengli Qu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Hu C, Li H, Deng T, Liu Z, Yang L, Peng L, Jiang MY, Chen WZ. Abscopal effect of focused ultrasound combined immunotherapy in animal solid tumor model: a systematic reviews and meta-analysis. Front Immunol 2024; 15:1474343. [PMID: 39735534 PMCID: PMC11671366 DOI: 10.3389/fimmu.2024.1474343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction The abscopal effect, a systemic anti-tumor response triggered by localized treatment, has gained attention but remains poorly understood. This study evaluates the efficacy and consistency of focused ultrasound (FUS) combined with immunotherapy in inducing the abscopal effect. Methods A systematic review and meta-analysis were conducted on preclinical studies using solid tumor models. Data on tumor response, immune modulation, and survival outcomes were analyzed to assess the combination therapy's effectiveness. Results FUS combined with immunotherapy enhanced anti-tumor responses at local and distant sites, with evidence of immune activation and increased abscopal effect rates. However, heterogeneity across tumor models and protocols was observed. Discussion The findings provide a theoretical basis for FUS-immunotherapy combinations in cancer treatment, while emphasizing the need for standardized protocols and further research to elucidate underlying mechanisms. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023460710.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
- Department of Pulmonary and Critical Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Hui Li
- Department of Pulmonary and Critical Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Tao Deng
- Department of Pulmonary and Critical Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Zheng Liu
- Department of Pharmaceutical, Xiangtan Central Hospital, Xiangtan, China
| | - Li Yang
- Department of Pulmonary and Critical Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Li Peng
- Department of Oncology, Xiangtan Central Hospital, Xiangtan, China
| | - Ming Yan Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
- Department of Pulmonary and Critical Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Wen Zhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Cornillon P, Bouleftour W, Reynaud T, Pigne G, Maillet D, Hamizi S, Beguinot M. Immunogenicity of radiotherapy on bone metastases from prostate adenocarcinoma: What is the future for the combination with radiotherapy/immunotherapy? TUMORI JOURNAL 2024; 110:319-326. [PMID: 38745528 DOI: 10.1177/03008916241249366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bone metastatic prostate cancers (PCa) are resistant to usual immunotherapies such as checkpoint inhibitors. The main hypothesis related to this immunoresistance is the lack of antigens to stimulate anti-tumor immunity. External radiation is a potential inducer antigens presentation and thus to immunotherapy proprieties. The aim of this review is to describe the tumor microenvironment specificities, especially in bone metastasis and the immune modifications after radiation therapy on a metastatic castration-resistant PCa population. PCa microenvironment is immunosuppressive because of many tumor factors. The complex interplay between PCa cells and bone microenvironment leads to a 'vicious circle' promoting bone metastasis. Furthermore, the immune and bone systems, are connected through an osteoclastogenic cytokine: the Receptor Activator Nuclear Factor Kappa B ligand. Adapted doses of ionizing radiation play a dual role on the tumor. Indeed, radiotherapy leads to immunogenicity by inducing damage associated with molecular patterns. However, it also induces an immunosuppressive effect by increasing the number of immunosuppressive cells. Interestingly, the abscopal effect could be used to optimize immunotherapy potential, especially on bone metastasis. Radiotherapy and immunotherapy combination is a promising strategy, however further studies are necessary to determine the more efficient types of radiation and to control the abscopal effect.
Collapse
Affiliation(s)
- Pierre Cornillon
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Wafa Bouleftour
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thomas Reynaud
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Gregoire Pigne
- Department of Radiotherapy, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Denis Maillet
- Department of Medical Oncology, IMMUCARE, Centre Hospitalier Lyon Sud, Institut de Cancérologie des Hospices de Lyon, Pierre-Bénite, France
| | - Salima Hamizi
- Department of Medical Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie Beguinot
- Department of Medical Oncology, Medipole Lyon Villeurbanne Mutualist Clinic, Lyon, France
| |
Collapse
|
4
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
5
|
Rix A, Heinrichs H, Porte C, Leenaars C, Bleich A, Kiessling F. Ultrasound-induced immune responses in tumors: A systematic review and meta-analysis. J Control Release 2024; 371:146-157. [PMID: 38777126 DOI: 10.1016/j.jconrel.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Ultrasound is widely used in the diagnosis and therapy of cancer. Tumors can be treated by thermal or mechanical tissue ablation. Furthermore, tumors can be manipulated by hyperthermia, sonodynamic therapy and sonoporation, e.g., by increasing tumor perfusion or the permeability of biological barriers to enhance drug delivery. These treatments induce various immune responses in tumors. However, conflicting data and high heterogeneity between experimental settings make it difficult to generalize the effects of ultrasound on tumor immunity. Therefore, we performed a systematic review to answer the question: "Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound?" A systematic literature search was performed in PubMed, EMBASE, and Web of Science and 24,401 potentially relevant publications were identified. Of these, 96 publications were eligible for inclusion in the systematic review. Experiments were performed in humans, rats, and mice and focused on different tumor types, primarily breast and melanoma. We collected data on thermal and non-thermal ultrasound settings, the use of sono-sensitizers or sono-enhancers, and anti-tumor therapies. Six meta-analyses were performed to quantify the effect of ultrasound on tumor infiltration by T cells (cytotoxic, helper, and regulatory T cells) and on blood cytokines (interleukin-6, interferon-γ, tumor necrosis factor-α). We provide robust scientific evidence that ultrasound alters T cell infiltration into tumors and increases blood cytokine concentrations. Furthermore, we identified significant differences in immune cell infiltration based on tumor type, ultrasound settings, and mouse age. Stronger effects were observed using hyperthermia in combination with sono-sensitizers and in young mice. The latter may impair the translational impact of study results as most cancer patients are older. Thus, our results may help refining ultrasound parameters to enhance anti-tumor immune responses for therapeutic use and to minimize immune effects in diagnostic applications.
Collapse
Affiliation(s)
- Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Helen Heinrichs
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
6
|
Ashar H, Singh A, Kishore D, Neel T, More S, Liu C, Dugat D, Ranjan A. Enabling Chemo-Immunotherapy with HIFU in Canine Cancer Patients. Ann Biomed Eng 2024; 52:1859-1872. [PMID: 37162696 DOI: 10.1007/s10439-023-03194-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/11/2023]
Abstract
High intensity focused ultrasound (HIFU) is a promising non-invasive technique for treating solid tumors using thermal and histotripsy-based mechanical ablation. However, its clinical significance in different tumor types is not fully understood. To assess its therapeutic efficacy and immunomodulatory properties, we compared HIFU thermal ablation and histotripsy ablation in dogs with spontaneous tumors. We also evaluated the ability of non-ablative HIFU-based mild hyperthermia (40-45 ºC) to improve Doxorubicin delivery and immunomodulation. Our results showed that HIFU thermal ablation induced tumor remission in the majority of treated patients over 60 days, while histotripsy achieved partial response to stable disease persistence. The adverse effects of thermal ablation were minor to moderate, while histotripsy exposures were relatively well-tolerated. Furthermore, we observed a correlation between HIFU-therapeutic response and serum anti-tumor cytokine profiles and the presence of functionally active cytotoxic immune cells in patients. Similarly, Doxorubicin-treated patients showed improved drug delivery, efficacy, and anti-tumor immune responses with HIFU hyperthermia. In conclusion, our study demonstrates that depending on the tumor type and treatment parameters, HIFU treatments can enable tumor growth control, immune activation, and chemotherapy in veterinary patient. These findings have significant clinical implications and highlight the potential of HIFU as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | - Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | | | - Tina Neel
- Neel Veterinary Hospital, Oklahoma City, OK, 73127, USA
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Chenang Liu
- The School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Danielle Dugat
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 169 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Yang Y, Cheng Y, Cheng L. The emergence of cancer sono-immunotherapy. Trends Immunol 2024; 45:549-563. [PMID: 38910097 DOI: 10.1016/j.it.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Owing to its remarkable ease of use, ultrasound has recently been explored for stimulating or amplifying immune responses during cancer therapy, termed 'sono-immunotherapy'. Ultrasound can cause immunogenic cell death in cancer cells via thermal and nonthermal effects to regulate the tumor microenvironment, thereby priming anticancer immunity; by integrating well-designed biomaterials, novel sono-immunotherapy approaches with augmented efficacy can also be developed. Here, we review the advances in sono-immunotherapy for cancer treatment and summarize existing limitations along with potential trends. We offer emerging insights into this realm, which might prompt breakthroughs and expand its potential applications to other diseases.
Collapse
Affiliation(s)
- Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China; Monash Suzhou Research Institute, Monash University, Suzhou, 215000, China; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, Suzhou, 215000, China; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Wu Y, Li J, Shu L, Tian Z, Wu S, Wu Z. Ultrasound combined with microbubble mediated immunotherapy for tumor microenvironment. Front Pharmacol 2024; 15:1304502. [PMID: 38487163 PMCID: PMC10937735 DOI: 10.3389/fphar.2024.1304502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in dynamically regulating the progress of cancer and influencing the therapeutic results. Targeting the tumor microenvironment is a promising cancer treatment method in recent years. The importance of tumor immune microenvironment regulation by ultrasound combined with microbubbles is now widely recognized. Ultrasound and microbubbles work together to induce antigen release of tumor cell through mechanical or thermal effects, promoting antigen presentation and T cells' recognition and killing of tumor cells, and improve tumor immunosuppression microenvironment, which will be a breakthrough in improving traditional treatment problems such as immune checkpoint blocking (ICB) and himeric antigen receptor (CAR)-T cell therapy. In order to improve the therapeutic effect and immune regulation of TME targeted tumor therapy, it is necessary to develop and optimize the application system of microbubble ultrasound for organs or diseases. Therefore, the combination of ultrasound and microbubbles in the field of TME will continue to focus on developing more effective strategies to regulate the immunosuppression mechanisms, so as to activate anti-tumor immunity and/or improve the efficacy of immune-targeted drugs, At present, the potential value of ultrasound combined with microbubbles in TME targeted therapy tumor microenvironment targeted therapy has great potential, which has been confirmed in the experimental research and application of breast cancer, colon cancer, pancreatic cancer and prostate cancer, which provides a new alternative idea for clinical tumor treatment. This article reviews the research progress of ultrasound combined with microbubbles in the treatment of tumors and their application in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuohui Wu
- Department of Ultrasound, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Padilla F, Foley J, Timbie K, Bullock TNJ, Sheybani ND. Guidelines for immunological analyses following focused ultrasound treatment. J Immunother Cancer 2023; 11:e007455. [PMID: 38007236 PMCID: PMC10679984 DOI: 10.1136/jitc-2023-007455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 11/27/2023] Open
Abstract
Focused ultrasound (FUS) is a powerful emerging tool for non-invasive, non-ionizing targeted destruction of tumors. The last two decades have seen a growing body of preclinical and clinical literature supporting the capacity of FUS to increase nascent immune responses to tumors and to potentiate cancer immunotherapies (e.g. checkpoint inhibitors) through a variety of means, including immune modulation and drug delivery. With the rapid acceleration of this field and a multitude of FUS immunotherapy clinical trials having now been deployed worldwide, there is a need to streamline and standardize the methodology for immunological analyses field-wide. Recently, the Focused Ultrasound Foundation and Cancer Research Institute partnered to convene a group of over 85 leaders to discuss the nexus of FUS and immuno-oncology. The guidelines documented herein were assembled in response to recommendations that emerged from this discussion, emphasizing the urgent need for heightened accessibility of immune analysis methods and standardized protocols unique to the field. These guidelines are designated for existing stakeholders in the FUS immuno-oncology domain or those newly entering the field, to provide guidance on collection, storage, and immunological profiling of tissue or blood specimens in the context of FUS immunotherapy studies, and additionally offer templates for standardized deployment of these methods based on collective experience gained within the field to date. These guidelines are tumor-agnostic and provide evidence-based, consensus-based recommendations for both preclinical and clinical immune analysis of tissue and blood specimens.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jessica Foley
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | - Kelsie Timbie
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | | | - Natasha D Sheybani
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Singh A, Ashar H, Butcher JT, Ranjan A. Age-associated changes in the gut microbiome impact efficacy of tumor immunomodulatory treatments. Exp Gerontol 2023; 181:112268. [PMID: 37572993 PMCID: PMC11073541 DOI: 10.1016/j.exger.2023.112268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
In-situ vaccination (ISV) utilizing nanoparticles (NPs) and therapeutic devices like focused ultrasound (FUS) can trigger immune-mediated killing of both treated and untreated cancer cells. However, the impact of confounding factors such as aging and gut microbiota composition on therapeutic outcomes remains poorly understood. In this study, we sequentially treated young mice (∼8 weeks) and old mice (>18 months) with bilateral melanoma using FUS and calreticulin nanoparticles (CRT-NP) to enhance immunogenic cell death. The combination of CRT-NP and FUS (CFUS) demonstrated greater efficacy in inducing regression of treated and untreated tumors in young mice compared to old mice. The diminished effectiveness in older mice was associated with significant differences in gut microbiome composition, characterized by alterations in bacterial species and splenic immune cells. Specifically, young mice exposed to CFUS exhibited higher abundance of Bacteroidetes and Verrucomicrobia, which was not observed in the aged cohorts. Turicibacter, Anaerotruncus, and Ruminiclostridium demonstrated negative correlations with CD8+ T cells but positive correlations with CD4+ T cells and MDSC cells in both age groups. Taxon set enrichment analysis revealed 58 significantly enriched host gene targets in the young cluster compared to only 11 in the aged cluster. These findings highlight the relationship between ISV treatment efficacy and gut microbiome composition, suggesting that interventions such as diet modification, probiotics, or fecal microbiota transplantation may hold potential as therapeutic strategies to enhance immune responses against solid tumors.
Collapse
Affiliation(s)
- Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joshua T Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
11
|
Pelka S, Guha C. Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines 2023; 11:2245. [PMID: 37626741 PMCID: PMC10452223 DOI: 10.3390/biomedicines11082245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.
Collapse
Affiliation(s)
- Sandra Pelka
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Chandrasekar SV, Singh A, Ranjan A. Overcoming Resistance to Immune Checkpoint Inhibitor Therapy Using Calreticulin-Inducing Nanoparticle. Pharmaceutics 2023; 15:1693. [PMID: 37376141 PMCID: PMC10302072 DOI: 10.3390/pharmaceutics15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nanoparticles (NPs) have the ability to transform poorly immunogenic tumors into activated 'hot' targets. In this study, we investigated the potential of a liposome-based nanoparticle (CRT-NP) expressing calreticulin as an in-situ vaccine to restore sensitivity to anti-CTLA4 immune checkpoint inhibitor (ICI) in CT26 colon tumors. We found that a CRT-NP with a hydrodynamic diameter of approximately 300 nm and a zeta potential of approximately +20 mV induced immunogenic cell death (ICD) in CT-26 cells in a dose-dependent manner. In the mouse model of CT26 xenograft tumors, both CRT-NP and ICI monotherapy caused moderate reductions in tumor growth compared to the untreated control group. However, the combination therapy of CRT-NP and anti-CTLA4 ICI resulted in remarkable suppression of tumor growth rates (>70%) compared to untreated mice. This combination therapy also reshaped the tumor microenvironment (TME), achieving the increased infiltration of antigen-presenting cells (APCs) such as dendritic cells and M1 macrophages, as well as an abundance of T cells expressing granzyme B and a reduction in the population of CD4+ Foxp3 regulatory cells. Our findings indicate that CRT-NPs can effectively reverse immune resistance to anti-CTLA4 ICI therapy in mice, thereby improving the immunotherapeutic outcome in the mouse model.
Collapse
Affiliation(s)
| | | | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary, Oklahoma State University, Stillwater, OK 74078, USA; (S.V.C.)
| |
Collapse
|
14
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
15
|
Singh A, Ranjan A. Adrenergic receptor signaling regulates the CD40-receptor mediated anti-tumor immunity. Front Immunol 2023; 14:1141712. [PMID: 37006295 PMCID: PMC10050348 DOI: 10.3389/fimmu.2023.1141712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
InroductionAnti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality.Method/ResultsHere, we reveal that β-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that β-2 adrenergic receptor (β2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan β-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy.Discussion/ConclusionThus, our study highlights an important mechanistic link between stress-induced β2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.
Collapse
|
16
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
17
|
van den Bijgaart RJE, Mekers VE, Schuurmans F, Raaijmakers TK, Wassink M, Veltien A, Dumont E, Heerschap A, Fütterer JJ, Adema GJ. Mechanical high-intensity focused ultrasound creates unique tumor debris enhancing dendritic cell-induced T cell activation. Front Immunol 2022; 13:1038347. [PMID: 36569907 PMCID: PMC9768443 DOI: 10.3389/fimmu.2022.1038347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction In situ tumor ablation releases a unique repertoire of antigens from a heterogeneous population of tumor cells. High-intensity focused ultrasound (HIFU) is a completely noninvasive ablation therapy that can be used to ablate tumors either by heating (thermal (T)-HIFU) or by mechanical disruption (mechanical (M)-HIFU). How different HIFU ablation techniques compare with respect to their antigen release profile, their activation of responder T cells, and their ability to synergize with immune stimuli remains to be elucidated. Methods and results Here, we compare the immunomodulatory effects of T-HIFU and M-HIFU ablation with or without the TLR9 agonist CpG in the ovalbumin-expressing lymphoma model EG7. M-HIFU ablation alone, but much less so T-HIFU, significantly increased dendritic cell (DC) activation in draining lymph nodes (LNs). Administration of CpG following T- or M-HIFU ablation increased DC activation in draining LNs to a similar extend. Interestingly, ex vivo co-cultures of draining LN suspensions from HIFU plus CpG treated mice with CD8+ OT-I T cells demonstrate that LN cells from M-HIFU treated mice most potently induced OT-I proliferation. To delineate the mechanism for the enhanced anti-tumor immune response induced by M-HIFU, we characterized the RNA, DNA and protein content of tumor debris generated by both HIFU methods. M-HIFU induced a uniquely altered RNA, DNA and protein profile, all showing clear signs of fragmentation, whereas T-HIFU did not. Moreover, western blot analysis showed decreased levels of the immunosuppressive cytokines IL-10 and TGF-β in M-HIFU generated tumor debris compared to untreated tumor tissue or T-HIFU. Conclusion Collectively, these results imply that M-HIFU induces a unique context of the ablated tumor material, enhancing DC-mediated T cell responses when combined with CpG.
Collapse
Affiliation(s)
- Renske J. E. van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vera E. Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tonke K. Raaijmakers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Melissa Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J. Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: Gosse J. Adema,
| |
Collapse
|
18
|
Mao C, Beiss V, Ho GW, Fields J, Steinmetz NF, Fiering S. In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade. J Immunother Cancer 2022; 10:e005834. [PMID: 36460333 PMCID: PMC9723958 DOI: 10.1136/jitc-2022-005834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In situ vaccination (ISV) is a cancer immunotherapy strategy in which immunostimulatory reagents are introduced directly into a tumor to stimulate antitumor immunity both against the treated tumor and systemically against untreated tumors. Recently, we showed that cowpea mosaic virus (CPMV) is a potent multi-toll-like receptor (TLR) agonist with potent efficacy for treating tumors in mice and dogs by ISV. However, ISV with CPMV alone does not uniformly treat all mouse tumor models tested, however this can be overcome through strategic combinations. More insight is needed to delineate potency and mechanism of systemic antitumor immunity and abscopal effect. METHOD We investigated the systemic efficacy (abscopal effect) of CPMV ISV with a two-tumor mouse model using murine tumor lines B16F10, 4T1, CT26 and MC38. Flow cytometry identified changes in cell populations responsible for systemic efficacy of CPMV. Transgenic knockout mice and depleting antibodies validated the role of relevant candidate cell populations and cytokines. We evaluated these findings and engineered a multicomponent combination therapy to specifically target the candidate cell population and investigated its systemic efficacy, acquired resistance and immunological memory in mouse models. RESULTS ISV with CPMV induces systemic antitumor T-cell-mediated immunity that inhibits growth of untreated tumors and requires conventional type-1 dendritic cells (cDC1s). Furthermore, using multiple tumor mouse models resistant to anti-programmed death 1 (PD-1) therapy, we tested the hypothesis that CPMV along with local activation of antigen-presenting cells with agonistic anti-CD40 can synergize and strengthen antitumor efficacy. Indeed, this combination ISV strategy induces an influx of CD8+ T cells, triggers regression in both treated local and untreated distant tumors and potentiates tumor responses to anti-PD-1 therapy. Moreover, serial ISV overcomes resistance to anti-PD-1 therapy and establishes tumor-specific immunological memory. CONCLUSIONS These findings provide new insights into in situ TLR activation and cDC1 recruitment as effective strategies to overcome resistance to immunotherapy in treated and untreated tumors.
Collapse
Affiliation(s)
- Chenkai Mao
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Veronique Beiss
- Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Gregory W Ho
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jennifer Fields
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven Fiering
- Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
19
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
20
|
CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol 2022; 19:14-22. [PMID: 34282297 PMCID: PMC8752810 DOI: 10.1038/s41423-021-00734-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial advances attained by checkpoint blockade immunotherapies have driven an expansion in the approaches used to promote T cell access to the tumor microenvironment to provide targets for checkpoint immunotherapy. Inherent in any T cell response to a tumor antigen is the capacity of dendritic cells to initiate and support such responses. Here, the rationale and early immunobiology of CD40 as a master regulator of dendritic cell activation is reviewed, with further contextualization and appreciation for the role of CD40 stimulation not only in cancer vaccines but also in other contemporary immune-oncology approaches.
Collapse
|
21
|
Abstract
Glioblastoma has emerged as an immunotherapy-refractory tumor based on negative phase III studies of anti-programmed cell death-1 therapy among newly diagnosed as well as recurrent patients. In addition, although much work on vaccine and cellular approaches is ongoing, therapeutic benefit with these approaches has been underwhelming. Much scientific insight into the multitiered layers of immunosuppression exploited by glioblastoma tumors is emerging that sheds light on the explanation for the disappointing results to date and highlights possible therapeutic avenues that may offer a better likelihood of therapeutic benefit for immune-based therapies.
Collapse
|
22
|
Gorbet MJ, Singh A, Mao C, Fiering S, Ranjan A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int J Hyperthermia 2021; 37:18-33. [PMID: 33426995 DOI: 10.1080/02656736.2020.1802519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy to treat cancer is now an established clinical approach. Immunotherapy can be applied systemically, as done with checkpoint blockade antibodies, but it can also be injected directly into identified tumors, in a strategy of in situ vaccination (ISV). ISV is designed to stimulate a strong local antitumor immune response involving both innate and adaptive immune cells, and through this generate a systemic antitumor immune response against metastatic tumors. A variety of ISVs have been utilized to generate an immunostimulatory tumor microenvironment (TME). These include attenuated microorganisms, recombinant proteins, small molecules, physical disruptors of TME (alternating magnetic and focused ultrasound heating, photothermal therapy, and radiotherapy), and more recently nanoparticles (NPs). NPs are attractive and unique since they can load multiple drugs or other reagents to influence immune and cancer cell functions in the TME, affording a unique opportunity to stimulate antitumor immunity. Here, we describe the NP-ISV therapeutic mechanisms, review chemically synthesized NPs (i.e., liposomes, polymeric, chitosan-based, inorganic NPs, etc.), biologically derived NPs (virus and bacteria-based NPs), and energy-activated NP-ISVs in the context of their use as local ISV. Data suggests that NP-ISVs can enhance outcomes of immunotherapeutic regimens including those utilizing tumor hyperthermia and checkpoint blockade therapies.
Collapse
Affiliation(s)
| | - Akansha Singh
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center at Dartmouth and Dartmouth Hitchcock, Lebanon, NH, USA
| | - Ashish Ranjan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
23
|
Qin R, Peng W, Wang X, Li C, Xi Y, Zhong Z, Sun C. Identification of Genes Related to Immune Infiltration in the Tumor Microenvironment of Cutaneous Melanoma. Front Oncol 2021; 11:615963. [PMID: 34136377 PMCID: PMC8202075 DOI: 10.3389/fonc.2021.615963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
Cutaneous melanoma (CM) is the leading cause of skin cancer deaths and is typically diagnosed at an advanced stage, resulting in a poor prognosis. The tumor microenvironment (TME) plays a significant role in tumorigenesis and CM progression, but the dynamic regulation of immune and stromal components is not yet fully understood. In the present study, we quantified the ratio between immune and stromal components and the proportion of tumor-infiltrating immune cells (TICs), based on the ESTIMATE and CIBERSORT computational methods, in 471 cases of skin CM (SKCM) obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were analyzed by univariate Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis to identify prognosis-related genes. The developed prognosis model contains ten genes, which are all vital for patient prognosis. The areas under the curve (AUC) values for the developed prognostic model at 1, 3, 5, and 10 years were 0.832, 0.831, 0.880, and 0.857 in the training dataset, respectively. The GSE54467 dataset was used as a validation set to determine the predictive ability of the prognostic signature. Protein–protein interaction (PPI) analysis and weighted gene co-expression network analysis (WGCNA) were used to verify “real” hub genes closely related to the TME. These hub genes were verified for differential expression by immunohistochemistry (IHC) analyses. In conclusion, this study might provide potential diagnostic and prognostic biomarkers for CM.
Collapse
Affiliation(s)
- Rujia Qin
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Wen Peng
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xuemin Wang
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yan Xi
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhaoming Zhong
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.,Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chuanzheng Sun
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
24
|
Adnan A, Muñoz NM, Prakash P, Habibollahi P, Cressman ENK, Sheth RA. Hyperthermia and Tumor Immunity. Cancers (Basel) 2021; 13:2507. [PMID: 34063752 PMCID: PMC8196672 DOI: 10.3390/cancers13112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Thermal ablation is a cornerstone in the management of cancer patients. Typically, ablation procedures are performed for patients with a solitary or oligometastatic disease with the intention of eradicating all sites of the disease. Ablation has traditionally played a less prominent role for patients with a widely metastatic disease. For such patients, attempting to treat numerous sites of disease compounds potential risks without a clear clinical benefit and, as such, a compelling justification for performing an intervention that is unlikely to alter a patient's clinical trajectory is uncommon. However, the discovery of immune checkpoints and the development of immune checkpoint inhibitors have brought a new perspective to the relevance of local cancer therapies such as ablation for patients with a metastatic disease. It is becoming increasingly apparent that local cancer therapies can have systemic immune effects. Thus, in the new perspective of cancer care centered upon immunologic principles, there is a strong interest in exploring the utility of ablation for patients with a metastatic disease for its immunologic implications. In this review, we summarize the unmet clinical need for adjuvant interventions such as ablation to broaden the impact of systemic immunotherapies. We additionally highlight the extant preclinical and clinical data for the immunogenicity of common thermal ablation modalities.
Collapse
Affiliation(s)
- Ather Adnan
- Texas A&M Health Science Center, Texas A&M College of Medicine, Houston, TX 77030, USA;
| | - Nina M. Muñoz
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.M.); (P.H.); (E.N.K.C.)
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA;
| | - Peiman Habibollahi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.M.); (P.H.); (E.N.K.C.)
| | - Erik N. K. Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.M.); (P.H.); (E.N.K.C.)
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.M.); (P.H.); (E.N.K.C.)
| |
Collapse
|
25
|
Abstract
Tumor metastasis is a singularly important determinant of survival in most cancers. Historically, radiation therapy (RT) directed at a primary tumor mass was associated infrequently with remission of metastasis outside the field of irradiation. This away-from-target or "abscopal effect" received fringe attention because of its rarity. With the advent of immunotherapy, there are now increasing reports of abscopal effects upon RT in combination with immune checkpoint inhibition. This sparked investigation into underlying mechanisms and clinical trials aimed at enhancement of this effect. While these studies clearly attribute the abscopal effect to an antitumor immune response, the initial molecular triggers for its onset and specificity remain enigmatic. Here, we propose that DNA damage-induced inflammation coupled with neoantigen generation is essential during this intriguing phenomenon of systemic tumor regression and discuss the implications of this model for treatment aimed at triggering the abscopal effect in metastatic cancer.
Collapse
|
26
|
Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2021; 205:2327-2341. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Focused ultrasound (FUS) has recently emerged as a modulator of the tumor microenvironment, paving the way for FUS to become a safe yet formidable cancer treatment option. Several mechanisms have been proposed for the role of FUS in facilitating immune responses and overcoming drug delivery barriers. However, with the wide variety of FUS parameters used in diverse tumor types, it is challenging to pinpoint FUS specifications that may elicit the desired antitumor response. To clarify FUS bioeffects, we summarize four mechanisms of action, including thermal ablation, hyperthermia/thermal stress, mechanical perturbation, and histotripsy, each inducing unique vascular and immunological effects. Notable tumor responses to FUS include enhanced vascular permeability, increased T cell infiltration, and tumor growth suppression. In this review, we have categorized and reviewed recent methods of using therapeutic ultrasound to elicit an antitumor immune response with examples that reveal specific solutions and challenges in this new research area.
Collapse
Affiliation(s)
- Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yuliya Pylayeva-Gupta
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Paul A Dayton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599
| |
Collapse
|
27
|
Rodrigues HF, Capistrano G, Bakuzis AF. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int J Hyperthermia 2021; 37:76-99. [PMID: 33426989 DOI: 10.1080/02656736.2020.1800831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticle hyperthermia (MNH) is a promising nanotechnology-based cancer thermal therapy that has been approved for clinical use, together with radiation therapy, for treating brain tumors. Almost ten years after approval, few new clinical applications had appeared, perhaps because it cannot benefit from the gold standard noninvasive MRI thermometry technique, since static magnetic fields inhibit heat generation. This might limit its clinical use, in particular as a single therapeutic modality. In this article, we review the in vivo MNH preclinical studies, discussing results of the last two decades with emphasis on safety as a clinical criteria, the need for low-field nano-heaters and noninvasive thermal dosimetry, and the state of the art of computational modeling for treatment planning using MNH. Limitations to more effective clinical use are discussed, together with suggestions for future directions, such as the development of ultrasound-based, computed tomography-based or magnetic nanoparticle-based thermometry to achieve greater impact on clinical translation of MNH.
Collapse
Affiliation(s)
- Harley F Rodrigues
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Curso de Licenciatura em Física, Instituto Federal de Goiás, Goiânia, Brasil
| | - Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Campus Fronteira Oeste, Instituto Federal de Mato Grosso, Pontes e Lacerda, Brasil
| | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
28
|
Singh MP, Sethuraman SN, Miller C, Malayer J, Ranjan A. Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. Theranostics 2021; 11:540-554. [PMID: 33391491 PMCID: PMC7738858 DOI: 10.7150/thno.49517] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Advanced stage cancers with a suppressive tumor microenvironment (TME) are often refractory to immune checkpoint inhibitor (ICI) therapy. Recent studies have shown that focused ultrasound (FUS) TME-modulation can synergize ICI therapy, but enhancing survival outcomes in poorly immunogenic tumors remains challenging. Here, we investigated the role of focused ultrasound based boiling histotripsy (HT) and in-situ anti-CD40 agonist antibody (αCD40) combinatorial therapy in enhancing therapeutic efficacy against ICI refractory murine melanoma. Methods: Unilateral and bilateral large (~330-400 mm3) poorly immunogenic B16F10 melanoma tumors were established in the flank regions of mice. Tumors were exposed to single local HT followed by an in-situ administration of αCD40 (HT+ αCD40: HT40). Inflammatory signatures post treatment were assessed using pan-cancer immune profiling and flow cytometry. The ability of HT40 ± ICI to enhance local and systemic effects was determined by immunological characterization of the harvested tissues, and by tumor growth delay of local and distant untreated tumors 4-6 weeks post treatment. Results: Immune profiling revealed that HT40 upregulated a variety of inflammatory markers in the tumors. Immunologically, HT40 treated tumors showed an increased population of granzyme B+ expressing functional CD8+ T cells (~4-fold) as well as an increased M1 to M2 macrophage ratio (~2-3-fold) and CD8+ T: regulatory T cell ratio (~5-fold) compared to the untreated control. Systemically, the proliferation rates of the melanoma-specific memory T cell population were significantly enhanced by HT40 treatment. Finally, the combination of HT40 and ICI therapy (anti-CTLA-4 and anti-PD-L1) caused superior inhibition of distant untreated tumors, and prolonged survival rates compared to the control. Conclusions: Data suggest that HT40 reprograms immunologically cold tumors and sensitizes them to ICI therapy. This approach may be clinically useful for treating advanced stage melanoma cancers.
Collapse
Affiliation(s)
- Mohit Pratap Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Sri Nandhini Sethuraman
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Craig Miller
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Jerry Malayer
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
29
|
Singh MP, Flynn NH, Sethuraman SN, Manouchehri S, Ritchey J, Liu J, Ramsey JD, Pope C, Ranjan A. Reprogramming the rapid clearance of thrombolytics by nanoparticle encapsulation and anchoring to circulating red blood cells. J Control Release 2021; 329:148-161. [DOI: 10.1016/j.jconrel.2020.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
|
30
|
Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Acta Biomater 2020; 114:16-30. [PMID: 32777293 DOI: 10.1016/j.actbio.2020.07.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy evolved as a new treatment modality to eradicate tumor cells and has gained in popularity after its successful clinical transition. By activating antigen-presenting cells (APCs), and thus, inducing innate or adaptive immune responses, immunoadjuvants have become promising tools for cancer immunotherapy. Different types of immunoadjuvants such as toll-like receptor (TLR) agonists, exosomes, and metallic and plant-derived immunoadjuvants have been studied for their immunological effects. However, the clinical use of immunoadjuvants is limited by short response rates and various side-effects. The rapid progress made in the development of nanoparticle systems as immunoadjuvant carrier vehicles has provided potential carriers for cancer immunotherapy. In this review article, we describe different types of immunoadjuvants, their limitations, modes of action, and the reasons for their clinical adoption. In addition, we review recent progress made in the nanoparticle-based immunoadjuvant field and on the combined use of nanoparticle-based immunoadjuvants and chemotherapy, phototherapy, radiation therapy, and immune checkpoint inhibitor-based therapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy emerged as a new hope for treating malignant tumors. Different types of immunoadjuvants serve as an important tool for cancer immunotherapy by activating an innate or adaptive immune response. Limitation of free immunoadjuvant has paved the path for the development of nanoparticle-based immunoadjuvant therapy with the hope of prolonging the therapeutic efficacy. This review highlights the recent advancement made in nanoparticle-based immunoadjuvant therapy in modulating the adaptive and innate immune system. The application of the combinatorial approach of chemotherapy, phototherapy, radiation therapy adds synergy in nanoparticle-based immunoadjuvant therapy. It will broaden the reader's understanding on the recent progress made in immunotherapy with the aid of immunoadjuvant-based nanosystem.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
31
|
Sethuraman SN, Singh MP, Patil G, Li S, Fiering S, Hoopes PJ, Guha C, Malayer J, Ranjan A. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity. Theranostics 2020; 10:3397-3412. [PMID: 32206098 PMCID: PMC7069083 DOI: 10.7150/thno.42243] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Some studies have shown that the local activation of immunogenic cell death (ICD) by upregulating calreticulin (CRT) expression in solid tumors can improve antitumor effects. Although a promising approach, a key current challenge in ICD tumor therapy is the absence of a clinically translatable method for reproducibly inducing the CRT expression. Herein, we report a novel calreticulin-nanoparticle (CRT-NP) that enhances ICD and synergizes with focused ultrasound (FUS) to achieve local and systemic antitumor effects. Methods: Full-length clone DNA of calreticulin was encapsulated in NPs made from DOTAP and cholesterol. Three CRT-NP intratumoral injections of 20 µg each were given 2 days apart, and FUS heating (42-45°C, ~15min) was applied sequentially 24h after each injection to induce ICD. To investigate ICD specific immune effect, the splenocytes of mice vaccinated with CRT-NP (± FUS) treated B16F10 cells were evaluated ex-vivo for TRP-2 antigen specific immunity. Additionally, the long-term protection was evaluated by re-challenging with the melanoma cells in the flank regions of tumor bearing mice. Results: CRT-NP plus FUS (CFUS) upregulated CRT expression, expanded the population of melanoma TRP-2 specific functional CD4+ and CD8+ T cells and tumor-suppressing M1 phenotype, and increased PD-1 and PD-L1 marker expression in the T cells. Therapeutically, CFUS suppressed B16 melanoma growth by >85% vs. that seen in untreated controls, and >~50% vs. CRT-NP or FUS alone, and prevented tumor growth in distal untreated sites. Conclusions: CRT-NP amplifies the FUS and ICD therapeutic outcomes against melanoma, suggesting that the proposed combinatorial methodology may be clinically translatable.
Collapse
Affiliation(s)
- Sri Nandhini Sethuraman
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Mohit Pratap Singh
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Girish Patil
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Shitao Li
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | | | | | - Chandan Guha
- Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma 74074
| |
Collapse
|
32
|
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2019; 207:107456. [PMID: 31863820 DOI: 10.1016/j.pharmthera.2019.107456] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy, surgery, and radiation are accepted as the preferred treatment modalities against cancer, but in recent years the use of immunotherapeutic approaches has gained prominence as the fourth treatment modality in cancer patients. In this approach, a patient's innate and adaptive immune systems are activated to achieve clearance of occult cancerous cells. In this review, we discuss the preclinical and clinical immunotherapeutic (e.g., immunoadjuvants (in-situ vaccines, oncolytic viruses, CXC antagonists, device activated agents), organic and inorganic nanoparticles, and checkpoint blockade) that are under investigation for cancer therapy and diagnostics. Additionally, the innovations in imaging of immune cells for tracking therapeutic responses and limitations (e.g., toxicity, inefficient immunomodulation, etc.) are described. Existing data suggest that if immune therapy is optimized, it can be a real and potentially paradigm-shifting cancer treatment frontier.
Collapse
Affiliation(s)
- Michael-Joseph Gorbet
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA.
| |
Collapse
|