1
|
Somawardana IA, Prasad B, Kay W, Hunt C, Adams J, Kawaguchi B, Smith TB, Ashton N, Sadaphal V, Tepper J, Monogue M, Ramirez JI, Jones OD, Shelton JM, Evers BM, Serge R, Pybus C, Williams D, Chopra R, Greenberg DE. Alternating magnetic fields (AMF) and linezolid reduce Staphylococcus aureus biofilm in a large animal implant model. J Infect 2024; 89:106271. [PMID: 39278276 DOI: 10.1016/j.jinf.2024.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVES We aimed to evaluate the effectiveness of alternating magnetic fields (AMF) combined with antibiotics in reducing Staphylococcus aureus biofilm on metal implants in a large animal model, compared to antibiotics alone. METHODS Metal plates were inoculated with a clinical MRSA strain and then implanted into thirty-three ewes divided into three groups: positive control, linezolid only, and a combination of linezolid and AMF. Animals had either titanium or cobalt-chrome plates and were sacrificed at 5 or 21 days post-implantation. Blood and tissue samples were collected at various time points post-AMF treatment. RESULTS In vivo efficacy studies demonstrated significant biofilm reduction on titanium and cobalt-chrome implants with AMF-linezolid combination treatment compared to controls. Significant bacterial reductions were also observed in surrounding tissues and bones. Cytokine analysis showed improved inflammatory responses with combination therapy, and histopathology confirmed reduced inflammation, necrosis, and bacterial presence, especially at 5 days post-implantation. CONCLUSIONS This study demonstrates that combining AMF with antibiotics significantly reduces biofilm-associated infections on metal implants in a large animal model. Numerical simulations confirmed targeted heating, and in vivo results showed substantial bacterial load reduction and reduced inflammatory response. These findings support the potential of AMF as a non-invasive treatment for prosthetic joint infections.
Collapse
Affiliation(s)
- Isuru A Somawardana
- Texas A&M School of Engineering Medicine, Houston, TX 77030, USA; Solenic Medical, Inc., Addison, TX 75001, USA
| | - Bibin Prasad
- Solenic Medical, Inc., Addison, TX 75001, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Walker Kay
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Connor Hunt
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Adams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT 84112, USA
| | - Brooke Kawaguchi
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT 84112, USA
| | - Tyler B Smith
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicholas Ashton
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT 84112, USA
| | - Varun Sadaphal
- Solenic Medical, Inc., Addison, TX 75001, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Tepper
- Solenic Medical, Inc., Addison, TX 75001, USA
| | - Marguerite Monogue
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Josue I Ramirez
- Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Olivia D Jones
- Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | | - Christine Pybus
- Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Dustin Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA; Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT 84112, USA
| | - Rajiv Chopra
- Solenic Medical, Inc., Addison, TX 75001, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Wehbe M, Kadah El Habbal R, Kaj J, Karam P. Synergistic Dual Antibacterial Activity of Magnetite Hydrogels Doped with Silver. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22865-22874. [PMID: 39417300 PMCID: PMC11526350 DOI: 10.1021/acs.langmuir.4c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
In this work, we utilized poly-N-isopropylacrylamide (NIPAM), magnetic nanoparticles (MNPs), and silver nitrate to prepare magnetic hydrogel microparticles doped with silver, which exhibited a dual antimicrobial effect. The antibacterial effect of these composites was mediated by the antimicrobial activity of silver and the magnetic hyperthermic induction, which we believe increased biofilm disruption and silver release into the surrounding bacterial biofilms. The prepared particles were characterized by using several analytical techniques. The particles exhibited a porous morphology impregnated evenly with silver nanoparticles, as observed by scanning electron microscopy (SEM). Furthermore, we examined the antibacterial activity of our microparticles against Escherichia coli by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our findings revealed that the composites demonstrated significant antibacterial activity of up to 81% under magnetic hyperthermia as compared to 45% when samples were heated to the same temperature in a water bath at constant silver concentration. This demonstrates the distinctive inhibitory features of MNPs in enhancing bacterial killing when a magnetic field is applied. The findings of this study lay the groundwork for further exploration of microparticle-based antimicrobial therapies, which can contribute to the development of more advanced wound healing devices and better sterilization methods for medical devices.
Collapse
Affiliation(s)
- Mohamad Wehbe
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Rayan Kadah El Habbal
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Jad Kaj
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Pierre Karam
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| |
Collapse
|
3
|
Kamphof R, Cama DG, Mesman-Vergeer J, G.H.H. Nelissen DR, G.C.W. Pijls DB. Effect of non-contact induction heating on HA coatings and bone cement, an ex vivo study. F1000Res 2024; 13:443. [PMID: 39866728 PMCID: PMC11757918 DOI: 10.12688/f1000research.148225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 01/28/2025] Open
Abstract
Background Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance. These protective mechanisms make treatment of prosthetic joint infection increasingly complex. Non-contact induction heating is an upcoming technology that uses heat to eradicate bacteria that are present on the surface of metallic implants. This study aims to provide insight into the feasibility of using non-contact induction heating on metallic implants that are in direct contact with other biomaterials, such as coatings composed of hydroxyapatite and bone cement composed of poly (methyl methacrylate) (PMMA). Methods Characterisation of hydroxyapatite coatings and adhesion strength tests were conducted according to standards set by the International Organisation for Standardisation (ISO 13779-2). The fixation strength of acrylic bone cement was tested according to an adapted method from ISO. Results It was found that non-contact induction heating did not significantly affect the adhesion strength of hydroxyapatite coatings. In contrast to hydroxyapatite coatings, acrylic bone cement softened temporarily as the temperature exceeded the glass transition temperature (83.38 ± 10.88°C). However, the induction heating temperature had no significant effect on the fixation strength after the cement was allowed to cool down. Conclusion This study shows the feasibility of using non-contact induction heating up to 80°C when bone cement or ceramic coatings are present in contact with infected metallic implants.
Collapse
Affiliation(s)
- Robert Kamphof
- Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands
| | - Dr. Giuseppe Cama
- CAM Bioceramics B.V., Leiden, Zernikedreef 6, 2333 CL, The Netherlands
| | - Jeroen Mesman-Vergeer
- FMD / Institute LION / Leiden University, Leiden, Niels Bohrweg 2, 2333 CA, The Netherlands
| | - Dr. Rob G.H.H. Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands
| | - Dr. Bart G.C.W. Pijls
- Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands
| |
Collapse
|
4
|
Enrique CGG, Medel-Plaza M, Correa JJA, Sarnago H, Acero J, Burdio JM, Lucía Ó, Esteban J, Gómez-Barrena E. Biofilm on total joint replacement materials can be reduced through electromagnetic induction heating using a portable device. J Orthop Surg Res 2024; 19:304. [PMID: 38769535 PMCID: PMC11103973 DOI: 10.1186/s13018-024-04785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection is a serious complication following joint replacement. The development of bacterial biofilms bestows antibiotic resistance and restricts treatment via implant retention surgery. Electromagnetic induction heating is a novel technique for antibacterial treatment of metallic surfaces that has demonstrated in-vitro efficacy. Previous studies have always employed stationary, non-portable devices. This study aims to assess the in-vitro efficacy of induction-heating disinfection of metallic surfaces using a new Portable Disinfection System based on Induction Heating. METHODS Mature biofilms of three bacterial species: S. epidermidis ATCC 35,984, S. aureus ATCC 25,923, E. coli ATCC 25,922, were grown on 18 × 2 mm cylindrical coupons of Titanium-Aluminium-Vanadium (Ti6Al4V) or Cobalt-chromium-molybdenum (CoCrMo) alloys. Study intervention was induction-heating of the coupon surface up to 70ºC for 210s, performed using the Portable Disinfection System (PDSIH). Temperature was monitored using thermographic imaging. For each bacterial strain and each metallic alloy, experiments and controls were conducted in triplicate. Bacterial load was quantified through scraping and drop plate techniques. Data were evaluated using non-parametric Mann-Whitney U test for 2 group comparison. Statistical significance was fixed at p ≤ 0.05. RESULTS All bacterial strains showed a statistically significant reduction of CFU per surface area in both materials. Bacterial load reduction amounted to 0.507 and 0.602 Log10 CFU/mL for S. aureus on Ti6Al4V and CoCrMo respectively, 5.937 and 3.500 Log10 CFU/mL for E. coli, and 1.222 and 0.372 Log10 CFU/mL for S. epidermidis. CONCLUSIONS Electromagnetic induction heating using PDSIH is efficacious to reduce mature biofilms of S aureus, E coli and S epidermidis growing on metallic surfaces of Ti6Al4V and CoCrMo alloys.
Collapse
Affiliation(s)
- Cordero García-Galán Enrique
- Dept. of Orthopaedic Surgery and Traumatology. Hospital, Universitario Príncipe de Asturias, Av Principal de la Universidad s/n, Alcalá de Henares, Madrid, 28805, Spain.
| | - Marina Medel-Plaza
- Dept. of Clinical Microbiology, IIS-Fundacion Jimenez Diaz, UAM. Av. Reyes Católicos 2, Madrid, 28040, Spain
| | - John Jairo Aguilera Correa
- Dept. of Clinical Microbiology, IIS-Fundacion Jimenez Diaz, UAM. Av. Reyes Católicos 2, Madrid, 28040, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Héctor Sarnago
- Department of Electronic Engineering and Communications, I3A, Universidad de Zaragoza, Zaragoza, Aragon, Spain
| | - Jesús Acero
- Department of Electronic Engineering and Communications, I3A, Universidad de Zaragoza, Zaragoza, Aragon, Spain
| | - José M Burdio
- Department of Electronic Engineering and Communications, I3A, Universidad de Zaragoza, Zaragoza, Aragon, Spain
| | - Óscar Lucía
- Department of Electronic Engineering and Communications, I3A, Universidad de Zaragoza, Zaragoza, Aragon, Spain
| | - Jaime Esteban
- Dept. of Clinical Microbiology, IIS-Fundacion Jimenez Diaz, UAM. Av. Reyes Católicos 2, Madrid, 28040, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Enrique Gómez-Barrena
- Dept of Orthopaedic Surgery and Traumatology, Hospital La Paz- IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Aljaafari HAS, Abdulwahhab NI, Nuxoll E. Antibiotic Augmentation of Thermal Eradication of Staphylococcus epidermidis Biofilm Infections. Pathogens 2024; 13:327. [PMID: 38668282 PMCID: PMC11054983 DOI: 10.3390/pathogens13040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus epidermidis is a major contributor to bacterial infections on medical implants, currently treated by surgical removal of the device and the surrounding infected tissue at considerable morbidity and expense. In situ hyperthermia is being investigated as a non-invasive means of mitigating these bacterial biofilm infections, but minimizing damage to the surrounding tissue requires augmenting the thermal shock with other approaches such as antibiotics and discerning the minimum shock required to eliminate the biofilm. S. epidermidis biofilms were systematically shocked at a variety of temperatures (50-80 °C) and durations (1-10 min) to characterize their thermal susceptibility and compare it to other common nosocomial pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms were also exposed to three classes of antibiotics (ciprofloxacin, tobramycin and erythromycin) separately at concentrations ranging from 0 to 128 μg mL-1 to evaluate their impact on the efficacy of thermal shock and the subsequent potential regrowth of the biofilm. S. epidermidis biofilms were shown to be more thermally susceptible to hyperthermia than other common bacterial pathogens. All three antibiotics substantially decreased the duration and/or temperature needed to eliminate the biofilms, though this augmentation did not meet the criteria of synergism immediately following thermal shock. Subsequent reincubation, however, revealed strong synergism on a longer timescale.
Collapse
Affiliation(s)
- Haydar A. S. Aljaafari
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA; (H.A.S.A.); (N.I.A.)
- Department of Chemical Engineering, University of Technology, Baghdad 10066, Iraq
| | - Nadia I. Abdulwahhab
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA; (H.A.S.A.); (N.I.A.)
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA; (H.A.S.A.); (N.I.A.)
| |
Collapse
|
6
|
Gazel D, Akdoğan H, Büyüktaş Manay A, Erinmez M, Zer Y. The potential of therapeutic hyperthermia to eradicate Staphylococcus aureus bacteria; an in vitro study. J Therm Biol 2024; 120:103812. [PMID: 38447276 DOI: 10.1016/j.jtherbio.2024.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
Staphylococcus aureus is one of the most common infectious agents, causing morbidity and mortality worldwide. Most pathogenic bacteria are classified in the group of mesophilic bacteria and the optimal growth temperature of these bacteria changes between 33 and 41 °C. Increased temperature can inhibit bacterial growth and mobility, which in turn, can trigger autolysis and cause cell wall damage. Hyperthermia treatment is defined as a heat-mediated treatment method applied using temperatures higher than body temperature. Nowadays, this treatment method is used especially in the treatment of tumours. Hyperthermia treatment is divided into two groups: mild hyperthermia and ablative or high-temperature hyperthermia. Mild hyperthermia is a therapeutic technique in which tumour tissue is heated above body temperature to produce a physiological or biological effect but is often not aimed at directly causing significant cell death. The goal of this method is to achieve temperatures of 40-45 °C in human tissues for up to 2 h. Hyperthermia can be used in the treatment of infections caused by such bacterial pathogens. In addition, using hyperthermia in combination with antimicrobial drugs may result in synergistic effects and reduce resistance issues. In our study, we used two different temperature levels (37 °C and 45 °C). We assessed growth inhibition, some virulence factors, alteration colony morphologies, and antimicrobial susceptibility for several antibiotics with three methods (Kirby-Bauer, E-test and broth microdilution) under hyperthermia. In the study, we observed that hyperthermia affected the urease enzyme, antibiotic sensitivity levels showed synergy with hyperthermia, and changes occurred in colony diameters and affected bacterial growth. We hypothesise that hyperthermia might be a new therapeutic option for infectious diseases as a sole agent or in combination with different antimicrobials.
Collapse
Affiliation(s)
- Deniz Gazel
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey.
| | - Hüseyin Akdoğan
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Ayşe Büyüktaş Manay
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Mehmet Erinmez
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Yasemin Zer
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| |
Collapse
|
7
|
Shaikh S, Lapin NA, Prasad B, Sturge CR, Pybus C, Pifer R, Wang Q, Evers BM, Chopra R, Greenberg DE. Intermittent alternating magnetic fields diminish metal-associated biofilm in vivo. Sci Rep 2023; 13:22456. [PMID: 38105253 PMCID: PMC10725887 DOI: 10.1038/s41598-023-49660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Prosthetic joint infection (PJI) is a complication of arthroplasty that results in significant morbidity. The presence of biofilm makes treatment difficult, and removal of the prosthesis is frequently required. We have developed a non-invasive approach for biofilm eradication from metal implants using intermittent alternating magnetic fields (iAMF) to generate targeted heating at the implant surface. The goal of this study was to determine whether iAMF demonstrated efficacy in an in vivo implant biofilm infection model. iAMF combined with antibiotics led to enhanced reduction of biofilm on metallic implants in vivo compared to antibiotics or untreated control. iAMF-antibiotic combinations resulted in a > 1 - log further reduction in biofilm burden compared to antibiotics or iAMF alone. This combination effect was seen in both S. aureus and P. aeruginosa and seen with multiple antibiotics used to treat infections with these pathogens. In addition, efficacy was temperature dependent with increasing temperatures resulting in a greater reduction of biofilm. Tissue damage was limited (< 1 mm from implant-tissue interface). This non-invasive approach to eradicating biofilm could serve as a new paradigm in treating PJI.
Collapse
Affiliation(s)
| | - Norman A Lapin
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | - Carolyn R Sturge
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Christine Pybus
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Reed Pifer
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Qi Wang
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical School, Dallas, TX, USA
- Solenic Medical, Addison, TX, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical School, Dallas, TX, USA.
| |
Collapse
|
8
|
Kwan JC, Flannagan RS, Vásquez Peña M, Heinrichs DE, Holdsworth DW, Gillies ER. Induction Heating Triggers Antibiotic Release and Synergistic Bacterial Killing on Polymer-Coated Titanium Surfaces. Adv Healthc Mater 2023; 12:e2202807. [PMID: 37053473 PMCID: PMC11469058 DOI: 10.1002/adhm.202202807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Infection is a major complication associated with orthopedic implants. It often involves the development of biofilms on metal substrates, which act as barriers to the host's immune system and systemic antibiotic treatment. The current standard of treatment is revision surgery, often involving the delivery of antibiotics through incorporation into bone cements. However, these materials exhibit sub-optimal antibiotic release kinetics and revision surgeries have drawbacks of high cost and recovery time. Herein, a new approach is presented using induction heating of a metal substrate, combined with an antibiotic-loaded poly(ester amide) coating undergoing a glass transition just above physiological temperature to enable thermally triggered antibiotic release. At normal physiological temperature, the coating provides a rifampicin depot for >100 days, while heating of the coating accelerates drug release, with >20% release over a 1-h induction heating cycle. Induction heating or antibiotic-loaded coating alone each reduce Staphylococcus aureus (S. aureus) viability and biofilm formation on Ti, but the combination causes synergistic killing of S. aureus as measured by crystal violet staining, determination of bacterial viability (>99.9% reduction), and fluorescence microscopy of bacteria on surfaces. Overall, these materials provide a promising platform enabling externally triggered antibiotic release to prevent and/or treat bacterial colonization of implants.
Collapse
Affiliation(s)
- Jan C. Kwan
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - Ronald S. Flannagan
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Mónica Vásquez Peña
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - David E. Heinrichs
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - David W. Holdsworth
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Imaging Research LaboratoriesRobarts Research InstituteThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 2B8Canada
- Department of Medical BiophysicsThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Elizabeth R. Gillies
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Department of ChemistryThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B7Canada
- Department of Chemical and Biochemical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
| |
Collapse
|
9
|
Aljaafari HAS, Parnian P, Van Dyne J, Nuxoll E. Thermal susceptibility and antibiotic synergism of methicillin-resistant Staphylococcus aureus biofilms. BIOFOULING 2023; 39:516-526. [PMID: 37483168 PMCID: PMC11661211 DOI: 10.1080/08927014.2023.2234290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) biofilms are among the most dangerous infections on medical implants, typically requiring surgical explantation and replacement. This study investigated the thermal susceptibility of MRSA biofilms to thermal shocks from 60 to 80 °C for 1-30 min as well as the effect of various antibiotics (most notably methicillin) on thermal mitigation. Pre- and post-shock exposure to three different classes of antibiotics (ciprofloxacin, tobramycin, and methicillin) at concentrations ranging from 0.25 to 128 μg mL-1 were investigated. MRSA biofilms exhibited thermal susceptibility comparable to other common nosocomial pathogens, such as Pseudomonas aeruginosa, though with greater variability. Exposure to antibiotics of any class significantly decreased the degree of thermal shock required for reliable mitigation, including at subclinical concentration. These combined treatments reduced biofilm population more than the sum of thermal and chemical treatments alone, demonstrating synergism, while also indicating a critical population drop of ∼4.5 log10 beyond which the biofilms typically became non-viable.
Collapse
Affiliation(s)
- Haydar A. S. Aljaafari
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| | - Parham Parnian
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
| | - Jaymes Van Dyne
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
| |
Collapse
|
10
|
Welling MM, Warbroek K, Khurshid C, van Oosterom MN, Rietbergen DDD, de Boer MGJ, Nelissen RGHH, van Leeuwen FWB, Pijls BG, Buckle T. A radio- and fluorescently labelled tracer for imaging and quantification of bacterial infection on orthopaedic prostheses : a proof of principle study. Bone Joint Res 2023; 12:72-79. [PMID: 36649933 PMCID: PMC9872039 DOI: 10.1302/2046-3758.121.bjr-2022-0216.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. METHODS 99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. RESULTS Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. CONCLUSION The hybrid tracer 99mTc-UBI29-41-Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies.Cite this article: Bone Joint Res 2023;12(1):72-79.
Collapse
Affiliation(s)
- Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim Warbroek
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Chrow Khurshid
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daphne D. D. Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands,Department of Radiology, Section Nuclear Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G. J. de Boer
- Departments of Internal Medicine and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart G. Pijls
- Department of Orthopedics, Leiden University Medical Center, Leiden, Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands, Tessa Buckle. E-mail:
| |
Collapse
|
11
|
Physical Approaches to Prevent and Treat Bacterial Biofilm. Antibiotics (Basel) 2022; 12:antibiotics12010054. [PMID: 36671255 PMCID: PMC9854850 DOI: 10.3390/antibiotics12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Prosthetic joint infection (PJI) presents several clinical challenges. This is in large part due to the formation of biofilm which can make infection eradication exceedingly difficult. Following an extensive literature search, this review surveys a variety of non-pharmacological methods of preventing and/or treating biofilm within the body and how they could be utilized in the treatment of PJI. Special attention has been paid to physical strategies such as heat, light, sound, and electromagnetic energy, and their uses in biofilm treatment. Though these methods are still under study, they offer a potential means to reduce the morbidity and financial burden related to multiple stage revisions and prolonged systemic antibiotic courses that make up the current gold standard in PJI treatment. Given that these options are still in the early stages of development and offer their own strengths and weaknesses, this review offers an assessment of each method, the progress made on each, and allows for comparison of methods with discussion of future challenges to their implementation in a clinical setting.
Collapse
|
12
|
Combination of Cefditoren and N-acetyl-l-Cysteine Shows a Synergistic Effect against Multidrug-Resistant Streptococcus pneumoniae Biofilms. Microbiol Spectr 2022; 10:e0341522. [PMID: 36445126 PMCID: PMC9769599 DOI: 10.1128/spectrum.03415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biofilm formation by Streptococcus pneumoniae is associated with colonization of the upper respiratory tract, including the carrier state, and with chronic respiratory infections in patients suffering from chronic obstructive pulmonary disease (COPD). The use of antibiotics alone to treat recalcitrant infections caused by biofilms is insufficient in many cases, requiring novel strategies based on a combination of antibiotics with other agents, including antibodies, enzybiotics, and antioxidants. In this work, we demonstrate that the third-generation oral cephalosporin cefditoren (CDN) and the antioxidant N-acetyl-l-cysteine (NAC) are synergistic against pneumococcal biofilms. Additionally, the combination of CDN and NAC resulted in the inhibition of bacterial growth (planktonic and biofilm cells) and destruction of the biofilm biomass. This marked antimicrobial effect was also observed in terms of viability in both inhibition (prevention) and disaggregation (treatment) assays. Moreover, the use of CDN and NAC reduced bacterial adhesion to human lung epithelial cells, confirming that this strategy of combining these two compounds is effective against resistant pneumococcal strains colonizing the lung epithelium. Finally, administration of CDN and NAC in mice suffering acute pneumococcal pneumonia caused by a multidrug-resistant strain was effective in clearing the bacteria from the respiratory tract in comparison to treatment with either compound alone. Overall, these results demonstrate that the combination of oral cephalosporins and antioxidants, such as CDN and NAC, respectively, is a promising strategy against respiratory biofilms caused by S. pneumoniae. IMPORTANCE Streptococcus pneumoniae is one of the deadliest bacterial pathogens, accounting for up to 2 million deaths annually prior to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccines have decreased the burden of diseases produced by S. pneumoniae, but the rise of antibiotic-resistant strains and nonvaccine serotypes is worrisome. Pneumococcal biofilms are associated with chronic respiratory infections, and treatment is challenging, making the search for new antibiofilm therapies a priority as biofilms become resistant to traditional antibiotics. In this work, we used the combination of an antibiotic (CDN) and an antioxidant (NAC) to treat the pneumococcal biofilms of relevant clinical isolates. We demonstrated a synergy between CDN and NAC that inhibited and treated pneumococcal biofilms, impaired pneumococcal adherence to the lung epithelium, and treated pneumonia in a mouse pneumonia model. We propose the widely used cephalosporin CDN and the repurposed drug NAC as a new antibiofilm therapy against S. pneumoniae biofilms, including those formed by antibiotic-resistant clinical isolates.
Collapse
|
13
|
Pijls BG, Sanders IMJG, Kuijper EJ, Nelissen RGHH. Effectiveness of mechanical cleaning, antibiotics, and induction heating on eradication of Staphylococcus aureus in mature biofilms. Bone Joint Res 2022; 11:629-638. [PMID: 36047617 PMCID: PMC9533241 DOI: 10.1302/2046-3758.119.bjr-2022-0010.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either mechanical cleaning or antibiotics or non-contact induction heating, and which combinations could eradicate S. aureus in mature biofilms. Methods Mature biofilms of S. aureus (ATCC 29213) were grown on titanium alloy (Ti6Al4V) coupons for seven days and were subjected to the following treatments or their combinations: antibiotics, mechanical cleaning, or heat shock by induction heating of 60°C for one minute. Experiments were repeated at least five times. Results In the untreated biofilm, growth up to 1.8×1011 colony-forming units (CFU)/cm2 was observed. Treatment with ciprofloxacin, flucloxacillin, vancomycin, cefuroxime, and amoxicillin all with rifampicin gave 6.0 log, 6.1 log, 1.4 log, 4.8 log, and 3.6 log reduction in CFU/cm2, respectively. Mechanical cleaning alone resulted in 4.9 log reduction and induction heating in 7.3 log reduction. There was an additional effect of ciprofloxacin, flucloxacillin, and induction heating when used in combinations. There was no additional effect for mechanical cleaning. No bacterial growth could be detected after induction heating followed by seven days of ciprofloxacin with rifampicin. Conclusion Mechanical cleaning, antibiotics, and non-contact induction heating reduced the bacterial load of mature S. aureus biofilms with approximately 5 log or more as a single treatment. The effect of mechanical cleaning on mature S. aureus biofilms was limited when used in combination with antibiotics and/or induction heating. Cite this article: Bone Joint Res 2022;11(9):629–638.
Collapse
Affiliation(s)
- B G Pijls
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M J G Sanders
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Synergistic Action of Reactive Plasma Particles and UV Radiation to Inactivate Staphylococcus Aureus. COATINGS 2022. [DOI: 10.3390/coatings12081105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The direct application of low-pressure plasma for the decontamination of microorganisms was examined herein. The inactivation efficiency was studied on a Gram-positive bacterium (Staphylococcus aureus) using a plasma process by means of synergistic action of reactive plasma particles and UV radiation. N2 was added to an argon/oxygen plasma mixture in order to improve the effectiveness of S. aureus inactivation. It was found that the decontamination mechanism is based on both the chemical sputtering effect due to the plasma particles and the UV emission originating from the NOγ system from NO radicals in the wavelength range 200–300 nm. The best plasma bactericidal activity was found for an N2 percentage of roughly 10–12%. A count reduction of more than 5 log cycles in a few minutes of S. aureus proves the potentiality of an industrial-grade plasma reactor as a decontamination agent.
Collapse
|
15
|
Prasad B, Shaikh S, Saini R, Wang Q, Zadoo S, Sadaphal V, Greenberg DE, Chopra R. Quantifying the relationship between biofilm reduction and thermal tissue damage on metal implants exposed to alternating magnetic fields. Int J Hyperthermia 2022; 39:713-724. [DOI: 10.1080/02656736.2022.2065038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bibin Prasad
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sumbul Shaikh
- Department of Research Administration, Children’s Medical Center of Dallas, Dallas, TX, USA
| | - Reshu Saini
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Qi Wang
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Serena Zadoo
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Varun Sadaphal
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David E. Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Álvarez E, Estévez M, Gallo-Cordova A, González B, Castillo RR, Morales MDP, Colilla M, Izquierdo-Barba I, Vallet-Regí M. Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem for Combined Antibiofilm Therapy. Pharmaceutics 2022; 14:163. [PMID: 35057058 PMCID: PMC8778149 DOI: 10.3390/pharmaceutics14010163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from a unique magnetic-responsive nanocarrier for a combination therapy against biofilm. The design of the nanosystem is based on antibiotic-loaded mesoporous silica nanoparticles (MSNs) externally functionalized with a thermo-responsive polymer capping layer, and decorated in the outermost surface with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are able to generate heat upon application of an alternating magnetic field (AMF), reaching the temperature needed to induce a change in the polymer conformation from linear to globular, therefore triggering pore uncapping and the antibiotic cargo release. The microbiological assays indicated that exposure of E. coli biofilms to 200 µg/mL of the nanosystem and the application of an AMF (202 kHz, 30 mT) decreased the number of viable bacteria by 4 log10 units compared with the control. The results of the present study show that combined hyperthermia and antibiotic treatment is a promising approach for the effective management of biofilm-associated infections.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
| | - Alvaro Gallo-Cordova
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (A.G.-C.); (M.d.P.M.)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - María del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (A.G.-C.); (M.d.P.M.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
17
|
Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. Int J Mol Sci 2021; 22:ijms221910243. [PMID: 34638591 PMCID: PMC8549706 DOI: 10.3390/ijms221910243] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related implant infections (BRII) are a disastrous complication of both elective and trauma orthopaedic surgery and occur when an implant becomes colonised by bacteria. The definitive treatment to eradicate the infections once a biofilm has established is surgical excision of the implant and thorough local debridement, but this carries a significant socioeconomic cost, the outcomes for the patient are often poor, and there is a significant risk of recurrence. Due to the large volumes of surgical procedures performed annually involving medical device implantation, both in orthopaedic surgery and healthcare in general, and with the incidence of implant-related infection being as high as 5%, interventions to prevent and treat BRII are a major focus of research. As such, innovation is progressing at a very fast pace; the aim of this study is to review the latest interventions for the prevention and treatment of BRII, with a particular focus on implant-related approaches.
Collapse
|
18
|
Aljaafari H, Gu Y, Chicchelly H, Nuxoll E. Thermal Shock and Ciprofloxacin Act Orthogonally on Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2021; 10:1017. [PMID: 34439066 PMCID: PMC8388990 DOI: 10.3390/antibiotics10081017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilm infections are a major liability of medical implants, due to their resistance to both antibiotics and host immune response. Thermal shock can kill established biofilms, and some evidence suggests antibiotics may enhance this efficacy, despite having an insufficient effect themselves. The nature of this interaction is unclear, however, complicating efforts to integrate thermal shock into implant infection treatment. This study aimed to determine whether these treatments were truly synergistic or simply orthogonal (i.e., independent). Pseudomonas aeruginosa biofilms of different architectures and stationary-phase population density were subjected to various thermal shocks, antibiotic exposures, or combinations thereof, and examined either immediately after treatment or after subsequent reincubation. Population decreases from the combination treatment matched the product of the decreases of individual treatments, indicating their orthogonality. However, reincubation showed binary behavior, where biofilms with an immediate population decrease beyond a critical factor (~104) died off completely during reincubation, while biofilms with a smaller immediate decrease regrew. This critical factor was independent of the initial population density and the combination of treatments that achieved the immediate decrease. While antibiotics do not appear to enhance thermal shock directly, their contribution to achieving a critical population decrease for biofilm elimination can make the treatments appear strongly synergistic, strongly decreasing the intensity of thermal shock needed.
Collapse
Affiliation(s)
- Haydar Aljaafari
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
- Department of Chemical Engineering, University of Technology, Baghdad 10066, Iraq
| | - Yuejia Gu
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
| | - Hannah Chicchelly
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
| |
Collapse
|
19
|
Wang Q, Vachon J, Prasad B, Pybus CA, Lapin N, Chopra R, Greenberg DE. Alternating magnetic fields and antibiotics eradicate biofilm on metal in a synergistic fashion. NPJ Biofilms Microbiomes 2021; 7:68. [PMID: 34385452 PMCID: PMC8360946 DOI: 10.1038/s41522-021-00239-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Hundreds of thousands of human implant procedures require surgical revision each year due to infection. Infections are difficult to treat with conventional antibiotics due to the formation of biofilm on the implant surface. We have developed a noninvasive method to eliminate biofilm on metal implants using heat generated by intermittent alternating magnetic fields (iAMF). Here, we demonstrate that heat and antibiotics are synergistic in biofilm elimination. For Pseudomonas aeruginosa biofilm, bacterial burden was reduced >3 log with iAMF and ciprofloxacin after 24 h compared with either treatment alone (p < 0.0001). This effect was not limited by pathogen or antibiotic as similar biofilm reductions were seen with iAMF and either linezolid or ceftriaxone in Staphylococcus aureus. iAMF and antibiotic efficacy was seen across various iAMF settings, including different iAMF target temperatures, dose durations, and dosing intervals. Initial mechanistic studies revealed membrane disruption as one factor important for AMF enhanced antibacterial activity in the biofilm setting. This study demonstrates the potential of utilizing a noninvasive approach to reduce biofilm off of metallic implants.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Vachon
- Medical School, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bibin Prasad
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Christine A Pybus
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Norman Lapin
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Cela-López JM, Camacho Roldán CJ, Gómez-Lizarraga G, Martínez V. A Natural Alternative Treatment for Urinary Tract Infections: Itxasol©, the Importance of the Formulation. Molecules 2021; 26:4564. [PMID: 34361723 PMCID: PMC8348710 DOI: 10.3390/molecules26154564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Genito-urinary tract infections have a high incidence in the general population, being more prevalent among women than men. These diseases are usually treated with antibiotics, but very frequently, they are recurrent and lead to the creation of resistance and are associated with increased morbidity and mortality. For this reason, it is necessary to develop new compounds for their treatment. In this work, our objective is to review the characteristics of the compounds of a new formulation called Itxasol© that is prescribed as an adjuvant for the treatment of UTIs and composed of β-arbutin, umbelliferon and n-acetyl cysteine. This formulation, based on biomimetic principles, makes Itxasol© a broad-spectrum antibiotic with bactericidal, bacteriostatic and antifungal properties that is capable of destroying the biofilm and stopping its formation. It also acts as an anti-inflammatory agent, without the adverse effects associated with the recurrent use of antibiotics that leads to renal nephrotoxicity and other side effects. All these characteristics make Itxasol© an ideal candidate for the treatment of UTIs since it behaves like an antibiotic and with better characteristics than other adjuvants, such as D-mannose and cranberry extracts.
Collapse
Affiliation(s)
| | | | | | - Vicente Martínez
- Achucarro Basque Center for Neuroscience, Campus of Biscay, University of the Basque Country/Euskal Herriko Unibertsitatea, Parque Científico de la UPV/EHU, Edificio Sede, Barrio Sarriena, 48940 Leioa, Spain; (J.M.C.-L.); (C.J.C.R.); (G.G.-L.)
| |
Collapse
|
21
|
Gazel D, Demirbakan H, Erinmez M. In vitro activity of hyperthermia on swarming motility and antimicrobial susceptibility profiles of Proteus mirabilis isolates. Int J Hyperthermia 2021; 38:1002-1012. [PMID: 34180748 DOI: 10.1080/02656736.2021.1943546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Swarming motility is a virulence factor for Proteus mirabilis and is a coordinated multicellular movement of bacteria. In this study, we investigated the inhibitory effect of hyperthermia on bacterial swarming motility and antimicrobial resistance. METHODS Thirty-one P. mirabilis isolates were included in the study. Seven inoculated agar plates were incubated inside incubators with increasing temperature levels: at 36 °C (control) and 40-45 °C. On the next day, inhibition of swarming was evaluated and minimum paralyzing temperature (MPT) values were determined. An antimicrobial susceptibility test (antibiogram) is performed by exposing bacteria to increasing concentrations of antibiotics, in vitro. Thus, we used the Kirby-Bauer disk diffusion test as a screening method to analyze the antibiogram profiles of the isolates at 36 °C and 42 °C. Finally, a time-kill assay was performed to analyze the killing effect of hyperthermia (42 °C) on planktonic bacteria, in combination with the antibiotic meropenem at the first and third hours. A Wilcoxon signed-rank test was used to compare the killing effects of meropenem, hyperthermia and their combinations. RESULTS The median MPT value was determined as 44 °C. In the disk diffusion assay, susceptibility development was observed in 94% of isolates for at least one antibiotic. In the time-kill assay, we observed a significant killing effect of hyperthermia in combination with meropenem. Under the microscope, we observed the formation of spherical cells by the effect of heat. CONCLUSION We conclude that these findings might be useful when employing the hyperthermia method to treat infectious diseases caused by P. mirabilis in the future.
Collapse
Affiliation(s)
- Deniz Gazel
- Faculty of Medicine, Department of Medical Microbiology, Gaziantep University, Gaziantep, Turkey
| | - Hadiye Demirbakan
- Faculty of Medicine, Department of Medical Microbiology, Sanko University, Gaziantep, Turkey
| | - Mehmet Erinmez
- Faculty of Medicine, Department of Medical Microbiology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|