1
|
Gachouch O, Giammarinaro B, Kangot T, Monini C, Souchon R. A Novel Ultrasound Thermometry Method Based on Thermal Strain and Short and Constant Acoustic Bursts: Preliminary Study in Phantoms. SENSORS (BASEL, SWITZERLAND) 2025; 25:385. [PMID: 39860753 PMCID: PMC11769532 DOI: 10.3390/s25020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
In the field of ultrasound therapy, the estimation of temperature to monitor treatments is becoming essential. We hypothesize that it is possible to measure temperature directly using a constant acoustic power burst. Under the assumption that the acoustic attenuation does not change significantly with temperature, the thermal strain induced by such bursts presents a linear relation with temperature. A mathematical demonstration is given in the introduction. Then, simulations of ultrasound waves in a canine liver model were conducted at different temperatures (from 20 °C to 90 °C). Finally, experimental measurements on phantom samples were performed over the same temperature range. The simulation and experimental results both showed a linear relation between thermal strain and temperature. This relation may suggest the foundation of a new ultrasound-based thermometry method. The potential and limitations of the method are discussed.
Collapse
Affiliation(s)
- Omar Gachouch
- LabTAU, INSERM, F-69003 Lyon, France
- Centre Léon Bérard, F-69003 Lyon, France
- Université Lyon 1, F-69003 Lyon, France
| | - Bruno Giammarinaro
- LabTAU, INSERM, F-69003 Lyon, France
- Centre Léon Bérard, F-69003 Lyon, France
- Université Lyon 1, F-69003 Lyon, France
| | - Teymour Kangot
- LabTAU, INSERM, F-69003 Lyon, France
- Centre Léon Bérard, F-69003 Lyon, France
- Université Lyon 1, F-69003 Lyon, France
| | - Caterina Monini
- LabTAU, INSERM, F-69003 Lyon, France
- Centre Léon Bérard, F-69003 Lyon, France
- Université Lyon 1, F-69003 Lyon, France
| | - Rémi Souchon
- LabTAU, INSERM, F-69003 Lyon, France
- Centre Léon Bérard, F-69003 Lyon, France
- Université Lyon 1, F-69003 Lyon, France
| |
Collapse
|
2
|
Zhang Y, Gao H, He H, Liu J, Xu F, Wu S, Zhou J, Cheng Z. Microwave ablation on ex vivo porcine pancreas: The influence of ablation parameters on ablation results and fat liquefaction. Proc Inst Mech Eng H 2024; 238:814-826. [PMID: 39045922 DOI: 10.1177/09544119241261891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The pancreas is adjacent to critical organs; excessive microwave ablation (MWA) can result in serious complications. The purpose of this paper is to provide the reference data of pancreas MWA for clinicians, analyze the ablation outcomes under different ablation parameters, and determine the critical temperature of pancreatic surface fat liquefaction outflow. Combinations of two power levels (30 W and 55 W), three antenna diameters (1.3 mm, 1.6 mm, and 1.9 mm), and three ablation times (1 min, 1.5 min, and 2 min) were applied to an ex vivo pig pancreas. Temperature measurements were taken at four thermocouple points. The center point is located 5 mm horizontally from the antenna slot, with a temperature measurement point located 5 mm above, below, and to the right of the center point. Main effect analysis and variance analysis were used to quantify the influences of each factor on the ablation outcomes. At 30 W, the antenna diameter contributing the most at 48.5%. At 30 W-1.3 mm-1 min, the spherical index (1.41) is closest to 1. At 55 W, the coagulation zone size was almost only affected by the ablation time, with a contribution rate of 28.7%, the temperature at point C exceeds point B. On the surface of the ex vivo porcine pancreas, the fat outflow temperature was 54ã. Ablation combinations with low power, short duration, and small antenna diameter results in a more nearly spherical coagulation zone. When performing MWA on the pancreas, it is advisable to avoid areas with higher fat content, while keeping the pancreatic surface temperature below 54°C.
Collapse
Affiliation(s)
- Yubo Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Hongjian Gao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Huijing He
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Ju Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Fan Xu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Jie Zhou
- Interventional Ultrasound Department, Chinese PLA General Hospital, Beijing, China
| | - Zhigang Cheng
- Interventional Ultrasound Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Ashida R, Kawabata KI, Asami R, Kitano M. Novel treatment system using endoscopic ultrasound-guided high-intensity focused ultrasound: A proof-of-concept study. Pancreatology 2024; 24:88-92. [PMID: 38036413 DOI: 10.1016/j.pan.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
AIM High-intensity focused ultrasound (HIFU) is a novel minimally invasive local treatment of solid tumors. Endoscopic ultrasound-guided HIFU (EUS-HIFU) using mechanical effects would have potential benefits, including precise detection of target lesions and enhance drug delivery. The aim of this study is to develop EUS-HIFU device and to prove our concept in porcine model using a locally injected phase change nano droplet (PCND) as the sensitizer. METHOD A phospholipid PCND contained volatile perfluoro-carbon liquids. The prototype HIFU apparatus comprised a small (20 × 20 mm) transducer with center frequency of 2.1 MHz, attachable to a linear EUS transducer. Under general anesthetic, a single porcine received EUS-guided injection of PCND. The HIFU transducer was placed laparotomically in the stomach, and the liver was ablated through the gastric wall. RESULTS PCND was injected successfully and a distinct lesion was generated at the HIFU transducer focus only in injected areas that received HIFU exposure at 4.7 kW/cm2 at a duty cycle of 5 % (mean temporal intensity, 0.245 kW/cm2) for 30 s. The generated lesions were mechanically fractionated in macroscopic view. CONCLUSION The concept of transluminal HIFU ablation using novel EUS-HIFU system was proved in a porcine animal model. This novel treatment system has great potential for future cancer treatment although further investigation in more animals and different organs are warranted.
Collapse
Affiliation(s)
- Reiko Ashida
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | - Rei Asami
- Imaging Technology Center, FUJIFILM Corporation, Tokyo, Japan
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
4
|
Zhou K, Strunk H, Dimitrov D, Vidal-Jove J, Gonzalez-Carmona MA, Essler M, Jin C, Mei Z, Zhu H, Marinova M. US-guided high-intensity focused ultrasound in pancreatic cancer treatment: a consensus initiative between Chinese and European HIFU centers. Int J Hyperthermia 2023; 41:2295812. [PMID: 38159562 DOI: 10.1080/02656736.2023.2295812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose: Ultrasound-guided high-intensity focused ultrasound (USgHIFU) represents a safe and effective non-invasive thermoablative technique for managing inoperable pancreatic cancer. This treatment method significantly alleviates disease-related symptoms and reduces pancreatic tumor volume. However, the current body of evidence is constrained by a lack of randomized controlled trials. The utilization of USgHIFU is primarily indicated for patients with unresectable, locally advanced, or metastatic pancreatic cancer, particularly those experiencing symptoms due to a locally advanced primary tumor.Methods: This collaborative consensus paper, involving European and Chinese HIFU centers treating pancreatic cancer, delineates criteria for patient selection, focusing on those most likely to benefit from USgHIFU treatment. Consideration is given to endpoints encompassing symptom alleviation, local response rates, other oncological outcomes, as well as overall and progression-free survival. Additionally, this paper defines relevant contraindications, side effects, and complications associated with USgHIFU. The publication also explores the feasibility and role of USgHIFU within the context of palliative care, including standard systemic chemotherapy.Results: The non-invasive local treatment of advanced pancreatic cancer using HIFU should be regarded as an adjunctive option alongside systemic chemotherapy or best supportive care for managing this aggressive disease. Based on the ability of USgHIFU therapy to mitigate pain and reduce primary tumor volume, it should be considered as a complementary therapy for symptomatic patients with inoperable pancreatic cancer and as a potential means of tumor debulking. The underutilized yet promising USgHIFU exhibits the potential to enhance patients' quality of life by alleviating cancer-related pain. Experts in the field should evaluate this treatment option be evaluated by experts in this field, with this consensus paper potentially serving as a guiding resource for the medical community.Conclusions: US-guided HIFU for advanced pancreatic cancer addresses treatment goals, available options, success rates, and limitations. As a non-invasive, effective local therapy, complementary to chemotherapy and best supportive care, it plays a pivotal role in pain relief, reducing of tumor volume, and potentially improving survival rates.
Collapse
Affiliation(s)
- Kun Zhou
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | - Dobromir Dimitrov
- Department of Surgical Propedeutics, HIFU Center University Hospital St. Marina, Medical University Peleven, Pleven, Bulgaria
| | - Joan Vidal-Jove
- Institute Khuab, Comprehensive Tumor Center Barcelona, Barcelona, Spain
| | | | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Germany
| | - Chengbin Jin
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology and Hepatology, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Milka Marinova
- Department of Nuclear Medicine, University Hospital Bonn, Germany
| |
Collapse
|
5
|
Ardeshna DR, Leupold M, Cruz-Monserrate Z, Pawlik TM, Cloyd JM, Ejaz A, Shah H, Burlen J, Krishna SG. Advancements in Microwave Ablation Techniques for Managing Pancreatic Lesions. Life (Basel) 2023; 13:2162. [PMID: 38004302 PMCID: PMC10672411 DOI: 10.3390/life13112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Thermal ablation, including microwave ablation, has become increasingly important in the management of many solid tumors, including primary and metastatic tumors of the liver, kidney, and lung. However, its adoption to treat pancreatic lesions has been slowed due to concerns about potential adverse events. The success of radiofrequency ablation (RFA) in inoperable pancreatic cancers paved the way for its use in pancreatic neuroendocrine tumors and pancreatic cystic neoplasms (PCLs). In the last decade, other thermal ablation techniques, like microwave ablation, have emerged as alternatives to RFA. Microwaves, with frequencies ranging from 900 to 2450 MHz, generate heat by rapidly oscillating water molecules. Microwave ablation's advantage lies in its ability to achieve higher intra-lesion temperatures and uniform heating compared with RFA. Microwave ablation's application in pancreatic cancer and pancreatic neuroendocrine tumors has demonstrated promise with similar technical success to RFA. Yet, concern for peri-procedure complications, as well as a dearth of studies comparing RFA and microwave ablation, emphasize the need for further research. No studies have evaluated microwave ablation in PCLs. We herein review thermal ablation's potential to treat pancreatic lesions.
Collapse
Affiliation(s)
- Devarshi R. Ardeshna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Leupold
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy M. Pawlik
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan M. Cloyd
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Aslam Ejaz
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hamza Shah
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan Burlen
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Yang C, Guo J, Chen L, Zhang L, Zhang L, Li K, Chen J, Chen W. The dose of focused ultrasound ablation surgery (FUAS) for unresectable pancreatic cancer is predictable: A multicenter retrospective study. Medicine (Baltimore) 2023; 102:e34684. [PMID: 37746965 PMCID: PMC10519495 DOI: 10.1097/md.0000000000034684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
To analyze the influencing factors of energy efficiency factors (EEF) in focused ultrasound ablation surgery (FUAS) for unresectable pancreatic cancer and build a dosimetry model. The patients with unresectable pancreatic cancer that underwent FUAS were enrolled from 3 clinical centers between June 2015 and June 2022 for retrospective analysis. The significance of the factors with the potential to affect the EEF was assessed, correlations among the factors were analyzed, and the accuracy of the prediction models established by the factors containing different imaging features was compared. From a total of 236 cases, 215 cases were screened for study, EEF was significantly correlated with mode of anesthesia, grayscale change, tumor volume, tumor location, the distance from the tumor center to skin, contrast-enhanced computer tomography enhancement type, T2-weighted imaging fat suppression signal intensity and contrast-enhanced T1-weighted imaging enhancement type on magnetic resonance imaging. The resultant multiple regression models of EEF achieved significance, contains predictors of Tumor volume, the distance from tumor center to skin, T2-weighted imaging fat suppression signal intensity, and contrast-enhanced T1-weighted imaging enhancement type had better goodness of fit. Compared with CT, the EEF prediction model established by adding magnetic resonance imaging features showed better prediction in FUAS treatment of unresectable pancreatic cancer.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Li Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, Chongqing Haifu Hospital, Chongqing, P.R. China
| | - Luping Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lian Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Oncology, Chongqing Haifu Hospital, Chongqing, P.R. China
| | - Kequan Li
- Department of Oncology, Chongqing Haifu Hospital, Chongqing, P.R. China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
High Intensity Focused Ultrasound (HIFU) in Digestive Diseases: An Overview of Clinical Applications for Liver and Pancreatic Tumors. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Yao R, Hu J, Zhao W, Cheng Y, Feng C. A review of high-intensity focused ultrasound as a novel and non-invasive interventional radiology technique. J Interv Med 2022; 5:127-132. [PMID: 36317144 PMCID: PMC9617156 DOI: 10.1016/j.jimed.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive interventional radiology technology, which has been generally accepted in clinical practice for the treatment of benign and malignant tumors. HIFU can cause targeted tissue coagulative necrosis and protein denaturation by thermal or non-thermal effects, guided by diagnostic ultrasound or magnetic resonance imaging, without destruction of the normal adjacent tissue, under sedation or general anesthesia. HIFU has become an important alternative to standard treatments of solid tumors, including surgery, radiation, and medications. The aim of this review is to describe the development, principle, devices, and clinical applications of HIFU.
Collapse
Affiliation(s)
- Ruihong Yao
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jihong Hu
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Corresponding author.
| | - Wei Zhao
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongde Cheng
- Editorial Board of the Journal of Interventional Medicine, Shanghai, China
| | - Chaofan Feng
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Chen S, Bian H, Duan J. High-Intensity Focused Ultrasound Enhanced Anti-Tumor Activities of Paclitaxel in Breast Cancer in vitro and in vivo. Cancer Manag Res 2022; 14:1303-1312. [PMID: 35386184 PMCID: PMC8978695 DOI: 10.2147/cmar.s349409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Background Paclitaxel (PTX) is an important oncologic chemotherapeutic agent against breast cancer, but breast cancer patients develop significant resistance to PTX during chemotherapy. Alterations in tubulin and associated proteins have been implicated in resistance to PTX. High-intensity focused ultrasound (HIFU) induces deep tumor penetration of anti-tumor agents in solid tumors. Methods We investigated the influence of HIFU on the anti-tumor activities of PTX in breast cancer. Both in vivo and in vitro experiments were performed in this research: mice were treated with 2 mg/Kg PTX through tail vein injection, while breast cancer cells were treated with 400 nM PTX. Cell viability was analyzed through Cell Counting Kit-8. Cell apoptosis was evaluated through Annexin-V/PI Apoptosis Analysis Kit. The activities of catalase (CAT) and superoxide dismutase (SOD) and the concentration of malondialdehyde (MDA) were evaluated by relative commercial kits. Results HIFU enhanced PTX-inhibited breast cancer cell viability and PTX-induced cell apoptosis. Simultaneous treatment of HIFU and PTX decreased the activities of CAT and SOD and increased the concentration of MDA. In mice bearing MDA-MB-231 tumors, the treatment of HIFU and PTX significantly decreased tumor size, increased body weight and elevated animal survival. HIFU enhanced the distribution of PTX in tumor tissues. Conclusion The performance of HIFU promoted the distribution of PTX and enhanced its anti-tumor activities in breast cancer.
Collapse
Affiliation(s)
- Sha Chen
- Department 2 of Ultrasound, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People’s Republic of China
- Correspondence: Sha Chen, Department 2 of Ultrasound, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, People’s Republic of China, Tel +86-18232858958, Email
| | - Hao Bian
- Magnetic Resonance Imaging Department, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People’s Republic of China
| | - Jingyu Duan
- Department 2 of Ultrasound, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People’s Republic of China
| |
Collapse
|
10
|
Cilleros C, Dupré A, Chen Y, Vincenot J, Rivoire M, Melodelima D. Intraoperative HIFU Ablation of the Pancreas Using a Toroidal Transducer in a Porcine Model. The First Step towards a Clinical Treatment of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:6381. [PMID: 34945001 PMCID: PMC8699564 DOI: 10.3390/cancers13246381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Apart from palliative chemotherapy, no other therapy has been proven effective for the treatment of locally advanced pancreatic tumors. In this study, an intraoperative high-intensity focused ultrasound (HIFU) device was tested in vivo to demonstrate the feasibility of treating the pancreatic parenchyma and tissues surrounding the superior mesenteric vessels prior to clinical translation of this technique. Twenty pigs were included and treated using a HIFU device equipped with a toroidal transducer and an integrated ultrasound imaging probe. Treatments were performed with energy escalation (from 30 kJ to 52 kJ). All treatments resulted in visible (macroscopically and in ultrasound images) homogeneous thermal damage, which was confirmed by histology. The dimensions of thermal lesions measured in ultrasound images and those measured macroscopically were correlated (r = 0.82, p < 0.05). No arterial spasms or occlusion were observed at the lowest energy setting. Temporary spasm of the peripancreatic artery was observed when using an energy setting greater than 30 kJ. The possibility of treating the pancreas and tissues around mesenteric vessels without vascular thrombosis holds great promise for the treatment of locally advanced pancreatic cancers. If clinically successful, chemotherapy followed by HIFU treatment could rapidly become a novel treatment option for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Celia Cilleros
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Jeremy Vincenot
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| |
Collapse
|