1
|
Hou Y, Zhang L, Ma W, Jiang Y. NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage. Mol Med Rep 2025; 31:67. [PMID: 39791208 PMCID: PMC11736250 DOI: 10.3892/mmr.2025.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/15/2024] [Indexed: 01/12/2025] Open
Abstract
Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear. In the present study, C57BL/6J mice were subjected to the modified single‑clamp puncture method to produce an in vivo model of SAH. Treatment of these mice with notoginsenoside R1 (NGR1) prevented short‑term neurological deficits, reduced the expression levels of apoptosis‑associated proteins and mitigated brain edema. In addition, an in vitro model of SAH was established by treating HT22 mouse neuronal cells with oxyhemoglobin (OxyHb). Treatment of these cells with NGR1 resulted in attenuation of the OxyHb‑induced apoptosis. Furthermore, RNA sequencing analysis was used to examine NGR1 + OxyHb and OxyHb groups. Statistically significant changes in the expression levels of apoptosis‑associated genes in OxyHb‑stimulated HT22 cells upon administration of NGR1 were observed. The present study investigated the potential mechanism by which NGR1 mitigates neuronal apoptosis, presenting a novel therapeutic approach for treating SAH through the use of a single TCM component.
Collapse
Affiliation(s)
- Yu Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Lihan Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Yong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Wang Y, Chen Y, Li Z, Tang L, Wen D, Wu Y, Guo Z. Electroacupuncture enhances cerebral blood perfusion by inhibiting HIF-1α in rat subarachnoid hemorrhage. Brain Res 2024; 1839:149010. [PMID: 38763503 DOI: 10.1016/j.brainres.2024.149010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Cerebral blood perfusion (CBP) reduction is a prevalent complication following subarachnoid hemorrhage (SAH) in clinical practice, often associated with long-term cognitive impairment and prognosis. Electroacupuncture (EA), a widely utilized traditional Chinese therapy for central nervous system disorders, has demonstrated promising therapeutic effects. This study aims to investigate the therapeutic potential of EA in restoring CBP in SAH rats and to explore the mechanisms involving HIF-1α in this process. METHODS Rats were randomly assigned to one of five groups, including Sham, SAH, EA, EA + Saline, and EA + dimethyloxallyl glycine (DMOG) groups. EA treatment was administered for 10 min daily, while DMOG were intraperitoneally injected. Behavioral tests, cerebral blood flow monitoring, vascular thickness measurement, western blotting, and immunofluorescence staining were conducted to assess the therapeutic effects of EA on cerebral blood flow. RESULTS SAH resulted in elevated levels of HIF-1α, endothelin (ET), ICAM-1, P-SELECTIN, E-SELECTIN, and decreased level of eNOS in the brain. This led to cerebral vasospasm, decreased CBF, and cognitive deficits in the rat SAH model. EA intervention downregulated the expression of HIF-1α, ET, ICAM-1, P-SELECTIN, and E-SELECTIN, while increasing eNOS expression. This alleviated cerebral vasospasm, restored CBF, and improved cognitive function. However, the administration of the HIF-1α stabilizer (DMOG) counteracted the therapeutic effects of EA. CONCLUSION EA promotes the recovery of cerebral blood flow after SAH injury, attenuates cerebral vasospasm, and accelerates the recovery of cognitive dysfunction, and its mechanism of action may be related to the inhibition of the HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Li
- Emergency Department, Chengdu First People's Hospital, Chengdu, Sichuan Province, China.
| | - Liuyang Tang
- Department of Neurosurgery, The People's Hospital of Qijiang District, 401420, China
| | - Daochen Wen
- Department of Neurosurgery, Xuanhan County People's Hospital, Dazhou, China.
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, Xie Y, Gu L, Kuang C, Ou W, Xie M, Tu T, Pang J, Zhang D, Guo K, Feng Y, Yin S, Cao Y, Li T, Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab 2024; 36:2054-2068.e14. [PMID: 38906140 DOI: 10.1016/j.cmet.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/11/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - An Huang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuyan Liao
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuke Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Yang L, Peng J, Zhang L, Zhang F, Wu J, Zhang X, Pang J, Jiang Y. Advanced Diffusion Tensor Imaging in White Matter Injury After Subarachnoid Hemorrhage. World Neurosurg 2024; 189:77-88. [PMID: 38789033 DOI: 10.1016/j.wneu.2024.05.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Subarachnoid hemorrhage (SAH) is recognized as an especially severe stroke variant, notorious for its high mortality and long-term disability rates, in addition to a range of both immediate and enduring neurologic impacts. Over half of the SAH survivors experience varying degrees of neurologic disorders, with many enduring chronic neuropsychiatric conditions. Due to the limitations of traditional imaging techniques in depicting subtle changes within brain tissues posthemorrhage, the accurate detection and diagnosis of white matter (WM) injuries are complicated. Against this backdrop, diffusion tensor imaging (DTI) has emerged as a promising biomarker for structural imaging, renowned for its enhanced sensitivity in identifying axonal damage. This capability positions DTI as an invaluable tool for forming precise and expedient prognoses for SAH survivors. This study synthesizes an assessment of DTI for the diagnosis and prognosis of neurologic dysfunctions in patients with SAH, emphasizing the notable changes observed in DTI metrics and their association with potential pathophysiological processes. Despite challenges associated with scanning technology differences and data processing, DTI demonstrates significant clinical potential for early diagnosis of cognitive impairments following SAH and monitoring therapeutic effects. Future research requires the development of highly standardized imaging paradigms to enhance diagnostic accuracy and devise targeted therapeutic strategies for SAH patients. In sum, DTI technology not only augments our understanding of the impact of SAH but also may offer new avenues for improving patient prognoses.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Zhang F, Zhou J, Lu P, Zhang X, Yang L, Wu J, Zhang L, Zhang L, Pang J, Xie H, Xie B, Jiang Y, Peng J. Lactylation of histone by BRD4 regulates astrocyte polarization after experimental subarachnoid hemorrhage. J Neuroinflammation 2024; 21:186. [PMID: 39080649 PMCID: PMC11290164 DOI: 10.1186/s12974-024-03185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Under subarachnoid hemorrhage (SAH) conditions, astrocytes undergo a marked intensification of glycolytic activity, resulting in the generation of substantial amounts of lactate to maintain the energy demand for neurons and other brain cells. Lactate has garnered increasing attention in recent years because of its emerging role in critical biological processes such as inflammation regulation and neuroprotection, particularly through its histone lactylation. Bromodomain-containing protein 4 (BRD4) plays a crucial role in maintaining neural development and promoting memory formation in the central nervous system. Nonetheless, the function and regulatory mechanism of BRD4 and histone lactylation in astrocytes following SAH remain elusive. Our findings indicate that BRD4, a crucial epigenetic regulator, plays a definitive role in histone lactylation. Both in vitro and in vivo, these results demonstrated that targeted silencing of BRD4 in astrocytes can significantly reduce H4K8la lactylation, thereby aggravating the A1 polarization of astrocytes and ultimately affecting the recovery of neural function and prognosis in mice after SAH. In summary, BRD4 plays a pivotal role in modulating astrocyte polarization following SAH via histone lactylation. Targeting this mechanism might offer an efficient therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Peng Lu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Brain Science, Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Mutoh T, Tochinai R, Aono H, Kuwahara M, Taki Y, Ishikawa T. Simple procedure for assessing diffuse subarachnoid hemorrhage successfully created using filament perforation method in mice. Animal Model Exp Med 2024; 7:77-81. [PMID: 38111348 PMCID: PMC10961900 DOI: 10.1002/ame2.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The murine model of subarachnoid hemorrhage (SAH) is a valuable experimental tool for investigating molecular and cellular mechanisms, and the endovascular filament perforation technique can be used to simulate prominent pathophysiological features observed after human SAH; however, current validation methods for assessing an appropriate SAH model are limited. Here, we introduce a simple procedure for selecting a mouse model of diffuse SAH. SAH was induced in 24 mice using a standard filament perforation method. After confirming survival at 24 h, SAH was scored 0-1 based on T2*-weighted images on whole-brain magnetic resonance imaging (MRI) and visual surveillance of the cisterna magna (CM) through the dura mater. The CM-based SAH grading correlated well with a reference parameter defined by extracted brain (r2 = 0.53, p < 0.0001). The receiver operating characteristic curve revealed a sensitivity of 85% and a specificity of 91% for detecting diffuse SAH, with a similar area under the curve (0.89 ± 0.06 [standard error of the mean]) as the MRI-based grading (0.72 ± 0.10, p = 0.12). Our data suggest that confirming an SAH clot in the CM is a valuable way to select a clinically relevant diffuse SAH model that can be used in future experimental studies.
Collapse
Affiliation(s)
- Tatsushi Mutoh
- Department of Surgical Neurology, Research Institute for Brain and Blood VesselsAkita Cerebrospinal and Cardiovascular CenterAkitaJapan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Ryota Tochinai
- Department of Surgical Neurology, Research Institute for Brain and Blood VesselsAkita Cerebrospinal and Cardiovascular CenterAkitaJapan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
| | - Hiroaki Aono
- Department of Surgical Neurology, Research Institute for Brain and Blood VesselsAkita Cerebrospinal and Cardiovascular CenterAkitaJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Tatsuya Ishikawa
- Department of Surgical Neurology, Research Institute for Brain and Blood VesselsAkita Cerebrospinal and Cardiovascular CenterAkitaJapan
| |
Collapse
|
7
|
Qiu X, Tao Q, Zhang L, Kuang C, Xie Y, Zhang L, Yin S, Peng J, Jiang Y. Deletion of Bak1 alleviates microglial necroptosis and neuroinflammation after experimental subarachnoid hemorrhage. J Neurochem 2022; 164:829-846. [PMID: 36583235 DOI: 10.1111/jnc.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
Microglial necroptosis exacerbates neurodegenerative diseases, central nervous system (CNS) injury, and demonstrates a proinflammatory process, but its contribution to subarachnoid hemorrhage (SAH) is poorly characterized. BCL-2 homologous antagonist-killer protein (Bak1), a critical regulatory molecule of endogenous apoptosis, can be involved in the pathologic process of necroptosis by regulating mitochondrial permeability. In this study, we revealed microglia undergo necroptosis after SAH in vivo and vitro. Western blot revealed that Bak1 was elevated at 24 h after SAH. Knocked down of Bak1 by adeno-associated virus attenuates microglial necroptosis, alleviates neuroinflammation, and improves neurologic function after SAH in mice. Furthermore, oxyhemoglobin (10 μM) induced necroptosis in BV2 microglia, increasing Bak1 expression and mediating proinflammatory phenotype transformation, exacerbating oxidative stress and neuroinflammation. Abrogating BV2 Bak1 could reduce necroptosis by down-regulating the expression of phosphorylated pseudokinase mixed lineage kinase domain-like protein (p-MLKL), then down-regulating proinflammatory phenotype gene expression. RNA-Seq showed that disrupting BV2 Bak1 down-regulates multiple immune and inflammatory pathways and ameliorates cell injury by elevating thrombospondin 1 (THBS1) expression. In summary, we identified a critical regulatory role for Bak1 in microglial necroptosis and neuroinflammation after SAH. Bak1 is expected to be a potential target for the treatment strategy of SAH.
Collapse
Affiliation(s)
- Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Neurosurgery, Shifang City People's Hospital, Shifang, China
| | - Qianke Tao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenghao Kuang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yuke Xie
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Tao Q, Qiu X, Li C, Zhou J, Gu L, Zhang L, Pang J, Zhang L, Yin S, Jiang Y, Peng J. S100A8 regulates autophagy-dependent ferroptosis in microglia after experimental subarachnoid hemorrhage. Exp Neurol 2022; 357:114171. [PMID: 35870523 DOI: 10.1016/j.expneurol.2022.114171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Targeting microglial activation has been shown to ameliorate early brain injury (EBI) after subarachnoid hemorrhage (SAH). Ferroptosis is a new form of programmed cell death after SAH, but these molecular features were not recognized as evidence of microglial function so far. In this study, we constructed microglial S100A8-specific knockdown and established the SAH model in vivo and in vitro. Multi-technology strategies, including high throughput sequencing, adeno-associated virus gene gene-editing and several molecular biotechnologies to validate the effects of S100A8 on microglial autophagy and ferroptosis after SAH. Our results revealed that the expression of S100A8 was significantly increased in brain tissue after SAH. Targeted microglial S100A8 inhibition improved neural function and neuronal apoptosis in mice after SAH. Further mechanism exploration found that favourable effects of S100A8 depletion in EBI may be through the inhibition of microglia autophagy-dependent ferroptosis. In conclusion, S100A8 may be a potential intervention target for microglial ferroptosis in EBI after SAH.
Collapse
Affiliation(s)
- Qianke Tao
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiancheng Qiu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chaojie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lihan Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Zhang L, Guo K, Zhou J, Zhang X, Yin S, Peng J, Liao Y, Jiang Y. Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 2021; 158:880-897. [PMID: 34143505 DOI: 10.1111/jnc.15457] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
As an important initiator and responder of brain inflammation in the central nervous system (CNS), astrocytes transform into two new reactive phenotypes with changed morphology, altered gene expression and secretion profiles, termed detrimental A1 and beneficial A2. Inflammatory events have been shown to occur during the phase of early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the phenotype transformation of astrocytes as well as its potential contribution to inflammatory status in the EBI of SAH has yet to be determined. In the present study, both in vivo and in vitro models of SAH were established, and the polarization of astrocytes after SAH was analyzed by RNA-seq, western blotting, and immunofluorescence staining. The effect of astrocytic phenotype transformation on neuroinflammation was examined by real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). We demonstrated that astrocytes were transformed into A1 astrocytes and caused neuronal death through the release of pro-inflammatory factors in EBI after SAH. Importantly, Ponesimod, an S1PR1 specific modulator, exerted neuroprotective effects through the prevention of astrocytic polarization to the A1 phenotype as proved by immunofluorescence, neurological tests, and TUNEL study. We also revealed the role of Ponesimod in modulating astrocytic response was mediated by the signal transducer and activator of transcription 3 (STAT3) signaling. Our study suggested that Ponesimod may be a promising therapeutic target for the treatment of brain injury following SAH.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kecheng Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuyan Liao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Tu T, Yin S, Pang J, Zhang X, Zhang L, Zhang Y, Xie Y, Guo K, Chen L, Peng J, Jiang Y. Irisin Contributes to Neuroprotection by Promoting Mitochondrial Biogenesis After Experimental Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:640215. [PMID: 33613273 PMCID: PMC7886674 DOI: 10.3389/fnagi.2021.640215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating form of stroke, which poses a series of intractable challenges to clinical practice. Imbalance of mitochondrial homeostasis has been thought to be the crucial pathomechanism in early brain injury (EBI) cascade after SAH. Irisin, a protein related to metabolism and mitochondrial homeostasis, has been reported to play pivotal roles in post-stroke neuroprotection. However, whether this myokine can exert neuroprotection effects after SAH remains unknown. In the present study, we explored the protective effects of irisin and the underlying mechanisms related to mitochondrial biogenesis in a SAH animal model. Endovascular perforation was used to induce SAH, and recombinant irisin was administered intracerebroventricularly. Neurobehavioral assessments, TdT-UTP nick end labeling (TUNEL) staining, dihydroethidium (DHE) staining, immunofluorescence, western blot, and transmission electron microscopy (TEM) were performed for post-SAH assessments. We demonstrated that irisin treatment improved neurobehavioral scores, reduced neuronal apoptosis, and alleviated oxidative stress in EBI after SAH. More importantly, the administration of exogenous irisin conserved the mitochondrial morphology and promoted mitochondrial biogenesis. The protective effects of irisin were partially reversed by the mitochondrial uncoupling protein-2 (UCP-2) inhibitor. Taken together, irisin may have neuroprotective effects against SAH via improving the mitochondrial biogenesis, at least in part, through UCP-2 related targets.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuke Xie
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kecheng Guo
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Kamat PK, Ahmad AS, Doré S. Carbon monoxide attenuates vasospasm and improves neurobehavioral function after subarachnoid hemorrhage. Arch Biochem Biophys 2019; 676:108117. [PMID: 31560866 DOI: 10.1016/j.abb.2019.108117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating form of hemorrhagic stroke and is a serious medical condition caused by bleeding usually due to a ruptured aneurysm. Oxidative stress and inflammation from hemoglobin and heme released from lysed red blood cells are some postulated causes of vasospasm during SAH, which could lead to delayed cerebral ischemia. At low amounts, carbon monoxide (CO) gas may be neuroprotective through anti-inflammation, anti-cell death, and restoration of normal blood flow. Hence, this study focuses on a noninvasive strategy to treat SAH by using CO as a therapeutic medical gas. Mice were treated with 250 ppm CO or air for 1h started at 2h after SAH. Various anatomical and functional outcomes were monitored at 1 and 7d after SAH. CO decreased neurological deficit score (47.4 ± 10.5%) and increased activity (30.0 ± 9.1%) and stereotypic counts (261.5 ± 62.1%) at 7d. There was a significant increase in lumen area/wall thickness ratio in the middle cerebral artery (173.5 ± 19.3%), which tended to increase in the anterior cerebral artery (25.5 ± 4.3%) at 7d. This is the first report to demonstrate that CO minimizes delayed SAH-induced neurobehavioral deficits, which suggests that post-treatment with CO gas or CO-donors can be further tested as a potential therapy against SAH.
Collapse
Affiliation(s)
- Pradip K Kamat
- Department of Anesthesiology, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, United States
| | - Abdullah S Ahmad
- Department of Anesthesiology, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, United States
| | - Sylvain Doré
- Department of Anesthesiology, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, United States; Departments of Neurology, Psychiatry, Pharmaceutics and Neuroscience, McKnight Brain Institute, University of Florida, United States.
| |
Collapse
|
12
|
Reis C, Chen S, Tang J. An update on promising therapies for CNS conditions. Brain Inj 2019; 33:699-700. [PMID: 31060381 DOI: 10.1080/02699052.2019.1612093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this special edition, we present five articles that explore various neurovascular and neurodegenerative diseases and update the readers on promising therapies. We discuss where the current focus of research on central nervous conditions is heading. The topics range from discussing different brain injury models simulate human physiology, to analyzing outcomes following subdural hematoma evacuation. In addition, this special issue discusses new therapeutic targets during the acute phase of brain injury. The ideas and expert analysis regarding different neurological topics set up readers to explore future research on the subject matter.
Collapse
Affiliation(s)
- Cesar Reis
- a Department of Physiology and Pharmacology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Sheng Chen
- b Department of Neurosurgery , Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou City , Zhejiang Province , China
| | - Jiping Tang
- a Department of Physiology and Pharmacology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| |
Collapse
|