1
|
McGill MB, Clark AL, Schnyer DM. Traumatic brain injury, posttraumatic stress disorder, and vascular risk are independently associated with white matter aging in Vietnam-Era veterans. J Int Neuropsychol Soc 2024:1-12. [PMID: 39558525 DOI: 10.1017/s1355617724000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
OBJECTIVE Traumatic brain injury (TBI), mental health conditions (e.g., posttraumatic stress disorder [PTSD]), and vascular comorbidities (e.g., hypertension, diabetes) are highly prevalent in the Veteran population and may exacerbate age-related changes to cerebral white matter (WM). Our study examined (1) relationships between health conditions-TBI history, PTSD, and vascular risk-and cerebral WM micro- and macrostructure, and (2) associations between WM measures and cognition. METHOD We analyzed diffusion tensor images from 183 older male Veterans (mean age = 69.18; SD = 3.61) with (n = 95) and without (n = 88) a history of TBI using tractography. Generalized linear models examined associations between health conditions and diffusion metrics. Total WM hyperintensity (WMH) volume was calculated from fluid-attenuated inversion recovery images. Robust regression examined associations between health conditions and WMH volume. Finally, elastic net regularized regression examined associations between WM measures and cognitive performance. RESULTS Veterans with and without TBI did not differ in severity of PTSD or vascular risk (p's >0.05). TBI history, PTSD, and vascular risk were independently associated with poorer WM microstructural organization (p's <0.5, corrected), however the effects of vascular risk were more numerous and widespread. Vascular risk was positively associated with WMH volume (p = 0.004, β=0.200, R2 = 0.034). Higher WMH volume predicted poorer processing speed (R2 = 0.052). CONCLUSIONS Relative to TBI history and PTSD, vascular risk may be more robustly associated with WM micro- and macrostructure. Furthermore, greater WMH burden is associated with poorer processing speed. Our study supports the importance of vascular health interventions in mitigating negative brain aging outcomes in Veterans.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra L Clark
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Bigler ED, Allder S, Victoroff J. What traditional neuropsychological assessment got wrong about mild traumatic brain injury. II: limitations in test development, research design, statistical and psychometric issues. Brain Inj 2024; 38:1053-1074. [PMID: 39066740 DOI: 10.1080/02699052.2024.2376261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
PRIMARY OBJECTIVE This is Part II of a four-part opinion review on traditional neuropsychological assessment methods and findings associated with mild traumatic brain injury (mTBI). This Part II review focuses on historical, psychometric and statistical issues involving traditional neuropsychological methods that have been used in neuropsychological outcome studies of mTBI, but demonstrates the critical limitations of traditional methods. RESEARCH DESIGN This is an opinion review. METHODS AND PROCEDURES Traditional neuropsychological tests are dated and lack specificity in evaluating such a heterogenous and complex injury as occurs with mTBI. MAIN OUTCOME AND RESULTS In this review, we demonstrate traditional neuropsychological methods were never developed as standalone measures for detecting subtle changes in neurocognitive or neurobehavioral functioning and likewise, never designed to address the multifaceted issues related to underlying mTBI neuropathology symptom burden from having sustained a concussive brain injury. CONCLUSIONS For neuropsychological assessment to continue to contribute to clinical practice and outcome literature involving mTBI, major innovative changes are needed that will likely require technological advances of novel assessment techniques more specifically directed to evaluating the mTBI patient. These will be discussed in Part IV.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah, USA
- Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Steven Allder
- Consultant Neurologist and Clinical Director, Re: Cognition Health, London, UK
| | - Jeff Victoroff
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Tate DF, Bigler ED, York GE, Newsome MR, Taylor BA, Mayer AR, Pugh MJ, Presson AP, Ou Z, Hovenden ES, Dimanche J, Abildskov TJ, Agarwal R, Belanger HG, Betts AM, Duncan T, Eapen BC, Jaramillo CA, Lennon M, Nathan JE, Scheibel RS, Spruiell MB, Walker WC, Wilde EA. White Matter Hyperintensities and Mild TBI in Post-9/11 Veterans and Service Members. Mil Med 2024; 189:e2578-e2587. [PMID: 39002108 PMCID: PMC11536319 DOI: 10.1093/milmed/usae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION The neurobehavioral significance of white matter hyperintensities (WMHs) seen on magnetic resonance imaging after traumatic brain injury (TBI) remains unclear, especially in Veterans and Service Members with a history of mild TBI (mTBI). In this study, we investigate the relation between WMH, mTBI, age, and cognitive performance in a large multisite cohort from the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. MATERIALS AND METHODS The neuroimaging and neurobehavioral assessments for 1,011 combat-exposed, post-9/11 Veterans and Service Members (age range 22-69 years), including those with a history of at least 1 mTBI (n = 813; median postinjury interval of 8 years) or negative mTBI history (n = 198), were examined. RESULTS White matter hyperintensities were present in both mTBI and comparison groups at similar rates (39% and 37%, respectively). There was an age-by-diagnostic group interaction, such that older Veterans and Service Members with a history of mTBI demonstrated a significant increase in the number of WMHs present compared to those without a history of mTBI. Additional associations between an increase in the number of WMHs and service-connected disability, insulin-like growth factor-1 levels, and worse performance on tests of episodic memory and executive functioning-processing speed were found. CONCLUSIONS Subtle but important clinical relationships are identified when larger samples of mTBI participants are used to examine the relationship between history of head injury and radiological findings. Future studies should use follow-up magnetic resonance imaging and longitudinal neurobehavioral assessments to evaluate the long-term implications of WMHs following mTBI.
Collapse
Affiliation(s)
- David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84103, USA
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Gerald E York
- Alaska Radiology Associates, Anchorage, AK 99508, USA
- Departments of Neurology and Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mary R Newsome
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian A Taylor
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew R Mayer
- Departments of Neurology and Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mary Jo Pugh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84103, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Angela P Presson
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Zhining Ou
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Elizabeth S Hovenden
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Josephine Dimanche
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Tracy J Abildskov
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Rajan Agarwal
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Heather G Belanger
- Defense and Veterans Brain Injury Center (DVBIC), MacDill AFB, FL 33621, USA
| | - Aaron M Betts
- Department of Radiology, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | | | - Blessen C Eapen
- VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | | - Michael Lennon
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Jennifer E Nathan
- Department of Radiology, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Randall S Scheibel
- Michael E. De Bakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew B Spruiell
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23220, USA
- Richmond Veterans Affairs (VA) Medical Center, Central Virginia VA Health Care System, Richmond, VA 23249, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84103, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Esagoff AI, Gifford MK, Narapareddy BR, Sair HI, Luna LP, Raj D, Shan G, Peters M, Bernick C. Prior football or rugby exposure and white matter signal abnormalities in professional male mixed martial arts fighters. PHYSICIAN SPORTSMED 2024:1-5. [PMID: 39022864 DOI: 10.1080/00913847.2024.2382085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND White matter signal abnormalities have been associated with traumatic brain injury (TBI) and repetitive head impacts (RHI) in contact sports (e.g. American football, rugby). However, previous studies of mixed martial arts (MMA) fighters from the Professional Fighters Brain Health Study have not found greater white matter signal abnormalities in fighters versus controls. OBJECTIVE This study aims to explore the varying white matter effects of football/rugby and MMA by analyzing how football/rugby history in mixed martial arts fighters may relate to white matter signal abnormalities, helping to further our understanding of sport-specific brain health risks. METHODS Baseline visits for 90 active, professional, male mixed martial arts fighters and 27 unexposed male controls were cross-sectionally analyzed. Wilcoxon and Kruskal-Wallis tests compared demographics and white matter signal abnormalities, and multivariable regression models examined the associations between football/rugby history and white matter signal abnormality burden in fighters, adjusting for age, education, race, fights, MRI scanner, and supratentorial volume. RESULTS 37/90 fighters had football/rugby history (mean: 4 years; range: 1-12 years). White matter signal abnormalities were significantly greater in fighters with football/rugby history compared to fighters without football/rugby history (Wilcoxon, p = 0.0190). Football/rugby history was significantly associated with white matter signal abnormality burden >75th percentile (OR: 12, CI: 3.3-61, p < 0.001) and >50th percentile (OR: 3.2, CI: 1.2-9.4, p = 0.024) in fighters. Years of football/rugby were also significantly associated with white matter signal abnormalities. CONCLUSION Our findings expand on previous literature by demonstrating a significant relationship between white matter signal abnormalities (WMSAs) and football/rugby history but not MMA. Furthermore, our study suggests an added risk for WMSAs in MMA fighters with a history of football/rugby. Future research should further evaluate WMSAs in contact sports, helping to inform athletes, regulatory bodies, and healthcare providers of the potential brain health risks of contact sports.
Collapse
Affiliation(s)
- Aaron I Esagoff
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia K Gifford
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Haris I Sair
- Department of Radiology and Radiological Science - Neuroradiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Licia P Luna
- Department of Radiology and Radiological Science - Neuroradiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Divyaansh Raj
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guogen Shan
- College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthew Peters
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
5
|
McGill MB, Schnyer DM. The Effects of Early Life History of TBI on the Progression of Normal Brain Aging with Implications for Increased Dementia Risk. ADVANCES IN NEUROBIOLOGY 2024; 42:119-143. [PMID: 39432040 DOI: 10.1007/978-3-031-69832-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is increasing interest in the risk conferred on neurological health by a traumatic brain injury (TBI) and how that influences the lifespan trajectory of brain aging. This chapter explores the importance of this issue, population, and methodological considerations, including injury documentation and outcome assessment. We then explore some of the findings in the neuroimaging and neuropsychological research literature examining the interaction between an earlier life history of TBI and the normal aging process. Finally, we consider the limitations of our current knowledge and where the field needs to go in the future.
Collapse
Affiliation(s)
- Makenna B McGill
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Monsour M, Lee JY, Borlongan CV. An Understated Comorbidity: The Impact of Homelessness on Traumatic Brain Injury. Neurotherapeutics 2023; 20:1446-1456. [PMID: 37639189 PMCID: PMC10684446 DOI: 10.1007/s13311-023-01419-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Traumatic brain injury (TBI), a neurovascular injury caused by external force, is a common diagnosis among veterans and those experiencing homelessness (HL). There is a significant overlap in the veteran and homeless population, possibly accounting for the two to seven times greater incidence of TBI among those experiencing HL than the general population. Despite these statistics, individuals experiencing HL are often underdiagnosed and ineffectively treated for TBI. We introduced a novel model of HL. Over 5 weeks, adult Sprague-Dawley rats were randomly assigned to one of the following conditions: TBI only, HL only, TBI + HL, or control (n = 9 per group). To emulate HL, animals (2 animals per cage) were exposed to soiled beddings for 5 weeks. Subsequently, animals were introduced to TBI by using the moderate controlled cortical impact model, then underwent 4 consecutive days of behavioral testing (beam walk (BW), elevated body swing test (EBST), forelimb akinesia (FA), paw grasp (PG), Rotorod, and elevated T-maze). Nissl staining was performed to determine the peri-impact cell survival and the integrity of corpus callosum area. Motor function was significantly impaired by TBI, regardless of housing (beam walk or BW 85.0%, forelimb akinesia or FA 104.7%, and paw grasp or PG 100% greater deficit compared to control). Deficits were worsened by HL in TBI rats (BW 93.3%, FA 40.5%, and PG 50% greater deficit). Two-way ANOVA revealed BW (F(4, 160) = 31.69, p < 0.0001), FA (F(4, 160) = 13.71, p < 0.0001), PG (F(4, 160) = 3.873, p = 0.005), Rotorod (F(4, 160), p = 1.116), and EBST (F(4, 160) = 6.929, p < 0.0001) showed significant differences between groups. The Rotorod and EBST tests showed TBI-induced functional deficits when analyzed by day, but these deficits were not exacerbated by HL. TBI only and TBI + HL rats exhibited typical cortical impact damage (F(3,95) = 51.75, p < 0.0001) and peri-impact cell loss compared to control group (F(3,238) = 47.34, p < 0.0001). Most notably, TBI + HL rats showed significant alterations in WM area measured via the corpus callosum (F(3, 95) = 3.764, p = 0.0133). Worsened behavioral outcomes displayed by TBI + HL rats compared to TBI alone suggest HL contributes to TBI functional deficits. While an intact white matter, such as the corpus callosum, may lessen the consequent functional deficits associated with TBI by enhancing hemispheric communications, there are likely alternative cellular and molecular pathways mitigating TBI-associated inflammatory or oxidative stress responses. Here, we showed that the environmental condition of the patient, i.e., HL, participates in white matter integrity and behavioral outcomes, suggesting its key role in the disease diagnosis to aptly treat TBI patients.
Collapse
Affiliation(s)
- M Monsour
- University of South Florida Morsani College of Medicine, 560 Channelside Dr., Tampa, FL, 33606, USA
| | - J-Y Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - C V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Chen H, Xu J, Lv W, Hu Z, Ke Z, Qin R, Chen Y, Xu Y. Altered morphological connectivity mediated white matter hyperintensity-related cognitive impairment. Brain Res Bull 2023; 202:110714. [PMID: 37495024 DOI: 10.1016/j.brainresbull.2023.110714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
White matter hyperintensities (WMH) are widely observed in older adults and are closely associated with cognitive impairment. However, the underlying neuroimaging mechanisms of WMH-related cognitive dysfunction remain unknown. This study recruited 61 WMH individuals with mild cognitive impairment (WMH-MCI, n = 61), 48 WMH individuals with normal cognition (WMH-NC, n = 48) and 57 healthy control (HC, n = 57) in the final analyses. We constructed morphological networks by applying the Kullback-Leibler divergence to estimate interregional similarity in the distributions of regional gray matter volume. Based on morphological networks, graph theory was applied to explore topological properties, and their relationship to WMH-related cognitive impairment was assessed. There were no differences in small-worldness, global efficiency and local efficiency. The nodal local efficiency, degree centrality and betweenness centrality were altered mainly in the limbic network (LN) and default mode network (DMN). The rich-club analysis revealed that WMH-MCI subjects showed lower average strength of the feeder and local connections than HC (feeder connections: P = 0.034; local connections: P = 0.042). Altered morphological connectivity mediated the relationship between WMH and cognition, including language (total indirect effect: -0.010; 95 % CI: -0.024, -0.002) and executive (total indirect effect: -0.010; 95 % CI: -0.028, -0.002) function. The altered topological organization of morphological networks was mainly located in the DMN and LN and was associated with WMH-related cognitive impairment. The rich-club connection was relatively preserved, while the feeder and local connections declined. The results suggest that single-subject morphological networks may capture neurological dysfunction due to WMH and could be applied to the early imaging diagnostic protocol for WMH-related cognitive impairment.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Jingxian Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weiping Lv
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Ke
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ying Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China; Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
8
|
Kim SY, Yeh PH, Ollinger JM, Morris HD, Hood MN, Ho VB, Choi KH. Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms. Transl Psychiatry 2023; 13:289. [PMID: 37652994 PMCID: PMC10471788 DOI: 10.1038/s41398-023-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden among military service members. Although mTBI was once considered relatively benign compared to more severe TBIs, a growing body of evidence has demonstrated the devastating neurological consequences of mTBI, including chronic post-concussion symptoms and deficits in cognition, memory, sleep, vision, and hearing. The discovery of reliable biomarkers for mTBI has been challenging due to under-reporting and heterogeneity of military-related mTBI, unpredictability of pathological changes, and delay of post-injury clinical evaluations. Moreover, compared to more severe TBI, mTBI is especially difficult to diagnose due to the lack of overt clinical neuroimaging findings. Yet, advanced neuroimaging techniques using magnetic resonance imaging (MRI) hold promise in detecting microstructural aberrations following mTBI. Using different pulse sequences, MRI enables the evaluation of different tissue characteristics without risks associated with ionizing radiation inherent to other imaging modalities, such as X-ray-based studies or computerized tomography (CT). Accordingly, considering the high morbidity of mTBI in military populations, debilitating post-injury symptoms, and lack of robust neuroimaging biomarkers, this review (1) summarizes the nature and mechanisms of mTBI in military settings, (2) describes clinical characteristics of military-related mTBI and associated comorbidities, such as post-traumatic stress disorder (PTSD), (3) highlights advanced neuroimaging techniques used to study mTBI and the molecular mechanisms that can be inferred, and (4) discusses emerging frontiers in advanced neuroimaging for mTBI. We encourage multi-modal approaches combining neuropsychiatric, blood-based, and genetic data as well as the discovery and employment of new imaging techniques with big data analytics that enable accurate detection of post-injury pathologic aberrations related to tissue microstructure, glymphatic function, and neurodegeneration. Ultimately, this review provides a foundational overview of military-related mTBI and advanced neuroimaging techniques that merit further study for mTBI diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Sharon Y Kim
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John M Ollinger
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Herman D Morris
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Maureen N Hood
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Vincent B Ho
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kwang H Choi
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA.
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
9
|
Aranha MR, Coutinho AM, Carneiro CDG, Pastorello BF, Studart-Neto A, Guariglia CC, Tsunemi MH, Moreira ELS, Ianof JN, Anghinah R, Nitrini R, Cerri GG, Fortea J, Buchpiguel CA, Leite CC. Brain glucose metabolism and gray matter volume in retired professional soccer players: a cross-sectional [18F]FDG-PET/MRI study. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:433-443. [PMID: 37257463 DOI: 10.1055/s-0043-1768666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Professional soccer athletes are exposed to repetitive head impacts and are at risk of developing chronic traumatic encephalopathy. OBJECTIVE To evaluate regional brain glucose metabolism (rBGM) and gray matter (GM) volume in retired soccer players (RSPs). METHODS Male RSPs and age and sex-matched controls prospectively enrolled between 2017 and 2019 underwent neurological and neuropsychological evaluations, brain MRI and [18F]FDG-PET in a 3.0-Tesla PET/MRI scanner. Visual analysis was performed by a blinded neuroradiologist and a blinded nuclear physician. Regional brain glucose metabolism and GM volume were assessed using SPM8 software. Groups were compared using appropriate statistical tests available at SPM8 and R. RESULTS Nineteen RSPs (median [IQR]: 62 [50-64.5] years old) and 20 controls (60 [48-73] years old) were included. Retired soccer players performed worse on mini-mental state examination, digit span, clock drawing, phonemic and semantic verbal fluency tests, and had reduced rBGM in the left temporal pole (pFDR = 0.008) and the anterior left middle temporal gyrus (pFDR = 0.043). Semantic verbal fluency correlated with rBGM in the right hippocampus, left temporal pole, and posterior left middle temporal gyrus (p ≤ 0.042). Gray matter volume reduction was observed in similar anatomic regions but was less extensive and did not survive correction for multiple comparisons (pFDR ≥ 0.085). Individual [18F]FDG-PET visual analysis revealed seven RSPs with overt hypometabolism in the medial and lateral temporal lobes, frontal lobes, and temporoparietal regions. Retired soccer players had a higher prevalence of septum pellucidum abnormalities on MRI. CONCLUSION Retired soccer players had reduced rBGM and GM volume in the temporal lobes and septum pellucidum abnormalities, findings possibly related to repetitive head impacts.
Collapse
Affiliation(s)
- Mateus Rozalem Aranha
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Radiologia, São Paulo SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Centro de Medicina Nuclear, São Paulo SP, Brazil
- Universidad Autónoma de Barcelona, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Facultad de Medicina, Barcelona, Spain
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Centro de Medicina Nuclear, São Paulo SP, Brazil
| | - Camila de Godoi Carneiro
- Universidade de São Paulo, Faculdade de Medicina, Centro de Medicina Nuclear, São Paulo SP, Brazil
| | | | - Adalberto Studart-Neto
- Universidade de São Paulo, Departamento de Neurologia, Faculdade de Medicina, São Paulo SP, Brazil
| | - Carla Cristina Guariglia
- Universidade de São Paulo, Departamento de Neurologia, Faculdade de Medicina, São Paulo SP, Brazil
| | - Miriam Harumi Tsunemi
- Universidade Estadual Paulista, Departamento de Bioestatística, Instituto de Biociências, Botucatu SP, Brazil
| | | | - Jéssica Natuline Ianof
- Universidade de São Paulo, Departamento de Neurologia, Faculdade de Medicina, São Paulo SP, Brazil
| | - Renato Anghinah
- Universidade de São Paulo, Departamento de Neurologia, Faculdade de Medicina, São Paulo SP, Brazil
| | - Ricardo Nitrini
- Universidade de São Paulo, Departamento de Neurologia, Faculdade de Medicina, São Paulo SP, Brazil
| | - Giovanni Guido Cerri
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Radiologia, São Paulo SP, Brazil
| | - Juan Fortea
- Universidad Autónoma de Barcelona, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Facultad de Medicina, Barcelona, Spain
- Fundación Catalana de Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, Spain
| | | | - Claudia Costa Leite
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Radiologia, São Paulo SP, Brazil
| |
Collapse
|
10
|
Grasset L, Power MC, Crivello F, Tzourio C, Chêne G, Dufouil C. How Traumatic Brain Injury History Relates to Brain Health MRI Markers and Dementia Risk: Findings from the 3C Dijon Cohort. J Alzheimers Dis 2023; 92:183-193. [PMID: 36710672 PMCID: PMC10041415 DOI: 10.3233/jad-220658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The long-term effects of traumatic brain injury (TBI) with loss of consciousness (LOC) on magnetic resonance imaging (MRI) markers of brain health and on dementia risk are still debated. OBJECTIVE To investigate the associations of history of TBI with LOC with incident dementia and neuroimaging markers of brain structure and small vessel disease lesions. METHODS The analytical sample consisted in 4,144 participants aged 65 and older who were dementia-free at baseline from the Three City -Dijon study. History of TBI with LOC was self-reported at baseline. Clinical Dementia was assessed every two to three years, up to 12 years of follow-up. A subsample of 1,675 participants <80 years old underwent a brain MRI at baseline. We investigated the associations between history of TBI with LOC and 1) incident all cause and Alzheimer's disease (AD) dementia using illness-death models, and 2) neuroimaging markers at baseline. RESULTS At baseline, 8.3% of the participants reported a history of TBI with LOC. In fully-adjusted models, participants with a history of TBI with LOC had no statistically significant differences in dementia risk (HR = 0.90, 95% CI = 0.60-1.36) or AD risk (HR = 1.03, 95% CI = 0.69-1.52), compared to participants without TBI history. History of TBI with LOC was associated with lower white matter volume (β= -4.58, p = 0.048), but not with other brain volumes, white matter hyperintensities volume, nor covert brain infarct. CONCLUSION This study did not find evidence of an association between history of TBI with LOC and dementia or AD dementia risks over 12-year follow-up, brain atrophy, or markers of small vessel disease.
Collapse
Affiliation(s)
- Leslie Grasset
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; CIC1401-EC, Bordeaux, France
| | - Melinda C Power
- Department of Epidemiology, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | | | - Christophe Tzourio
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; Bordeaux, France
| | - Geneviève Chêne
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; CIC1401-EC, Bordeaux, France.,Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219; CIC1401-EC, Bordeaux, France.,Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| |
Collapse
|
11
|
Wilde EA, Wanner I, Kenney K, Gill J, Stone JR, Disner S, Schnakers C, Meyer R, Prager EM, Haas M, Jeromin A. A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury. J Neurotrauma 2022; 39:436-457. [PMID: 35057637 PMCID: PMC8978568 DOI: 10.1089/neu.2021.0099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elisabeth A. Wilde
- University of Utah, Neurology, 383 Colorow, Salt Lake City, Utah, United States, 84108
- VA Salt Lake City Health Care System, 20122, 500 Foothill Dr., Salt Lake City, Utah, United States, 84148-0002
| | - Ina Wanner
- UCLA, Semel Institute, NRB 260J, 635 Charles E. Young Drive South, Los Angeles, United States, 90095-7332, ,
| | - Kimbra Kenney
- Uniformed Services University of the Health Sciences, Neurology, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, Maryland, United States, 20814
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 1 cloister, Bethesda, Maryland, United States, 20892
| | - James R. Stone
- University of Virginia, Radiology and Medical Imaging, Box 801339, 480 Ray C. Hunt Dr. Rm. 185, Charlottesville, Virginia, United States, 22903, ,
| | - Seth Disner
- Minneapolis VA Health Care System, 20040, Minneapolis, Minnesota, United States
- University of Minnesota Medical School Twin Cities, 12269, 10Department of Psychiatry and Behavioral Sciences, Minneapolis, Minnesota, United States
| | - Caroline Schnakers
- Casa Colina Hospital and Centers for Healthcare, 6643, Pomona, California, United States
- Ronald Reagan UCLA Medical Center, 21767, Los Angeles, California, United States
| | - Restina Meyer
- Cohen Veterans Bioscience, 476204, New York, New York, United States
| | - Eric M Prager
- Cohen Veterans Bioscience, 476204, External Affairs, 535 8th Ave, New York, New York, United States, 10018
| | - Magali Haas
- Cohen Veterans Bioscience, 476204, 535 8th Avenue, 12th Floor, New York City, New York, United States, 10018,
| | - Andreas Jeromin
- Cohen Veterans Bioscience, 476204, Translational Sciences, Cambridge, Massachusetts, United States
| |
Collapse
|
12
|
Raukola-Lindblom M, Ljungqvist L, Kurki T, Tenovuo O, Laasonen M. Cognitive-Linguistic outcome in moderate to severe diffuse axonal injury and association with fatigue. Brain Inj 2022; 35:1674-1681. [PMID: 35015614 DOI: 10.1080/02699052.2021.2012824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Individuals with traumatic brain injury (TBI) often have persistent cognitive-linguistic deficits that negatively influence their life. Our objective was to examine the cognitive-linguistic outcome in individuals with moderate to severe diffuse axonal injury (DAI) with a novel test battery. As fatigue is a common symptom affecting the lives of individuals with DAI, we also wanted to assess whether the self-reported fatigue was associated with cognitive-linguistic abilities. METHODS Selected cognitive-linguistic subtests of the Finnish KAT test and The Mental Fatigue Scale (MFS) were applied to 48 adults with moderate to severe DAI and 27 healthy controls. The majority of the participants with DAI were in the chronic stage. The groups were compared using ANCOVA. Linear regressions were used to analyze the association between MFS and cognitive-linguistic outcomes. RESULTS The participants with DAI had significantly poorer scores than the controls in most cognitive-linguistic variables and reported significantly more fatigue. Two of the four cognitive-linguistic composite variables were associated with the degree of self-reported fatigue. CONCLUSIONS Cognitive-linguistic deficits are common in individuals with moderate to severe DAI, and The Finnish KAT test is a valuable tool to detect those. Fatigue was associated with linguistic working memory and language production.
Collapse
Affiliation(s)
- Marjaana Raukola-Lindblom
- Department of Psychology and Speech-Language Pathology, Department of Social Sciences, University of Turku, Turku, Finland
| | | | - Timo Kurki
- Department of Radiology, University of Turku, Turku, Finland.,Terveystalo Medical Center, Turku, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Turku, Finland.,Turku Brain Injury Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Marja Laasonen
- Logopedics, School of Humanities, Philosophical Faculty, University of Eastern Finland, Joensuu, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Department of Phoniatrics, Helsinki University Hospital and University of Helsinki, Finland
| |
Collapse
|
13
|
Karakurt G, Whiting K, Jones SE, Lowe MJ, Rao SM. Brain Injury and Mental Health Among the Victims of Intimate Partner Violence: A Case-Series Exploratory Study. Front Psychol 2021; 12:710602. [PMID: 34675836 PMCID: PMC8523682 DOI: 10.3389/fpsyg.2021.710602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/09/2021] [Indexed: 12/03/2022] Open
Abstract
Intimate partner violence (IPV) survivors frequently report face, head, and neck as their injury site. Many mild traumatic brain injuries (TBIs) are undiagnosed or underreported among IPV survivors while these injuries may be linked to changes in brain function or pathology. TBI sustained due to IPV often occurs over time and ranges in severity. The aim of this case-series study was to explore risk factors, symptoms, and brain changes unique to survivors of intimate partner violence with suspicion of TBI. This case-series exploratory study examines the potential relationships among IPV, mental health issues, and TBI. Participants of this study included six women: 3 women with a history of IPV without any experience of concussive blunt force to the head, and 3 women with a history of IPV with concussive head trauma. Participants completed 7T MRI of the brain, self-report psychological questionnaires regarding their mental health, relationships, and IPV, and the Structured Clinical Interview. MRI scans were analyzed for cerebral hemorrhage, white matter disturbance, and cortical thinning. Results indicated significant differences in resting-state connectivity among survivors of partner violence as well as differences in relationship dynamics and mental health symptoms. White matter hyperintensities are also observed among the survivors. Developing guidelines and recommendations for TBI-risk screening, referrals, and appropriate service provision is crucial for the effective treatment of TBI-associated IPV. Early and accurate characterization of TBI in survivors of IPV may relieve certain neuropsychological consequences.
Collapse
Affiliation(s)
- Gunnur Karakurt
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, United States
- University Hospital Cleveland Medical Center, Cleveland, OH, United States
| | - Kathleen Whiting
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stephen E. Jones
- Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, United States
| | - Mark J. Lowe
- Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, United States
| | - Stephen M. Rao
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, United States
| |
Collapse
|
14
|
McAllister D, Akers C, Boldt B, Mitchell LA, Tranvinh E, Douglas D, Goubran M, Rosenberg J, Georgiadis M, Karimpoor M, DiGiacomo P, Mouchawar N, Grant G, Camarillo D, Wintermark M, Zeineh MM. Neuroradiologic Evaluation of MRI in High-Contact Sports. Front Neurol 2021; 12:701948. [PMID: 34456852 PMCID: PMC8385770 DOI: 10.3389/fneur.2021.701948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose: Athletes participating in high-contact sports experience repeated head trauma. Anatomical findings, such as a cavum septum pellucidum, prominent CSF spaces, and hippocampal volume reductions, have been observed in cases of mild traumatic brain injury. The extent to which these neuroanatomical findings are associated with high-contact sports is unknown. The purpose of this study was to determine whether there are subtle neuroanatomic differences between athletes participating in high-contact sports compared to low-contact athletic controls. Materials and Methods: We performed longitudinal structural brain MRI scans in 63 football (high-contact) and 34 volleyball (low-contact control) male collegiate athletes with up to 4 years of follow-up, evaluating a total of 315 MRI scans. Board-certified neuroradiologists performed semi-quantitative visual analysis of neuroanatomic findings, including: cavum septum pellucidum type and size, extent of perivascular spaces, prominence of CSF spaces, white matter hyperintensities, arterial spin labeling perfusion asymmetries, fractional anisotropy holes, and hippocampal size. Results: At baseline, cavum septum pellucidum length was greater in football compared to volleyball controls (p = 0.02). All other comparisons were statistically equivalent after multiple comparison correction. Within football at baseline, the following trends that did not survive multiple comparison correction were observed: more years of prior football exposure exhibited a trend toward more perivascular spaces (p = 0.03 uncorrected), and lower baseline Standardized Concussion Assessment Tool scores toward more perivascular spaces (p = 0.02 uncorrected) and a smaller right hippocampal size (p = 0.02 uncorrected). Conclusion: Head impacts in high-contact sport (football) athletes may be associated with increased cavum septum pellucidum length compared to low-contact sport (volleyball) athletic controls. Other investigated neuroradiology metrics were generally equivalent between sports.
Collapse
Affiliation(s)
- Derek McAllister
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Carolyn Akers
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Brian Boldt
- Department of Radiology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Radiology, Madigan Army Medical Center, Tacoma, WA, United States
| | - Lex A Mitchell
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States.,Hawaii Permanente Medical Group, Honolulu, HI, United States.,John A. Burns School of Medicine, Honolulu, HI, United States
| | - Eric Tranvinh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - David Douglas
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Maged Goubran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program and Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jarrett Rosenberg
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Mahta Karimpoor
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Nicole Mouchawar
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Gerald Grant
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, United States
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Max Wintermark
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael M Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Lippa SM, Kenney K, Riedy G, Ollinger J. White Matter Hyperintensities Are Not Related to Symptomatology or Cognitive Functioning in Service Members with a Remote History of Traumatic Brain Injury. Neurotrauma Rep 2021; 2:245-254. [PMID: 34223555 PMCID: PMC8244514 DOI: 10.1089/neur.2021.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to determine whether magnetic resonance imaging (MRI) white matter hyperintensities (WMHs) are associated with symptom reporting and/or cognitive performance in 1202 active-duty service members with prior single or multiple mild traumatic brain injury (mTBI). Patients with mTBI evaluated at the National Intrepid Center of Excellence (NICoE) at Walter Reed National Military Medical Center (WRNMMC) were divided into those with (n = 632) and without (n = 570) WMHs. The groups were compared on several self-report scales including the Neurobehavioral Symptom Inventory (NSI), Post-Traumatic Stress Disorder (PTSD) Checklist-Civilian Version (PCL-C), Satisfaction with Life Scale (SWLS), and Short Form-36 Health Survey (SF-36). They were also compared on several neuropsychological measures, including tests of attention, working memory, learning and memory, executive functioning, and psychomotor functioning. After correction for multiple comparisons, there were no significant differences between the two groups on any self-reported symptom scale or cognitive test. When comparing a subgroup with the highest (20+) WMH burden (n = 60) with those with no WMHs (n = 60; matched on age, education, sex, race, rank, and TBI number), only SF-36 Health Change significantly differed between the subgroups; the multiple WMH subgroup reported worsening health over the past year (t[53] = 3.52, p = 0.001, d = 0.67) compared with the no WMH subgroup. These findings build on prior research suggesting total WMHs are not associated with significant changes in self-reported symptoms or cognitive performance in patients with a remote history of mTBI. As such, clinicians are encouraged to use caution when reporting such imaging findings.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Gerard Riedy
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Johansson B. Mental Fatigue after Mild Traumatic Brain Injury in Relation to Cognitive Tests and Brain Imaging Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115955. [PMID: 34199339 PMCID: PMC8199529 DOI: 10.3390/ijerph18115955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 01/09/2023]
Abstract
Most people recover within months after a mild traumatic brain injury (TBI) or concussion, but some will suffer from long-term fatigue with a reduced quality of life and the inability to maintain their employment status or education. For many people, mental fatigue is one of the most distressing and long-lasting symptoms following an mTBI. No efficient treatment options can be offered. The best method for measuring fatigue today is with fatigue self-assessment scales, there being no objective clinical tests available for mental fatigue. The aim here is to provide a narrative review and identify fatigue in relation to cognitive tests and brain imaging methods. Suggestions for future research are presented.
Collapse
Affiliation(s)
- Birgitta Johansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 45 Göteborg, Sweden
| |
Collapse
|