1
|
Bailey C, Soden D, Maroon J, Selman W, Tangen C, Gunstad J, Briskin S, Miskovsky S, Miller E, Pieper AA. Elevated Autoantibodies to the GluA1 Subunit of the AMPA Receptor in Blood Indicate Risk of Cognitive Impairment in Contact Sports Athletes, Irrespective of Concussion. Neurotrauma Rep 2024; 5:552-562. [PMID: 39071979 PMCID: PMC11271151 DOI: 10.1089/neur.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
To address the need for objective tests of concussion in athletes, we conducted a prospective clinical study in National Collegiate Athletic Association athletes of the relationship between neurocognitive performance and blood levels of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptides and autoantibodies to GluA1. Specifically, we compared 44 contact sport athletes to 16 noncontact sport athletes, with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), as well as blood sample collection, before the start of the season and at the end of the season. Contact sport athletes exhibited significantly elevated serum GluA1 autoantibodies at the end of season, compared with preseason levels, irrespective of whether they sustained a concussion. Noncontact sport athletes showed no change in serum GluA1 autoantibodies, and neither group showed differences in GluA1 peptides. Amongst contact-sport athletes, the 'high GluA1 autoantibody group' (≥4 ng/mL) displayed impaired reaction time, a measure of cognitive impairment, while the 'low GluA1 autoantibody group' (<4 ng/mL) displayed normal reaction time. Our results reveal that contact sport athletes are at risk for developing cognitive impairment even without sustaining a diagnosed concussion and that serum GluA1 autoantibodies provide a blood-based biomarker of this risk. This could guide future studies on the differing susceptibility to cognitive impairment in contact sport athletes and facilitate efficient allocation of resources to contact sport athletes identified as having increased risk of developing cognitive impairment.
Collapse
Affiliation(s)
- Christopher Bailey
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Daniel Soden
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Warren Selman
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Christopher Tangen
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, Ohio, USA
| | - Susannah Briskin
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Shana Miskovsky
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Gozt AK, Hellewell SC, Thorne J, Thomas E, Buhagiar F, Markovic S, Van Houselt A, Ring A, Arendts G, Smedley B, Van Schalkwyk S, Brooks P, Iliff J, Celenza A, Mukherjee A, Xu D, Robinson S, Honeybul S, Cowen G, Licari M, Bynevelt M, Pestell CF, Fatovich D, Fitzgerald M. Predicting outcome following mild traumatic brain injury: protocol for the longitudinal, prospective, observational Concussion Recovery ( CREST) cohort study. BMJ Open 2021; 11:e046460. [PMID: 33986061 PMCID: PMC8126315 DOI: 10.1136/bmjopen-2020-046460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) is a complex injury with heterogeneous physical, cognitive, emotional and functional outcomes. Many who sustain mTBI recover within 2 weeks of injury; however, approximately 10%-20% of individuals experience mTBI symptoms beyond this 'typical' recovery timeframe, known as persistent post-concussion symptoms (PPCS). Despite increasing interest in PPCS, uncertainty remains regarding its prevalence in community-based populations and the extent to which poor recovery may be identified using early predictive markers. OBJECTIVE (1) Establish a research dataset of people who have experienced mTBI and document their recovery trajectories; (2) Evaluate a broad range of novel and established prognostic factors for inclusion in a predictive model for PPCS. METHODS AND ANALYSIS The Concussion Recovery Study (CREST) is a prospective, longitudinal observational cohort study conducted in Perth, Western Australia. CREST is recruiting adults aged 18-65 from medical and community-based settings with acute diagnosis of mTBI. CREST will create a state-wide research dataset of mTBI cases, with data being collected in two phases. Phase I collates data on demographics, medical background, lifestyle habits, nature of injury and acute mTBI symptomatology. In Phase II, participants undergo neuropsychological evaluation, exercise tolerance and vestibular/ocular motor screening, MRI, quantitative electroencephalography and blood-based biomarker assessment. Follow-up is conducted via telephone interview at 1, 3, 6 and 12 months after injury. Primary outcome measures are presence of PPCS and quality of life, as measured by the Post-Concussion Symptom Scale and the Quality of Life after Brain Injury questionnaires, respectively. Multivariate modelling will examine the prognostic value of promising factors. ETHICS AND DISSEMINATION Human Research Ethics Committees of Royal Perth Hospital (#RGS0000003024), Curtin University (HRE2019-0209), Ramsay Health Care (#2009) and St John of God Health Care (#1628) have approved this study protocol. Findings will be published in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER ACTRN12619001226190.
Collapse
Affiliation(s)
- Aleksandra Karolina Gozt
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- Perron Institute of Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Sarah Claire Hellewell
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Jacinta Thorne
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Elizabeth Thomas
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
- Division of Surgery, Faculty of Health & Medical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francesca Buhagiar
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun Markovic
- Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
- The Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Anoek Van Houselt
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alexander Ring
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Glenn Arendts
- Emergency Department, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Ben Smedley
- Emergency Department, Rockingham General Hospital, Cooloongup, Western Australia, Australia
| | - Sjinene Van Schalkwyk
- Emergency Department, Joondalup Health Campus, Joondalup, Western Australia, Australia
| | - Philip Brooks
- Emergency Department, Saint John of God Midland Public Hospital, Midland, Western Australia, Australia
- School of Medicine, The University of Notre Dame and Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - John Iliff
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Emergency Department, Saint John of God Hospital Murdoch, Murdoch, Western Australia, Australia
- Emergency Department, Royal Perth Hospital, Perth, Western Australia, Australia
- Royal Flying Doctor Service- Western Operations, Jandakot, Western Australia, Australia
| | - Antonio Celenza
- Emergency Department, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Division of Emergency Medicine, School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ashes Mukherjee
- Emergency Department, Armadale Health Service, Mount Nasura, Western Australia, Australia
| | - Dan Xu
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Suzanne Robinson
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen Honeybul
- Statewide Director of Neurosurgery, Department of Health Government of Western Australia, Perth, Western Australia, Australia
- Head of Department, Sir Charles Gairdner Hospital, Royal Perth Hospital and Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Gill Cowen
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Melissa Licari
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Michael Bynevelt
- Division of Surgery, School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- The Neurological Intervention & Imaging Service of Western Australia at Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Carmela F Pestell
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Daniel Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- Emergency Medicine, Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- Perron Institute of Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Raikes AC, Dailey NS, Forbeck B, Alkozei A, Killgore WDS. Daily Morning Blue Light Therapy for Post-mTBI Sleep Disruption: Effects on Brain Structure and Function. Front Neurol 2021; 12:625431. [PMID: 33633674 PMCID: PMC7901882 DOI: 10.3389/fneur.2021.625431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.
Collapse
Affiliation(s)
- Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Brittany Forbeck
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| |
Collapse
|