1
|
Wilson SE. Corneal myofibroblasts and fibrosis. Exp Eye Res 2020; 201:108272. [PMID: 33010289 DOI: 10.1016/j.exer.2020.108272] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
Myofibroblasts are alpha-smooth muscle actin (SMA)+ cells that have a critical role in the corneal stromal response to infections, injuries, and surgeries, and which produce corneal scarring fibrosis when they develop in excess. These contractile and opaque cells-produce large amounts of disordered extracellular matrix (ECM)-and develop from keratocyte-derived corneal fibroblasts or bone marrow-derived fibrocytes, and possibly other cell types, in response to TGFβ1, TGFβ2 and PDGF from the epithelium, tears, endothelium, and other stromal cells. Recent proteomic analyses have revealed that the myofibroblasts that develop from different progenitors aren't interchangeable, but have major differences in protein expression and functions. Absence or defective regeneration of the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) results in development and persistence of myofibroblasts in the corneal stroma. The functions of myofibroblasts in the cornea include production of volume-additive ECM, tissue contraction, production of various growth factors, cytokines and chemokines that regulate stromal cells, including other myofibroblasts, production of collagenases and metalloproteinases involved in tissue remodeling, and the expression of toll-like receptors that likely have critical roles in the clearance of bacteria and viruses causing corneal infections.
Collapse
|
2
|
Treatment of Corneal Alkali Burn with Chestnut Honey, Royal Jelly, and Chestnut Honey-Royal Jelly Mixture. BEYOGLU EYE JOURNAL 2019; 4:196-201. [PMID: 35187458 PMCID: PMC8842058 DOI: 10.14744/bej.2019.29290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/25/2019] [Indexed: 12/02/2022]
Abstract
Objectives: The alkaline burn of the cornea usually results in a decreased vision with opacification. In this study, we investigated the potential role of endemic chestnut honey (CH) and royal jelly on corneal healing after an alkaline burn. Methods: We created an alkaline burn on the center of the corneas of four groups of Wistar rats by applying round filter paper soaked with 1 N NaOH for 30 seconds. The animals were treated with RJ, CH, RJ-CH combination and Na-Hyaluronate (Na-HA) eye drops. We performed a serial evaluation with anterior segment photography on the first, 7th, and 14th days of the experiment. Pathologic examination conducted with hematoxylin and eosin stains and immunostaining for SMA and α4β1 integrin. We evaluated the corneal healing process with a scoring system, which was estimating the degree of corneal edema, the size of the corneal ulcer, and limbal hyperemia. Results: There was no statistically significant difference between groups on the first, 7th, and 14th days concerning the healing scores (p=0.88, p=0.06, p=0.80, respectively). However, there were significantly better scores in the repeated measures of CH (p=0.012) and RJ-CH (p=0.00) groups. The RJ group and Na-HA group did not show a significant difference in repeated measures (p=0.19 and p=0.10, respectively). The α4β1 integrin levels on immunostaining showed a significant difference among groups on the 14th day (p=0.002). Conclusion: We found better corneal healing after treatment with the RJ-CH containing eye drops concerning corneal healing sore and α4β1 integrin staining.
Collapse
|
3
|
MMP12 Inhibits Corneal Neovascularization and Inflammation through Regulation of CCL2. Sci Rep 2019; 9:11579. [PMID: 31399604 PMCID: PMC6689067 DOI: 10.1038/s41598-019-47831-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Following corneal injury, coordinated cellular and protein interactions occur at the wound site to restore tissue homeostasis. Regulation of this response is required to prevent the development of chronic inflammation, abnormal neovascularization, and fibrosis. The chemokine CCL2 and its primary receptor CCR2 are key regulators of the inflammatory and neovascular responses to injury. In this study, we investigated the role of macrophage-associated matrix metalloproteinase 12 (MMP12) in the regulation of CCL2 and CCR2 after corneal wounding. Using two corneal injury models, we examined the temporal and spatial expression of CCL2 and CCR2 in Mmp12−/− and wild-type (WT) mice. Our data showed that MMP12 downregulated CCL2 and CCR2 expression in a manner dependent on the timing and mechanism of injury. We also examined the effect of CCL2 on the injury response in Mmp12−/− and WT corneas. We found that macrophage infiltration and neovascularization following CCL2 blockade was significantly reduced in Mmp12−/− corneas as compared with WT corneas. These findings indicate that MMP12 inhibits corneal inflammation and neovascularization after injury through its regulation of CCL2.
Collapse
|
4
|
Pan T, Tao J, Meng Q, Zhao W, Song B, Qi S. Importance of the free amine groups in acellular scaffold during tissue repairing or regeneration process. J Biomater Appl 2019; 34:25-35. [PMID: 31006316 DOI: 10.1177/0885328219843195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tengfei Pan
- 1 School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Jian Tao
- 2 TianJin Ouerke Medical Technology Co., Ltd, Tianjin, China
| | - Qingqiang Meng
- 1 School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Wei Zhao
- 2 TianJin Ouerke Medical Technology Co., Ltd, Tianjin, China
| | - Bingkui Song
- 1 School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Shuting Qi
- 1 School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
5
|
Mouton AJ, Rivera Gonzalez OJ, Kaminski AR, Moore ET, Lindsey ML. Matrix metalloproteinase-12 as an endogenous resolution promoting factor following myocardial infarction. Pharmacol Res 2018; 137:252-258. [PMID: 30394317 DOI: 10.1016/j.phrs.2018.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell clearance, and stimulate scar formation. Previously identified RPFs include mediators derived from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 (MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic efficacy in the setting of MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Osvaldo J Rivera Gonzalez
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Amanda R Kaminski
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Edwin T Moore
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, 1500 E Woodrow Wilson Ave, Jackson, MS, 39216, United States.
| |
Collapse
|
6
|
Wolf M, Maltseva I, Clay SM, Pan P, Gajjala A, Chan MF. Effects of MMP12 on cell motility and inflammation during corneal epithelial repair. Exp Eye Res 2017; 160:11-20. [PMID: 28442300 DOI: 10.1016/j.exer.2017.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022]
Abstract
Corneal epithelial defects are a common cause of ocular morbidity and can result in corneal scarring if they do not heal properly. Matrix metalloproteinases (MMPs) are extracellular matrix proteinases that regulate multiple aspects of corneal repair. We have previously shown that MMP12 has a protective effect on corneal fibrosis through its regulation of neutrophil and macrophage infiltration and angiogenesis in a chemical injury model involving full thickness damage to the cornea. However, the role of MMP12 in injuries limited to the corneal epithelium is relatively unknown. This study investigates the reparative effects of MMP12 following isolated corneal epithelial injury. Using a corneal epithelial debridement injury model performed on corneas of wild-type (WT) mice, we show that Mmp12 is expressed early following corneal epithelial injury with highest expression levels at 8 h after injury and lower expression levels at 4 and 8 days after injury. We investigated whether MMP12 has an effect on the rate of epithelial repair and cell migration using in vivo and in vitro scratch assays performed on WT and Mmp12-/- mice. We found that loss of MMP12 results in a slower scratch wound repair rate both in vivo and in vitro. We also found that corneas of Mmp12-/- mice have decreased neutrophil infiltration following injury. Loss of MMP12, however, does not affect cell proliferation in the center of the wounds. These data support a role of MMP12 in promoting early repair processes following corneal epithelial injury by enhancing epithelial cell migration and neutrophil infiltration.
Collapse
Affiliation(s)
- Marie Wolf
- Department of Ophthalmology, University of California, San Francisco, CA, United States
| | - Inna Maltseva
- Department of Anatomy, University of California, San Francisco, CA, United States
| | - Selene M Clay
- Department of Ophthalmology, University of California, San Francisco, CA, United States
| | - Peipei Pan
- Department of Ophthalmology, University of California, San Francisco, CA, United States
| | - Abhinay Gajjala
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, CA, United States; Francis I. Proctor Foundation, University of California, San Francisco, CA, United States.
| |
Collapse
|
7
|
Sunil VR, Vayas KN, Fang M, Zarbl H, Massa C, Gow AJ, Cervelli JA, Kipen H, Laumbach RJ, Lioy PJ, Laskin JD, Laskin DL. World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung. Exp Mol Pathol 2016; 102:50-58. [PMID: 27986442 DOI: 10.1016/j.yexmp.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20μg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Mingzhu Fang
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Helmut Zarbl
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Christopher Massa
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Howard Kipen
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Robert J Laumbach
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Paul J Lioy
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| |
Collapse
|
8
|
Lv FJ, Peng Y, Lim FL, Sun Y, Lv M, Zhou L, Wang H, Zheng Z, Cheung KMC, Leung VYL. Matrix metalloproteinase 12 is an indicator of intervertebral disc degeneration co-expressed with fibrotic markers. Osteoarthritis Cartilage 2016; 24:1826-1836. [PMID: 27211863 DOI: 10.1016/j.joca.2016.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recent evidence suggests a role of fibrogenesis in intervertebral disc (IVD) degeneration. We aim to explore if fibrotic genes may serve as IVD degeneration indicators, and if their expression is associated with myofibroblast activity. DESIGN Transcriptional expression of fibrosis markers (COL1A1, COL3A1, FN1, HSP47, MMP12, RASAL1) were analyzed in degenerated (D) and non-degenerated (ND) human nucleus pulposus (NP) and annulus fibrosus (AF) cells, along with traditional (SOX9, ACAN) and newly established degeneration markers (CDH2, KRT19, KRT18, FBLN1, MGP, and COMP). Protein expression was investigated by immunohistochemistry in human IVDs, and in rodent IVDs undergoing natural ageing or puncture-induced degeneration. Co-expression with myofibroblast markers was examined by double staining on human and rat specimens. Disc degeneration severity and extent of fibrosis were determined by histological scoring and picrosirius red staining respectively. RESULTS Human D-NP showed more intensive staining for picrosirius red than ND-NP. Among the genes examined, D-NP showed significantly higher MMP12 expression along with lower KRT19 expression. Protein expression analysis revealed increased MMP12(+) cells in human D-IVD. Histological scoring indicated mild degeneration in the punctured rat discs and discs of ageing mouse. Higher MMP12 positivity was found in peripheral NP and AF of the degenerative rat discs and in NP of the aged mice. In addition, human D-NP and D-AF showed increased α-SMA(+) cells, indicating enhanced myofibroblast activity. MMP12 was found co-expressed with α-SMA, FSP1 and FAP-α in human and rat degenerative IVDs. CONCLUSIONS Our study suggests that in addition to a reduced KRT19 expression, an increased expression of MMP12, a profibrotic mediator, is characteristic of disc degenerative changes. Co-expression study indicates an association of the increased MMP12 positivity with myofibroblast activity in degenerated IVDs. Overall, our findings implicate an impact of MMP12 in disc cell homeostasis. The precise role of MMP12 in IVD degeneration warrants further investigation.
Collapse
Affiliation(s)
- F-J Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| | - Y Peng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - F L Lim
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - Y Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| | - M Lv
- Advanced Technology Research Institution of China Science Institution, Shenzhen, China.
| | - L Zhou
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| | - H Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Gaungdong, China.
| | - Z Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Gaungdong, China.
| | - K M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| | - V Y L Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Zhou H, Zhang W, Bi M, Wu J. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 2016; 38:1003-11. [PMID: 27499172 PMCID: PMC5029963 DOI: 10.3892/ijmm.2016.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022] Open
Abstract
Corneal alkali burns (CAB) are characterized by injury-induced inflammation, fibrosis and neovascularization (NV), and may lead to blindness. This review evaluates the current knowledge of the molecular mechanisms responsible for CAB. The processes of cytokine production, chemotaxis, inflammatory responses, immune response, cell signal transduction, matrix metalloproteinase production and vascular factors in CAB are discussed. Previous evidence indicates that peroxisome proliferator-activated receptor γ (PPAR-γ) agonists suppress immune responses, inflammation, corneal fibrosis and NV. This review also discusses the role of PPAR-γ as an anti-inflammatory, anti-fibrotic and anti-angiogenic agent in the treatment of CAB, as well as the potential role of PPAR-γ in the pathological process of CAB. There have been numerous studies evaluating the clinical profiles of CAB, and the aim of this systematic review was to summarize the evidence regarding the treatment of CAB with PPAR-γ agonists.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wensong Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
10
|
Abd Ghafar N, Ker-Woon C, Hui CK, Mohd Yusof YA, Wan Ngah WZ. Acacia honey accelerates in vitro corneal ulcer wound healing model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:259. [PMID: 27473120 PMCID: PMC4966736 DOI: 10.1186/s12906-016-1248-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/23/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts. METHODS Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively. RESULTS Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses. CONCLUSION These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.
Collapse
Affiliation(s)
- Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur Malaysia
| | - Choy Ker-Woon
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur Malaysia
| | - Yasmin Anum Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur Malaysia
| |
Collapse
|
11
|
Bian F, Pelegrino FSA, Pflugfelder SC, Volpe EA, Li DQ, de Paiva CS. Desiccating Stress-Induced MMP Production and Activity Worsens Wound Healing in Alkali-Burned Corneas. Invest Ophthalmol Vis Sci 2015. [PMID: 26225631 DOI: 10.1167/iovs.15-16631] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the effects of dry eye on ocular surface protease activity and sight threatening corneal complications following ocular surface chemical injury. METHODS C57BL/6 mice were subjected to unilateral alkali burn (AB) with or without concomitant dry eye for 2 or 5 days. Mice were observed daily for appearance of corneal perforation. Whole corneas were harvested and lysed for RNA extraction. Quantitative real-time PCR was performed to measure expression of inflammation cytokines, matrix metalloproteinases (MMP). Matrix metalloproteinase-9 activity, gelatinase activity, and myeloperoxidase (MPO) activity were evaluated in corneal lysates. Presence of infiltrating neutrophils was evaluated by immunohistochemistry and flow cytometry. RESULTS Eyes subjected to the combined model of AB and dry eye (CM) had 20% sterile corneal perforation rate as soon as 1 day after the initial injury, which increased to 35% by 5 days, delayed wound closure and increased corneal opacity. Increased levels of IL-1β, -6, and MMPs-1, -3, -8, -9, and -13, and chemokine (C-X-C motif) ligand 1 (CSCL1) transcripts were found after 2 days in CM compared with AB corneas. Increased MMP-1, -3, -9, and -13 immunoreactivity and gelatinolytic activity were seen in CM corneas compared with AB. Increased neutrophil infiltration and MPO activity was noted in the CM group compared with AB 2 days post injury. CONCLUSIONS Desiccating stress worsens outcome of ocular AB, creating a cytokine and protease storm with greater neutrophil infiltration, increasing the risk of corneal perforation.
Collapse
|
12
|
Lee KJ, Lee JY, Lee SH, Choi TH. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea. BMB Rep 2013; 46:195-200. [PMID: 23615260 PMCID: PMC4133888 DOI: 10.5483/bmbrep.2013.46.4.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To understand the corneal regeneration induced by bevacizumab, we investigated the structure changes of stroma and basement membrane regeneration. A Stick soaked in 0.5 N NaOH onto the mouse cornea and 2.5 mg/ml of bevacizumab was delivered into an alkali-burned cornea (2 μl) by subconjunctival injections at 1 hour and 4 days after injury. At 7 days after injury, basement membrane regeneration was observed by transmission electron microscope. Uneven and thin epithelial basement membrane, light density of hemidesmosomes, and edematous collagen fibril bundles are shown in the alkali-burned cornea. Injured epithelial basement membrane and hemidesmosomes and edematous collagen fibril bundles resulting from alkali-burned mouse cornea was repaired by bevacizumab treatment. This study demonstrates that bevacizumab can play an important role in wound healing in the cornea by accelerating the reestablishment of basement membrane integrity that leads to barriers for scar formation. [BMB Reports 2013; 46(4): 195-200]
Collapse
Affiliation(s)
- Koon-Ja Lee
- Department of Optometry, Eulji University, Seongnam 461-713, Korea.
| | | | | | | |
Collapse
|
13
|
Pattamatta U, Willcox M, Stapleton F, Garrett Q. Bovine Lactoferrin Promotes Corneal Wound Healing and Suppresses IL-1 Expression in Alkali Wounded Mouse Cornea. Curr Eye Res 2013; 38:1110-7. [DOI: 10.3109/02713683.2013.811259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Chan MF, Li J, Bertrand A, Casbon AJ, Lin JH, Maltseva I, Werb Z. Protective effects of matrix metalloproteinase-12 following corneal injury. J Cell Sci 2013; 126:3948-60. [PMID: 23813962 DOI: 10.1242/jcs.128033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Corneal scarring due to injury is a leading cause of blindness worldwide and results from dysregulated inflammation and angiogenesis during wound healing. Here we demonstrate that the extracellular matrix metalloproteinase MMP12 (macrophage metalloelastase) is an important regulator of these repair processes. Chemical injury resulted in higher expression of the fibrotic markers α-smooth muscle actin and type I collagen, and increased levels of angiogenesis in corneas of Mmp12(-/-) mice compared with corneas of wild-type mice. In vivo, we observed altered immune cell dynamics in Mmp12(-/-) corneas by confocal imaging. We determined that the altered dynamics were the result of an altered inflammatory response, with delayed neutrophil infiltration during the first day and excessive macrophage infiltration 6 days later, mediated by altered expression levels of chemokines CXCL1 and CCL2, respectively. Corneal repair returned to normal upon inhibition of these chemokines. Taken together, these data show that MMP12 has a protective effect on corneal fibrosis during wound repair through regulation of immune cell infiltration and angiogenesis.
Collapse
Affiliation(s)
- Matilda F Chan
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 2012; 10:1403-18. [PMID: 23024188 DOI: 10.1158/1541-7786.mcr-12-0307] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neoplastic cells recruit fibroblasts through various growth factors and cytokines. These "cancer-associated fibroblasts" (CAF) actively interact with neoplastic cells and form a myofibroblastic microenvironment that promotes cancer growth and survival and supports malignancy. Several products of their paracrine signaling repertoire have been recognized as tumor growth and metastasis regulators. However, tumor-promoting cell signaling is not the only reason that makes CAFs key components of the "tumor microenvironment," as CAFs affect both the architecture and growth mechanics of the developing tumor. CAFs participate in the remodeling of peritumoral stroma, which is a prerequisite of neoplastic cell invasion, expansion, and metastasis. CAFs are not present peritumorally as individual cells but they act orchestrated to fully deploy a desmoplastic program, characterized by "syncytial" (or collective) configuration and altered cell adhesion properties. Such myofibroblastic cohorts are reminiscent of those encountered in wound-healing processes. The view of "cancer as a wound that does not heal" led to useful comparisons between wound healing and tumorigenesis and expanded our knowledge of the role of CAF cohorts in cancer. In this integrative model of cancer invasion and metastasis, we propose that the CAF-supported microenvironment has a dual tumor-promoting role. Not only does it provide essential signals for cancer cell dedifferentiation, proliferation, and survival but it also facilitates cancer cell local invasion and metastatic phenomena.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Liu Y, Yang J, Zhang P, Liu C, Wang W, Liu W. ZnO quantum dots-embedded collagen/polyanion composite hydrogels with integrated functions of degradation tracking/inhibition and gene delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm13063c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
|