1
|
Zheng B, Cui D, Deng B, Long W, Ye G, Zhang S, Zeng J. Form-deprivation myopia promotes sclera M2-type macrophages polarization in mice. Biochem Biophys Res Commun 2024; 737:150490. [PMID: 39146710 DOI: 10.1016/j.bbrc.2024.150490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE To explore the phenotype of sclera macrophages in form-deprivation (FD) myopia mice and the effects of M2 macrophage in FD myopia development. METHODS C57BL/6 mice were under 2 weeks of unilateral FD treatment. and they were separated into two groups, including an intraperitoneally injected(IP) vehicle group and Panobinostat (LBH589) (10 mg/kg per body weight) treatment group. All biometric parameters were measured before and after treatments, and the type and density of sclera macrophages were identified by immunofluorescence and RT-qPCR. In vitro, we analyzed the M2 macrophage and primary human sclera fibroblast (HSF) co-culture system by using the transcriptome sequencing method. Gene ontology (GO) and KEGG enrichment analyses were used to pinpoint the biological functions and pathways associated with the identified Differentially Expressed Genes (DEGs). The hub genes were investigated using the STRING database and Cytoscape software and were confirmed using RT-qPCR. RESULTS We found that the M2-type sclera macrophage density and expression increased in FD-treated eyes. The results showed that LBH589 inhibited the M2 macrophage polarization, and reduced FDM development. GO and KEGG analyses revealed that the DEGs were predominantly involved in the synthesis and breakdown of the extracellular matrix (ECM), as well as in pathways related to ECM-receptor interaction and the PI3K-Akt signaling pathway. Five hub genes (FN-1, MMP-2, COL1A1, CD44, and IL6) were identified, and RT-qPCR validated the variation in expression levels among these genes. CONCLUSION M2 macrophage polarization occurred in the sclera in FDM mice. Panobinostat-mediated inhibition of M2 macrophage polarization may decrease FDM progression, as M2 macrophages are crucial in controlling ECM remodeling by HSFs.
Collapse
Affiliation(s)
- Bingru Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510060, China; Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen, 518040, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen, 518040, China
| | - Baodi Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Wen Long
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen, 518040, China
| | - Guitong Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen, 518040, China.
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
3
|
Atta G, Tempfer H, Kaser-Eichberger A, Traweger A, Heindl LM, Schroedl F. Is the human sclera a tendon-like tissue? A structural and functional comparison. Ann Anat 2021; 240:151858. [PMID: 34798297 DOI: 10.1016/j.aanat.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Collagen rich connective tissues fulfill a variety of important functions throughout the human body, most of which having to resist mechanical challenges. This review aims to compare structural and functional aspects of tendons and sclera, two tissues with distinct location and function, but with striking similarities regarding their cellular content, their extracellular matrix and their low degree of vascularization. The description of these similarities meant to provide potential novel insight for both the fields of orthopedic research and ophthalmology.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| |
Collapse
|
4
|
Atta G, Schroedl F, Kaser-Eichberger A, Spitzer G, Traweger A, Heindl LM, Tempfer H. Scleraxis expressing scleral cells respond to inflammatory stimulation. Histochem Cell Biol 2021; 156:123-132. [PMID: 33966129 PMCID: PMC8397666 DOI: 10.1007/s00418-021-01985-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
The sclera is an ocular tissue rich of collagenous extracellular matrix, which is built up and maintained by relatively few, still poorly characterized fibroblast-like cells. The aims of this study are to add to the characterization of scleral fibroblasts and to examine the reaction of these fibroblasts to inflammatory stimulation in an ex vivo organotypic model. Scleras of scleraxis-GFP (SCX-GFP) mice were analyzed using immunohistochemistry and qRT-PCR for the expression of the tendon cell associated marker genes scleraxis (SCX), mohawk and tenomodulin. In organotypic tissue culture, explanted scleras of adult scleraxis GFP reporter mice were exposed to 10 ng/ml recombinant interleukin 1-ß (IL1-ß) and IL1-ß in combination with dexamethasone. The tissue was then analyzed by immunofluorescence staining of the inflammation- and fibrosis-associated proteins IL6, COX-2, iNOS, connective tissue growth factor, MMP2, MMP3, and MMP13 as well as for collagen fibre degradation using a Collagen Hybridizing Peptide (CHP) binding assay. The mouse sclera displayed a strong expression of scleraxis promoter-driven GFP, indicating a tendon cell-like phenotype, as well as expression of scleraxis, tenomodulin and mohawk mRNA. Upon IL1-ß stimulation, SCX-GFP+ cells significantly upregulated the expression of all proteins analysed. Moreover, IL1-ß stimulation resulted in significant collagen degradation. Adding the corticosteroid dexamethasone significantly reduced the response to IL1-ß stimulation. Collagen degradation was significantly enhanced in the IL1-ß group. Dexamethasone demonstrated a significant rescue effect. This work provides insights into the characteristics of scleral cells and establishes an ex vivo model of scleral inflammation.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.,Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Gabriel Spitzer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Düsseldorf, Cologne, Germany
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
5
|
Akiyama G, Saraswathy S, Bogarin T, Pan X, Barron E, Wong TT, Kaneko MK, Kato Y, Hong Y, Huang AS. Functional, structural, and molecular identification of lymphatic outflow from subconjunctival blebs. Exp Eye Res 2020; 196:108049. [PMID: 32387381 PMCID: PMC7328765 DOI: 10.1016/j.exer.2020.108049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 01/26/2023]
Abstract
The purpose of this study is to evaluate outflow pathways from subconjunctival blebs and to identify their identity. Post-mortem porcine (n = 20), human (n = 1), and bovine (n = 1) eyes were acquired, and tracers (fluorescein, indocyanine green, or fixable/fluorescent dextrans) were injected into the subconjunctival space to create raised blebs where outflow pathways were visualized qualitatively and quantitatively. Rodents with fluorescent reporter transgenes were imaged for structural comparison. Concurrent optical coherence tomography (OCT) was obtained to study the structural nature of these pathways. Using fixable/fluorescent dextrans, tracers were trapped to the bleb outflow pathway lumen walls for histological visualization and molecular identification using immunofluorescence against lymphatic and blood vessel markers. Bleb outflow pathways could be observed using all tracers in all species. Quantitative analysis showed that the nasal quadrant had more bleb-related outflow pathways compared to the temporal quadrant (nasal: 1.9±0.3 pathways vs. temporal: 0.7±0.2 pathways; p = 0.003). However, not all blebs resulted in an outflow pathway (0-pathways = 18.2%; 1-pathway = 36.4%; 2-pathways = 38.6%; and 3-pathways = 6.8%). Outflow signal was validated as true luminal pathways using optical coherence tomography and histology. Bicuspid valves were identified in the direction of flow in porcine eyes. Immunofluorescence of labeled pathways demonstrated a lymphatic (Prox-1 and podoplanin) but not a blood vessel (CD31) identity. Therefore, subconjunctival bleb outflow occurs in discrete luminal pathways. They are lymphatic as assessed by structural identification of valves and molecular identification of lymphatic markers. Better understanding of lymphatic outflow may lead to improved eye care for glaucoma surgery and ocular drug delivery.
Collapse
Affiliation(s)
- Goichi Akiyama
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Jikei School of Medicine, Tokyo, Japan
| | - Sindhu Saraswathy
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thania Bogarin
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University, Qingdao, China
| | - Ernesto Barron
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tina T Wong
- Singapore National Eye Center and Singapore Research Institute, Singapore, Singapore
| | - Mika K Kaneko
- Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukinari Kato
- Tohoku University Graduate School of Medicine, Miyagi, Japan; New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Young Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex S Huang
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Latta L, Ludwig N, Krammes L, Stachon T, Fries FN, Mukwaya A, Szentmáry N, Seitz B, Wowra B, Kahraman M, Keller A, Meese E, Lagali N, Käsmann-Kellner B. Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. Ocul Surf 2020; 19:115-127. [PMID: 32422284 DOI: 10.1016/j.jtos.2020.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate conjunctival cell microRNA (miRNAs) and mRNA expression in relation to observed phenotype of progressive limbal stem cell deficiency in a cohort of subjects with congenital aniridia with known genetic status. METHODS Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age and sex-matched healthy control subjects. RNA was extracted and miRNA and mRNA analyses were performed using microarrays. Results were related to severity of keratopathy and genetic cause of aniridia. RESULTS Of 2549 miRNAs, 21 were differentially expressed in aniridia relative to controls (fold change ≤ -1.5 or ≥ +1.5). Among these miR-204-5p, an inhibitor of corneal neovascularization, was downregulated 26.8-fold in severely vascularized corneas. At the mRNA level, 539 transcripts were differentially expressed (fold change ≤ -2 or ≥ +2), among these FOSB and FOS were upregulated 17.5 and 9.7-fold respectively, and JUN by 2.9-fold, all being components of the AP-1 transcription factor complex. Pathway analysis revealed enrichment of PI3K-Akt, MAPK, and Ras signaling pathways in aniridia. For several miRNAs and transcripts regulating retinoic acid metabolism, expression levels correlated with keratopathy severity and genetic status. CONCLUSION Strong dysregulation of key factors at the miRNA and mRNA level suggests that the conjunctiva in aniridia is abnormally maintained in a pro-angiogenic and proliferative state, and these changes are expressed in a PAX6 mutation-dependent manner. Additionally, retinoic acid metabolism is disrupted in severe, but not mild forms of the limbal stem cell deficiency in aniridia.
Collapse
Affiliation(s)
- L Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - N Ludwig
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany; Center for Human and Molecular Biology, Saarland University, Homburg, Saar, Germany
| | - L Krammes
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
| | - T Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - F N Fries
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - A Mukwaya
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - N Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - B Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - B Wowra
- Chair and Clinical Department of Ophthalmology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| | - M Kahraman
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - A Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - E Meese
- Department of Human Genetics, Saarland University, Homburg, Saar, Germany
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| | - B Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| |
Collapse
|
7
|
Atta G, Tempfer H, Kaser-Eichberger A, Guo Y, Schroedl F, Traweger A, Heindl LM. The lymphangiogenic and hemangiogenic privilege of the human sclera. Ann Anat 2020; 230:151485. [PMID: 32120002 DOI: 10.1016/j.aanat.2020.151485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Most organs of the human body are supplied with a dense network of blood and lymphatic vessels. However, some tissues are either hypovascular or completely devoid of vessels for proper function, such as the ocular tissues sclera and cornea, cartilage and tendons. Since many pathological conditions are affecting the human sclera, this review is focussing on the lymphangiogenic and hemangiogenic privilege in the human sclera. METHODS This article gives an overview of the current literature based on a PubMed search as well as observations and experience from clinical practice. RESULTS The healthy human sclera is the outer covering layer of the eye globe consisting mainly of collagenous extracellular matrix and fibroblasts. Physiologically, the sclera shows only a superficial network of blood vessels and a lack of lymphatic vessels. This vascular privilege is actively regulated by balancing anti- and proangiogenic factors expressed by cells within the sclera. In pathological situations, such as open globe injuries or ciliary body melanomas with extraocular extension, lymphatic vessels can secondarily invade the sclera and the inner eye. This mechanism most likely is important for tumor cell metastasis, wound healing, immunologic defense against intruding microorganism, and autoimmune reactions against intraocular antigens. CONCLUSIONS The human sclera is characterized by a tightly regulated vascular network that can be compromised in pathological situations, such as injuries or intraocular tumors affecting healing outcomes Therefore, the molecular and cellular mechanisms underlying wound healing following surgical interventions deserve further attention, in order to devise more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Yongwei Guo
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Falk Schroedl
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany.
| |
Collapse
|