1
|
Zhao H, Cai Y, Pan J, Chen Q. Role of MicroRNA in linking diabetic retinal neurodegeneration and vascular degeneration. Front Endocrinol (Lausanne) 2024; 15:1412138. [PMID: 39027475 PMCID: PMC11254631 DOI: 10.3389/fendo.2024.1412138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Haiyan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | | | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Ke XL, Shi JG, Fan LZ. Serum miR-26a level is decreased in cataract patients with glaucoma and related to visual quality. Clin Exp Optom 2024:1-10. [PMID: 38806402 DOI: 10.1080/08164622.2024.2350596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
CLINICAL RELEVANCE microRNAs have been found to be involved in the progression of a variety of ocular diseases. BACKGROUND Cataract and glaucoma often coexist, and combined surgery is a common treatment. The aim of this study is to analyse the correlation between miR-26a and visual quality in cataract patients with glaucoma. METHODS Seventy patients with cataract and glaucoma and 70 healthy volunteers were enrolled and received phacoemulsification and trabeculectomy. The patients were divided into low and high miR-26a expression groups according to miR-26a mean expression. The objective scattering index, strehl ratio, and modulated transfer function cut-off were analysed by optical quality analysis system II. The changes of miR-26a, objective scattering index, strehl ratio, modulated transfer function cut-off, and the correlation between the indicators were analysed. The downstream genes of miR-26a were analysed by Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes functional enrichment. RESULTS There were significant differences between patients and controls in lipid biomarker levels and visual indicators. miR-26a was decreased in the patient group. Strehl ratio and modulated transfer function cut-off in the miR-26a low-expression group were lower than in high-expression group, while mean defect of the visual field and objective scattering index were higher than in high-expression group. The miR-26a expression was negatively correlated with the severity of disease and objective scattering index, and positively correlated with strehl ratio and modulated transfer function cut-off. After surgery, miR-26a, strehl ratio, and modulated transfer function cut-off were increased, and objective scattering index was decreased. The downstream genes of miR-26a were related to several biological processes and signalling pathways. CONCLUSION In cataract patients with glaucoma, miR-26a expression was lower than matched controls and increased following combined cataract removal and trabeculectomy.
Collapse
Affiliation(s)
- Xian-Lin Ke
- Specialized Department of Glaucoma and Cataract, Enshi Huiyi Ophthalmology Hospital, Enshi, China
| | - Ji-Guang Shi
- Ophthalmology Department, Enshi Huiyi Ophthalmology Hospital, Enshi, China
| | - Ling-Zhi Fan
- Specialized Department of Glaucoma and Cataract, Enshi Huiyi Ophthalmology Hospital, Enshi, China
| |
Collapse
|
3
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
4
|
Bian J, Ge W, Jiang Z. miR-26a-5p Attenuates Oxidative Stress and Inflammation in Diabetic Retinopathy through the USP14/NF- κB Signaling Pathway. J Ophthalmol 2024; 2024:1470898. [PMID: 38282961 PMCID: PMC10817816 DOI: 10.1155/2024/1470898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose Diabetic retinopathy (DR) is an ocular disease caused by diabetes and may lead to vision impairment and even blindness. Oxidative stress and inflammation are two key pathogenic factors of DR. Recently, regulatory roles of different microRNAs (miRNAs) in DR have been widely verified. miR-26a-5p has been confirmed to be a potential biomarker of DR. Nevertheless, the specific functions of miR-26a-5p in DR are still unclear. Methods Primary cultured mouse retinal Müller cells in exposure to high glucose (HG) were used to establish an in vitro DR model. Müller cells were identified via morphology observation under phase contrast microscope and fluorescence staining for glutamine synthetase. The in vivo animal models for DR were constructed using streptozotocin-induced diabetic C57BL/6 mice. Western blotting was performed to quantify cytochrome c protein level in the cytoplasm and mitochondria of Müller cells and to measure protein levels of glial fibrillary acidic protein (GFAP), ubiquitin-specific peptidase 14 (USP14), as well as factors associated with NF-κB signaling (p-IκBα, IκBα, p-p65, and p65) in Müller cells or murine retinal tissues. ROS production was detected by CM-H2DCFDA staining, and the concentration of oxidative stress markers (MDA, SOD, and CAT) was estimated by using corresponding commercial kits. Quantification of mRNA expression was conducted by RT-qPCR analysis. The concentration of proinflammatory factors (TNF-α, IL-1β, and IL-6) was evaluated by ELISA. Hematoxylin-eosin staining for murine retinal tissues was performed for histopathological analysis. Immunofluorescence staining was conducted to determine NF-κB p65 nuclear translocation in Müller cells. Furthermore, the interaction between miR-26a-5p and USP14 was verified via the luciferase reporter assays. Results HG stimulation contributed to Müller cell dysfunction by inducing inflammation, oxidative injury, and mitochondrial damage to Müller cells. miR-26a-5p was downregulated in Müller cells under HG condition, and overexpression of miR-26a-5p relieved HG-induced Müller cell dysfunction. Moreover, miR-26a-5p targeted USP14 and inversely regulated USP14 expression. Additionally, HG-evoked activation of NF-κB signaling was suppressed by USP14 knockdown or miR-26a-5p upregulation. Rescue assays showed that the protective impact of miR-26a-5p upregulation against HG-induced Müller cell dysfunction was reversed by USP14 overexpression. Furthermore, USP14 upregulation and activation of NF-κB signaling in the retinas of DR mice were detected in animal experiments. Injection with miR-26a-5p agomir improved retinal histopathological injury and weakened the concentration of proinflammatory cytokines and oxidative stress markers in the retinas of DR mice. Conclusion miR-26a-5p inhibits oxidative stress and inflammation in DR progression by targeting USP14 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Bian
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Weizhong Ge
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Zhengmei Jiang
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| |
Collapse
|
5
|
A 3-miRNA Risk Scoring Signature in Early Diabetic Retinopathy. J Clin Med 2023; 12:jcm12051777. [PMID: 36902565 PMCID: PMC10003264 DOI: 10.3390/jcm12051777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE The aim of our study was to investigate a comprehensive profile of streptozotocin (STZ)-induced early diabetic retinopathy (DR) mice to identify a risk scoring signature based on micorRNAs (miRNAs) for early DR diagnosis. METHODS RNA sequencing was performed to obtain the gene expression profile of retinal pigment epithelium (RPE) in early STZ-induced mice. Differentially expressed genes (DEGs) were determined with log2|fold change (FC)| > 1 and p value < 0.05. Functional analysis was carried out based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the protein-protein interaction (PPI) network. We predicted the potential miRNAs via online tools and ROC curves were then conducted. Three potential miRNAs with AUC > 0.7 were explored via public datasets and a formula was further established to evaluate DR severity. RESULTS In total, 298 DEGs (200 up-regulating and 98 down-regulating) were obtained through RNA sequencing. Hsa-miR-26a-5p, hsa-miR-129-2-3p and hsa-miR-217 were three predicted miRNAs with AUC > 0.7, suggesting their potential to distinguish healthy controls from early DR. The formula of DR severity score = 19.257 - 0.004 × hsa-miR-217 + 5.09 × 10-5 × hsa-miR-26a-5p - 0.003 × hsa-miR-129-2-3p was established based on regression analysis. CONCLUSIONS In the present study, we investigated the candidate genes and molecular mechanisms based on RPE sequencing in early DR mice models. Hsa-miR-26a-5p, hsa-miR-129-2-3p and hsa-miR-217 could work as biomarkers for early DR diagnosis and DR severity prediction, which was beneficial for DR early intervention and treatment.
Collapse
|
6
|
You J, Wu Q, Xu G, Gu C, Allen E, Zhu T, Chen L. Exosomal MicroRNA Profiling in Vitreous Humor Derived From Pathological Myopia Patients. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 36648415 PMCID: PMC9851280 DOI: 10.1167/iovs.64.1.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose Pathologic myopia (PM) is one of the primary causes of blindness. This study aims to explore the possible relations between the composition of microRNA in vitreous exosomes of patients with PM and the progression of myopic maculopathy. Methods Vitreous humor (VH) samples were collected from patients undergoing retinal surgery. A total of 15 and 12 VH samples were obtained from patients with PM and control, respectively. The PM group was divided into PM-L (G2) and PM-H groups (G3 and G4) in order to explore differentially expressed microRNAs (DEMs) that account for the relatively poor prognosis in G3 and G4 myopic maculopathy. A Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to find the persistently altered key microRNAs in myopic maculopathy progression. The Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were used. Results High purity exosomes were extracted from the vitreous fluid of patients with PM and control. The top five downregulated DEMs of PM-H versus PM-L can reflect the tendency of deterioration of PM-H myopic maculopathy. MiR-143-3p and miR-145-5p, which were found in WGCNA, may participate in the development of myopic maculopathy. These microRNAs all relate to the insulin resistance pathway. Conclusions This is the first study to explore the relations between the progression of myopic maculopathy and vitreous exosomal microRNAs. Vitreous exosomal miR-143-3p and miR-145-5p can be considered biomarkers for patients with PM, and the vitreous exosomal DEM associated with PM-H may represent alarming signals of myopic maculopathy deterioration.
Collapse
Affiliation(s)
- Jie You
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Qiao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,School of Life Sciences, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Chenyang Gu
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Tianrui Zhu
- University of Washington, Seattle, Washington, United States
| | - Ling Chen
- Department of Ophthalmology & Vision Science, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wu S, Mo X. Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. Int J Mol Sci 2023; 24:ijms24021447. [PMID: 36674963 PMCID: PMC9865663 DOI: 10.3390/ijms24021447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular compilation of diabetes, is the leading cause of vision loss and blindness worldwide. Recent studies indicate that retinal neuron impairment occurs before any noticeable vascular changes in DR, and retinal ganglion cell (RGC) degeneration is one of the earliest signs. Axons of RGCs have little capacity to regenerate after injury, clinically leading the visual functional defects to become irreversible. In the past two decades, tremendous progress has been achieved to enable RGC axon regeneration in animal models of optic nerve injury, which holds promise for neural repair and visual restoration in DR. This review summarizes these advances and discusses the potential and challenges for developing optic nerve regeneration strategies treating DR.
Collapse
Affiliation(s)
| | - Xiaofen Mo
- Correspondence: ; Tel.: +86-021-64377134
| |
Collapse
|
8
|
Sun F, Sun Y, Zhu J, Wang X, Ji C, Zhang J, Chen S, Yu Y, Xu W, Qian H. Mesenchymal stem cells-derived small extracellular vesicles alleviate diabetic retinopathy by delivering NEDD4. Stem Cell Res Ther 2022; 13:293. [PMID: 35841055 PMCID: PMC9284871 DOI: 10.1186/s13287-022-02983-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background As a leading cause of vision decline and severe blindness in adults, diabetic retinopathy (DR) is characterized by the aggravation of retinal oxidative stress and apoptosis in the early stage. Emerging studies reveal that mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) treatment represents a promising cell-free approach to alleviate ocular disorders. However, the repairing effects of MSC-sEV in DR remain largely unclear. This study aimed at exploring the role and the underlying mechanism of MSC-sEV in hyperglycemia-induced retinal degeneration. Methods In vivo, we used streptozotocin (STZ) to establish diabetic rat model, followed by the intravitreal injection of MSC-sEV to determine the curative effect. The cell viability and antioxidant capacity of retinal pigment epithelium (RPE) cells stimulated with high-glucose (HG) medium after MSC-sEV treatment were analyzed in vitro. By detecting the response of cell signaling pathways in MSC-sEV-treated RPE cells, we explored the functional mechanism of MSC-sEV. Mass spectrometry was performed to reveal the bioactive protein which mediated the role of MSC-sEV. Results The intravitreal injection of MSC-sEV elicited antioxidant effects and counteracted retinal apoptosis in STZ-induced DR rat model. MSC-sEV treatment also reduced the oxidative level and enhanced the proliferation ability of RPE cells cultured in HG conditions in vitro. Further studies showed that the increased level of phosphatase and tensin homolog (PTEN) inhibited AKT phosphorylation and nuclear factor erythroid 2-related factor 2 (NRF2) expression in RPE cells stimulated with HG medium, which could be reversed by MSC-sEV intervention. Through mass spectrometry, we illustrated that MSC-sEV-delivered neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) could cause PTEN ubiquitination and degradation, activate AKT signaling and upregulate NRF2 level to prevent DR progress. Moreover, NEDD4 knockdown impaired MSC-sEV-mediated retinal therapeutic effects. Conclusions Our findings indicated that MSC-sEV ameliorated DR through NEDD4-induced regulation on PTEN/AKT/NRF2 signaling pathway, thus revealing the efficiency and mechanism of MSC-sEV-based retinal protection and providing new insights into the treatment of DR. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02983-0.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Hao Y, Yang L, Liu Y, Ye Y, Wang J, Yu C, Yan H, Xing Y, Jia Z, Hu C, Zuo H, Li Y. mmu-miR-145a-5p Accelerates Diabetic Wound Healing by Promoting Macrophage Polarization Toward the M2 Phenotype. Front Med (Lausanne) 2022; 8:775523. [PMID: 34993211 PMCID: PMC8724056 DOI: 10.3389/fmed.2021.775523] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic wounds are recalcitrant to healing. One of the important characteristics of diabetic trauma is impaired macrophage polarization with an excessive inflammatory response. Many studies have described the important regulatory roles of microRNAs (miRNAs) in macrophage differentiation and polarization. However, the differentially expressed miRNAs involved in wound healing and their effects on diabetic wounds remain to be further explored. In this study, we first identified differentially expressed miRNAs in the inflammation, tissue formation and reconstruction phases in wound healing using Illumina sequencing and RT-qPCR techniques. Thereafter, the expression of musculus (mmu)-miR-145a-5p (“miR-145a-5p” for short) in excisional wounds of diabetic mice was identified. Finally, expression of miR-145a-5p was measured to determine its effects on macrophage polarization in murine RAW 264.7 macrophage cells and wound healing in diabetic mice. We identified differentially expressed miRNAs at different stages of wound healing, ten of which were further confirmed by RT-qPCR. Expression of miR-145a-5p in diabetic wounds was downregulated during the tissue formation stage. Furthermore, we observed that miR-145a-5p blocked M1 macrophage polarization while promoting M2 phenotype activation in vitro. Administration of miR-145a-5p mimics during initiation of the repair phase significantly accelerated wound healing in db/db diabetic mice. In conclusion, our findings suggest that rectifying macrophage function using miR-145a-5p overexpression accelerates diabetic chronic wound healing.
Collapse
Affiliation(s)
- Yanhui Hao
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Leilei Yang
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Ying Liu
- Department of Basic Medicine, Chengde Medical College, Chengde, China
| | - Yumeng Ye
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiayu Wang
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Chao Yu
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Hua Yan
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Xing
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhaoqian Jia
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Cuicui Hu
- Academy of Life Sciences, Anhui Medical University, Hefei, China
| | - Hongyan Zuo
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yang Li
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China.,Academy of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|