1
|
Lin L, Liang L, Xu L, Zheng Y, Guo H, Zhang B, Zhao YE. Heat stress regulates the migration and proliferation of lens epithelial cells through ferroptosis and NCOA4-FTH1 interaction. Exp Eye Res 2025; 251:110182. [PMID: 39586514 DOI: 10.1016/j.exer.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Posterior capsule opacification (PCO) due to the proliferation and migration of lens epithelial cells (LECs) is the main complication after surgery. Heat stress has demonstrated impressive results in halting cell proliferation and migration, while also facilitating cell death. This study aimed to investigate the role and mechanism of ferroptosis in the proliferation and migration of LECs under heat stress. CCK-8 assays, scratch assays, and transcriptome analysis were used to evaluate the impact of temperature on human lens epithelial cells (HLECs) and explore the potential mechanisms. The role of ferroptosis in the proliferation of HLECs induced by heat was investigated using the ferroptosis inhibitor Fer-1 and siRNA-mediated NCOA4 protein interference. Fluorescence staining and Western blot experiments were used to detect the expression of Fe2+, reactive oxygen species (ROS), and ferroptosis-related proteins NCOA4, FTH1, and SLC3A2. The results of CCK-8 assays, scratch assays, and transcriptome analysis demonstrated significant thermal effects on HLEC behavior. After heat treatment, there were significant changes in the fluorescence expression of Fe2+ and ROS in the HLECs and lens explant. In addition, the expression of NCOA4, FTH1, and SLC3A2 also changed significantly. Using Fer-1 or NCOA4 siRNA-mediated interference restored cell viability decreased by thermal stress. Furthermore, interference with NCOA4 protein effectively restored the expression of Fe2+, ROS, and FTH1. In conclusion, heat stress has a significant effect on LECs by regulating ferroptosis and the interaction between NCOA4 and FTH1 proteins play an important role.
Collapse
Affiliation(s)
- Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hanwen Guo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bei Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Zhou X, Chen Y, Kang X, Zhao A, Yang S. Transcriptome and Proteome Analyses Revealed Differences in JEV-Infected PK-15 Cells in Response to Ferroptosis Agonists and Antagonists. Animals (Basel) 2024; 14:3516. [PMID: 39682481 DOI: 10.3390/ani14233516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Epidemic encephalitis B caused by Japanese encephalitis virus (JEV) is a common zoonotic disease that poses threats to both pigs and humans. The cellular defense mechanism is closely tied to the body's resistance to viral invasion. Regulated cell death, such as ferroptosis, is a strategy employed by host cells to defend against viral invasions. To understand the effect of ferroptosis on the proliferation of JEV, experimentally infected PK15 cells were treated with a ferroptosis agonist or antagonist. The results indicated that the ferroptosis agonist can suppress JEV proliferation, whereas the ferroptosis antagonist promotes JEV proliferation. Functional enrichment analysis showed that the ferroptosis agonist Erastin and antagonist SP600125 could affect JEV proliferation through the TNF, IL-17, Toll-like receptor, PI3K-AKT, and chemokine signaling pathways, as well as ECM-receptor interactions. Combined transcriptome and proteome analyses revealed 31 important genes, which are significantly associated with ferroptosis and the inflammatory response. Our results provide a better understanding of the molecular mechanisms through which ferroptosis affects the proliferation of JEV.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Yiwei Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Xinyao Kang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| |
Collapse
|
3
|
Gawargi FI, Mishra PK. MMP9 drives ferroptosis by regulating GPX4 and iron signaling. iScience 2024; 27:110622. [PMID: 39252956 PMCID: PMC11382059 DOI: 10.1016/j.isci.2024.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Ferroptosis, defined by the suppression of glutathione peroxidase-4 (GPX4) and iron overload, is a distinctive form of regulated cell death. Our in-depth research identifies matrix metalloproteinase-9 (MMP9) as a critical modulator of ferroptosis through its influence on GPX4 and iron homeostasis. Employing an innovative MMP9 construct without collagenase activity, we reveal that active MMP9 interacts with GPX4 and glutathione reductase, reducing GPX4 expression and activity. Furthermore, MMP9 suppresses key transcription factors (SP1, CREB1, NRF2, FOXO3, and ATF4), alongside GPX1 and ferroptosis suppressor protein-1 (FSP1), thereby disrupting the cellular redox balance. MMP9 regulates iron metabolism by modulating iron import, storage, and export via a network of protein interactions. LC-MS/MS has identified 83 proteins that interact with MMP9 at subcellular levels, implicating them in ferroptosis regulation. Integrated pathway analysis (IPA) highlights MMP9's extensive influence on ferroptosis pathways, underscoring its potential as a therapeutic target in conditions with altered redox homeostasis and iron metabolism.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
5
|
Jia D, Zhang M, Li M, Gong W, Huang W, Wang R, Chen Y, Yin Q, Wu J, Jin Z, Wang J, Liu Y, Liang C, Ji Y. NCOA4-mediated ferritinophagy participates in cadmium-triggered ferroptosis in spermatogonia. Toxicology 2024; 505:153831. [PMID: 38768701 DOI: 10.1016/j.tox.2024.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 μM, 10 μM, or 20 μM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.
Collapse
Affiliation(s)
- Didi Jia
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Mingming Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mengyuan Li
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wei Huang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yihang Chen
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jie Wu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxiu Jin
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Juan Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Chunmei Liang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics / Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Wei D, Qu C, Zhao N, Li S, Pu N, Song Z, Tao Y. The significance of precisely regulating heme oxygenase-1 expression: Another avenue for treating age-related ocular disease? Ageing Res Rev 2024; 97:102308. [PMID: 38615894 DOI: 10.1016/j.arr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.
Collapse
Affiliation(s)
- Dong Wei
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Chengkang Qu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, China
| | - Ning Pu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Zongming Song
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
7
|
Gawargi FI, Mishra PK. Regulation of cardiac ferroptosis in diabetic human heart failure: uncovering molecular pathways and key targets. Cell Death Discov 2024; 10:268. [PMID: 38824159 PMCID: PMC11144210 DOI: 10.1038/s41420-024-02044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Diabetes significantly increases the risk of heart failure by inducing myocardial cell death, potentially through ferroptosis-an iron-dependent, non-apoptotic cell death pathway characterized by lipid peroxidation. The role of cardiac ferroptosis in human heart failure, however, remains poorly understood. In this study, we compared cardiac ferroptosis in humans with diabetic heart failure to that in healthy controls. Our findings reveal that diabetes not only intensifies myocardial cell death but also upregulates markers of ferroptosis in human hearts. This is linked to decreased transcription and activity of glutathione peroxidase-4 (GPX4), influenced by reduced levels of activating transcription factor-4 (ATF4) and nuclear factor erythroid-2-related factor-2 (NRF2), and downregulation of glutathione reductase (GSR). Additionally, diabetic hearts showed an increased labile iron pool due to enhanced heme metabolism by heme oxygenase-1 (HMOX1), elevated iron import via divalent metal transporter-1 (DMT1), reduced iron storage through ferritin light chain (FLC), and decreased iron export via ferroportin-1 (FPN1). The reduction in FPN1 levels likely results from decreased stabilization by amyloid precursor protein (APP) and diminished NRF2-mediated transcription. Furthermore, diabetes upregulates lysophosphatidylcholine acyltransferase-3 (LPCAT3), facilitating the integration of polyunsaturated fatty acids (PUFA) into phospholipid membranes, and downregulates acyl-CoA thioesterase-1 (ACOT1), which further promotes ferroptosis. LC-MS/MS analysis identified several novel proteins implicated in diabetes-induced cardiac ferroptosis, including upregulated ceruloplasmin, which enhances iron metabolism, and cytochrome b-245 heavy chain (CYBB), a key component of NADPH oxidase that aids in the production of reactive oxygen species (ROS), along with downregulated voltage-dependent anion-selective channel protein-2 (VDAC2), essential for maintaining mitochondrial membrane potential. In conclusion, our study not only confirms the presence and potentially predominant role of cardiac ferroptosis in humans with diabetic heart failure but also elucidates its molecular mechanisms, offering potential therapeutic targets to mitigate heart failure complications in diabetic patients.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Fan C, Wang C, Wang Y, Jiang J. Transcriptome exploration of ferroptosis-related genes in TGFβ- induced lens epithelial to mesenchymal transition during posterior capsular opacification development. BMC Genomics 2024; 25:352. [PMID: 38594623 PMCID: PMC11003017 DOI: 10.1186/s12864-024-10244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Posterior capsular opacification (PCO) is the main reason affecting the long-term postoperative result of cataract patient, and it is well accepted that fibrotic PCO is driven by transforming growth factor beta (TGFβ) signaling. Ferroptosis, closely related to various ocular diseases, but has not been explored in PCO. METHODS RNA sequencing (RNA-seq) was performed on both TGF-β2 treated and untreated primary lens epithelial cells (pLECs). Differentially expressed genes (DEGs) associated with ferroptosis were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to investigate their biological function. Additionally, protein-to-protein interactions among selected ferroptosis-related genes by PPI network and the top 10 genes with the highest score (MCC algorithm) were selected as the hub genes. The top 20 genes with significant fold change values were validated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our analysis revealed 1253 DEGs between TGF-β2 treated and untreated pLECs, uncovering 38 ferroptosis-related genes between two groups. Among these 38 ferroptosis-related genes,the most prominent GO enrichment analysis process involved in the response to oxidative stress (BPs), apical part of cell (CCs),antioxidant activity (MFs). KEGG were mainly concentrated in fluid shear stress and atherosclerosis, IL-17 and TNF signaling pathways, and validation of top 20 genes with significant fold change value were consistent with RNA-seq. CONCLUSIONS Our RNA-Seq data identified 38 ferroptosis-related genes in TGF-β2 treated and untreated pLECs, which is the first observation of ferroptosis related genes in primary human lens epithelial cells under TGF-β2 stimulation.
Collapse
Affiliation(s)
- Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Ahmad B, Tian C, Tang JX, Dumbuya JS, Li W, Lu J. Anticancer activities of natural abietic acid. Front Pharmacol 2024; 15:1392203. [PMID: 38633616 PMCID: PMC11021724 DOI: 10.3389/fphar.2024.1392203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Cancer is the main cause of death in the world. There are several therapies that are in practice for cancer cure including radiotherapy, chemotherapy, and surgery. Among the chemotherapies, natural products are considered comparable safe, easily available and cost effective. Approximately 60% of cancer approved FDA drugs are natural products including vinblastine, doxorubicin, and paclitaxel. These natural products have complex structures due to which they work against cancer through different molecular pathways, STAT3, NF-kB, PI3K/AKT/mTOR, cell cycle arrest, mitochondrial dependent pathway, extrinsic apoptosis pathway, autophagy, mitophagy and ferroptosis. AA is a natural abietane diterpenoid compound from Pinus palustris and Pimenta racemose var. grissea with different pharmacological activities including anti-inflammatory, anti-convulsant, anti-obesity and anti-allergic. Recently it has been reported with its anticancer activities through different molecular mechanisms including NF-kB, PI3K/AKT, call cycle arrest at G0/G1 phase, mitochondrial dependent pathway, extrinsic apoptosis pathway, AMPK pathway and ferroptosis pathways. The literature survey reveals that there is no review on AA anticancer molecular mechanisms, therefore in current review, we summarize the anticancer molecular mechanisms of AA.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Li X, Xu H, Zhao X, Li Y, Lv S, Zhou W, Wang J, Sun Z, Li Y, Guo C. Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling. Part Fibre Toxicol 2024; 21:17. [PMID: 38561847 PMCID: PMC10983742 DOI: 10.1186/s12989-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
11
|
Eladwy RA, Alsherbiny MA, Chang D, Fares M, Li CG, Bhuyan DJ. The postbiotic sodium butyrate synergizes the antiproliferative effects of dexamethasone against the AGS gastric adenocarcinoma cells. Front Nutr 2024; 11:1372982. [PMID: 38533461 PMCID: PMC10963608 DOI: 10.3389/fnut.2024.1372982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 μg/mL Dex + 2,400 μg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 μg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.
Collapse
Affiliation(s)
- Radwa A Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Department of Pharmacology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|