1
|
Smilnak GJ, Lee Y, Chattopadhyay A, Wyss AB, White JD, Sikdar S, Jin J, Grant AJ, Motsinger-Reif AA, Li JL, Lee M, Yu B, London SJ. Plasma protein signatures of adult asthma. Allergy 2024; 79:643-655. [PMID: 38263798 PMCID: PMC10994188 DOI: 10.1111/all.16000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. METHODS Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)). RESULTS Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. CONCLUSION This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.
Collapse
Affiliation(s)
- Gordon J. Smilnak
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Yura Lee
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Abhijnan Chattopadhyay
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Annah B. Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- GenOmics and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA
| | | | - Andrew J. Grant
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Molecular mechanisms of An-Chuan Granule for the treatment of asthma based on a network pharmacology approach and experimental validation. Biosci Rep 2021; 41:228000. [PMID: 33645621 PMCID: PMC7990088 DOI: 10.1042/bsr20204247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
An-Chuan Granule (ACG), a traditional Chinese medicine (TCM) formula, is an effective treatment for asthma but its pharmacological mechanism remains poorly understood. In the present study, network pharmacology was applied to explore the potential mechanism of ACG in the treatment of asthma. The tumor necrosis factor (TNF), Toll-like receptor (TLR), and Th17 cell differentiation-related, nucleotide-binding oligomerization domain (NOD)-like receptor, and NF-kappaB pathways were identified as the most significant signaling pathways involved in the therapeutic effect of ACG on asthma. A mouse asthma model was established using ovalbumin (OVA) to verify the effect of ACG and the underlying mechanism. The results showed that ACG treatment not only attenuated the clinical symptoms, but also reduced inflammatory cell infiltration, mucus secretion and MUC5AC production in lung tissue of asthmatic mice. In addition, ACG treatment notably decreased the inflammatory cell numbers in bronchoalveolar lavage fluid (BALF) and the levels of pro-inflammatory cytokines (including IL-6, IL-17, IL-23, TNF-alpha, IL-1beta and TGF-beta) in lung tissue of asthmatic mice. In addition, ACG treatment remarkably down-regulated the expression of TLR4, p-P65, NLRP3, Caspase-1 and adenosquamous carcinoma (ASC) in lung tissue. Further, ACG treatment decreased the expression of receptor-related orphan receptor (RORγt) in lung tissue but increased that of Forkhead box (Foxp3). In conclusion, the above results demonstrate that ACG alleviates the severity of asthma in a ´multi-compound and multi-target’ manner, which provides a basis for better understanding of the application of ACG in the treatment of asthma.
Collapse
|
3
|
Ciprandi G, Schiavetti I, Ricciardolo FLM. The impact of aging on outpatients with asthma in a real-world setting. Respir Med 2018; 136:58-64. [PMID: 29501247 DOI: 10.1016/j.rmed.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is characterized by airway inflammation and bronchial hyperreactivity. It is conceived that aging may affect asthma characteristics, but this issue is still not completely clarified in clinical practice. OBJECTIVE The present study investigated whether aging may affect some clinical and functional factors in outpatients with asthma visited in a real-world setting, such as clinical practice. METHODS Globally, 391 outpatients (163 males, median age 47 years) with asthma were consecutively evaluated. The following parameters were assessed: history, including, smoking, comorbidity, and inhaled corticosteroids (ICS) use, physical examination, body mass index (BMI), lung function, level of asthma control, asthma control test (ACT), and fractional exhaled NO (FeNO). RESULTS The elderly with asthma had: more frequently not controlled asthma, higher BMI, higher ICS dosages, more impaired lung function, including plethysmographic parameters, than adult asthmatics (p < 0.001 for all, but p = 0.002 for RV and p = 0.008 for FRC). Elderly asthmatics were also less frequently allergic (p < 0.001) and had less rhinitis comorbidity (p < 0.001) and less nasal symptoms (p < 0.05) than younger asthmatics. CONCLUSIONS The present study conducted in a real-world setting shows that aging significantly affects asthma, mainly concerning asthma control, lung function, and steroid-sensitivity.
Collapse
Affiliation(s)
| | | | - Fabio L M Ricciardolo
- A.O.U. San Luigi Hospital, Orbassano (Torino), Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|