1
|
Sunata K, Miyata J, Kawashima Y, Konno R, Ishikawa M, Hasegawa Y, Onozato R, Otsu Y, Matsuyama E, Sasaki H, Okuzumi S, Mochimaru T, Masaki K, Kabata H, Chubachi S, Arita M, Fukunaga K. Inflammatory profile of eosinophils in asthma-COPD overlap and eosinophilic COPD: a multi-omics study. Front Immunol 2024; 15:1445769. [PMID: 39439801 PMCID: PMC11493663 DOI: 10.3389/fimmu.2024.1445769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Elevated blood eosinophil levels in patients with chronic obstructive pulmonary disease (COPD) with or without asthma are linked to increased exacerbations and the effectiveness of inhaled corticosteroid treatment. This study aimed to delineate the inflammatory cellular properties of eosinophils in patients with asthma-COPD overlap (ACO) and eosinophilic COPD (eCOPD). Methods Eosinophils were isolated from the peripheral blood of healthy volunteers, patients with non-eCOPD, and those with ACO/eCOPD. Multi-omics analysis involving transcriptomics, proteomics, and lipidomics was performed, followed by bioinformatic data analyses. In vitro experiments using eosinophils from healthy volunteers were conducted to investigate the molecular mechanisms underlying cellular alterations in eosinophils. Results Proteomics and transcriptomics analyses revealed cellular characteristics in overall COPD patients represented by viral infection (elevated expression of sterol regulatory element-binding protein-1) and inflammatory responses (elevated levels of IL1 receptor-like 1, Fc epsilon receptor Ig, and transmembrane protein 176B). Cholesterol metabolism enzymes were identified as ACO/eCOPD-related factors. Gene Ontology and pathway enrichment analyses demonstrated the key roles of antiviral responses, cholesterol metabolism, and inflammatory molecules-related signaling pathways in ACO/eCOPD. Lipidomics showed the impaired synthesis of cyclooxygenase-derived mediators including prostaglandin E2 (PGE2) in ACO/eCOPD. In vitro assessment confirmed that IL-33 or TNF-α stimulation combined with IL-5 and IFN-γ stimulation induced cellular signatures in eosinophils in ACO/eCOPD. Atorvastatin, dexamethasone, and PGE2 differentially modulated these inflammatory changes. Discussion ACO/eCOPD is associated with viral infection and an inflammatory milieu. Therapeutic strategies using statins and inhaled corticosteroids are recommended to control these pathogenic changes.
Collapse
Affiliation(s)
- Keeya Sunata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ryuta Onozato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yo Otsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Emiko Matsuyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisashi Sasaki
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shinichi Okuzumi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takao Mochimaru
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Kelchtermans J, March ME, Hakonarson H, McGrath-Morrow SA. Phenotype wide association study links bronchopulmonary dysplasia with eosinophilia in children. Sci Rep 2024; 14:21391. [PMID: 39271728 PMCID: PMC11399246 DOI: 10.1038/s41598-024-72348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Despite this, genetic drivers of BPD are poorly understood. The objective of this study is to better understand the impact of single nucleotide polymorphisms (SNPs) previously associated with BPD by examining associations with other phenotypes. We drew pediatric subjects from the biorepository at the Center for Applied Genomics to identify associations between these SNPs and 2,146 imputed phenotypes. Methylation data, external cohorts, and in silico validation methods were used to corroborate significant associations. We identified 60 SNPs that were previously associated with BPD. We found a significant association between rs3771150 and rs3771171 and mean eosinophil percentage in a European cohort of 6,999 patients and replicated this in external cohorts. Both SNPs were also associated with asthma, COPD and FEV1/FVC ratio. These SNPs displayed associations with methylation probes and were functionally linked to ST2 (IL1RL1) levels in blood and lung tissue. Our findings support a genetic justification for the epidemiological link between BPD and asthma. Given the well-established link between ST2 and type 2 inflammation in asthma, these findings provide a rationale for future studies exploring the role of type 2 inflammation in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jelte Kelchtermans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA.
| | - Michael E March
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Center of Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| | - Sharon A McGrath-Morrow
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Liye L, Hui Z, Fuchun H, Hua L. Research progress of airway inflammation in asthma: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e38842. [PMID: 39029036 PMCID: PMC11398817 DOI: 10.1097/md.0000000000038842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND In recent years, the prevalence of asthma has gradually increased and the number of asthmatics worldwide has reached 358 million, which has caused huge economic loss. Airway inflammation is an important feature of asthma, and international research in this field has a high degree of heat. Therefore, this paper uses the bibliometric method to systematically review and visualize the literature in this field, aiming to provide some reference value for follow-up related research. METHODS To retrieve the research literature on airway inflammation in asthma from 2003 to 2022 in the Web of Science Core Collection database. The bibliometric method was used to systematically analyze the included literature data by using visualization analysis software such as CiteSpace (6.2. R4) and VOSviewer (1.6.19). RESULTS A total of 1892 articles published in 423 journals were included in this study, from 1912 institutions in 62 countries/regions. The number of articles published between 2003 and 2022 showed a trend of fluctuating growth. The country with the largest number of articles published was China (558,29.49 %), followed by the United States (371,19.61 %) and Korea (212,11.21 %). Gibson, Peter G is the author with the highest number of publications, and Journal of Allergy and Clinical Immunology is the most published journal. CONCLUSION SUBSECTIONS This study systematically reveals the state of the literature in the field of airway inflammation in asthma over the past 20 years. The exploration of inflammatory cell components, pathway molecules and biological agents are research hotspots in this field and should be further studied.
Collapse
Affiliation(s)
- Lang Liye
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | | | | | | |
Collapse
|
4
|
Xiao Y, Zhang H, Liu Y, Mo L, Liao Y, Huang Q, Yang L, Zhou C, Liu J, Sun X, Yu H, Yang P. Endoplasmic reticulum stress drives macrophages to produce IL-33 to favor Th2 polarization in the airways. J Leukoc Biol 2024; 115:893-901. [PMID: 38517856 DOI: 10.1093/jleuko/qiad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 03/24/2024] Open
Abstract
Interleukin (IL)-33 is a key driver of T helper 2 (Th2) cell polarization. Endoplasmic reticulum (ER) stress plays a role in the skewed T cell activation. The objective of this project is to elucidate the role of IL-33 derived from macrophages in inducing Th2 polarization in the airways. In this study, bronchoalveolar lavage fluids (BALF) were collected from patients with asthma and healthy control subjects. Macrophages were isolated from the BALF by flow cytometry cell sorting. An asthmatic mouse model was established using the ovalbumin/alum protocol. The results showed that increased IL33 gene activity and ER stress-related molecules in BALF-derived M2a macrophages was observed in asthmatic patients. Levels of IL33 gene activity in M2a cells were positively correlated with levels of asthma response in asthma patients. Sensitization exacerbated the ER stress in the airway macrophages, which increased the expression of IL-33 in macrophages of airway in sensitized mice. Conditional ablation of Il33 or Perk or Atf4 genes in macrophages prevented induction of airway allergy in mice. In conclusion, asthma airway macrophages express high levels of IL-33 and at high ER stress status. Inhibition of IL-33 or ER stress in macrophages can effectively alleviate experimental asthma.
Collapse
Affiliation(s)
- Yuan Xiao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Huangping Zhang
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030001, China
| | - Yu Liu
- Department of General Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen 518055, China
| | - Lihua Mo
- Department of General Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen 518055, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen 518055, China
- Institute of Allergy and Immunology, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen 518055, China
| | - Yun Liao
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen 518055, China
- Institute of Allergy and Immunology, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen 518055, China
| | - Qinmiao Huang
- Department of General Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen 518055, China
| | - Liteng Yang
- Department of General Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen 518055, China
| | - Caijie Zhou
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen 518016, China
| | - Jiangqi Liu
- Institute of Allergy and Immunology, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen 518055, China
| | - Xizhuo Sun
- Department of General Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen 518055, China
| | - Haiqiong Yu
- Department of Respiratory and Critical Care Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518055, Guangdong, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen 518055, China
- Institute of Allergy and Immunology, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
5
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Celecoxib attenuates interleukin 33-induced expression of vascular cell adhesion molecule-1 in human ovarian endometriotic stromal cells. Taiwan J Obstet Gynecol 2024; 63:178-185. [PMID: 38485312 DOI: 10.1016/j.tjog.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE Endometriosis is an estrogen-dependent chronic inflammatory disease in women of reproductive age. A review of the literature revealed that cytokines and inflammatory factors are associated with endometriosis-associated infertility. Interleukin 33 (IL-33) is a strong inducer of other pro-inflammatory cytokines. Vascular cell adhesion molecule-1 (VCAM-1) plays a central role in recruiting inflammatory cells, whose expression facilitates leukocyte adhesion and is rapidly induced by pro-inflammatory cytokines. Many studies have indicated that VCAM-1 expression is high in endometriosis; however, whether the expression of VCAM-1 is related to IL-33 is unclear. MATERIALS AND METHODS Human ovarian endometriotic stromal cells (hOVEN-SCs) were treated with IL-33 to enable investigation of cell characterization, gene and protein expression, and signal pathways. Proliferation potential was measured using an MTT assay. Gene expression was analyzed using reverse transcription-polymerase chain reaction. Protein expression assay was performed using western blot analysis. RESULTS This study investigated the effects of IL-33 on VCAM-1 and COX-2 expression in hOVEN-SCs. First, the results revealed that the IL-33/ST2/mitogen-activated protein kinase (MAPK) signaling pathway could increase the expression of VCAM-1 and COX-2 in hOVEN-SCs. Second, we discovered that COX-2 expression was essential for IL-33-induced VCAM-1 expression because the effects could be negated through NS398, a selective COX-2 inhibitor. Finally, treatment of IL-33-treated hOVEN-SCs with celecoxib significantly and dose-responsively decreased VCAM-1 expression. CONCLUSION Taken together, these results indicate that IL-33 can upregulate VCAM-1 expression in hOVEN-SCs through the IL-33/ST2/MAPK/COX-2 signaling pathway and thereby contribute to endometriosis.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan; Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
6
|
Zhang C, Wei S, Zhang L, Lou C, Fang J, Liu Y, He H, Li Z, Li J, Bai H. [Silver Ion Decreases Foreign Body Reaction and Venous Neointimal Hyperplasia through the Inhibition of Interleukin-33 Expression]. J Vasc Res 2024; 61:89-98. [PMID: 38368869 DOI: 10.1159/000536003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION Vascular prosthetic grafts are widely used in vascular surgery; however, graft infection remains a major concern. Silver-coated vascular grafts have demonstrated anti-infection properties in clinical settings; however, whether the silver irons influence foreign body reaction or neointimal hyperplasia remains unclear. METHODS Sodium alginate and hyaluronic acid (SA/HA) hydrogel patches loaded with rhodamine, with or without silver, were fabricated. Patches were implanted in the subcutaneous or abdominal cavity and inferior vena cava of rats. Samples were harvested on day 14 and examined via immunohistochemical and immunofluorescence analyses. RESULTS Silver hydrogel was found to decrease the foreign body reaction; after subcutaneous and abdominal cavity implantation in rats, the capsule was found to be thinner in the silver hydrogel group than in the control hydrogel group. The silver hydrogel group had fewer CD68-positive cells and proliferating cell nuclear antigen and interleukin-33 (IL-33) dual-positive cells than the control hydrogel group. Additionally, the silver hydrogel patch reduced the neointimal thickness after patch venoplasty in rats, and the number of IL-33- and IL-1β-positive cells was lower than that in the control patch. CONCLUSION Silver-loaded SA/HA hydrogel patches decreased the foreign body reaction and venous neointimal hyperplasia in rats by the inhibition of IL-33 expression.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Lou
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbang Fang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanfeng Liu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Jing'an Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
7
|
Bojanowski CM, Bitoun JP, Kolls JK. An ALARMINg Type 2 Response in Cystic Fibrosis-The Key to Understanding ABPA? Am J Respir Crit Care Med 2023; 207:1418-1419. [PMID: 37023264 PMCID: PMC10263133 DOI: 10.1164/rccm.202303-0580ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Christine M Bojanowski
- John W. Deming Department of Medicine Tulane University School of Medicine New Orleans, Louisiana
| | - Jacob P Bitoun
- Department of Microbiology and Immunology Tulane University School of Medicine New Orleans, Louisiana
| | - Jay K Kolls
- John W. Deming Department of Medicine Tulane University School of Medicine New Orleans, Louisiana
| |
Collapse
|
8
|
Murdaca G, Gangemi S, Greco M. The IL-33/IL-31 Axis in Allergic and Immune-Mediated Diseases. Int J Mol Sci 2023; 24:9227. [PMID: 37298179 PMCID: PMC10252527 DOI: 10.3390/ijms24119227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023] Open
Abstract
Interleukin 31 (IL-31) belongs to the IL-6 superfamily [...].
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova and IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy;
| |
Collapse
|
9
|
Sirufo MM, Magnanimi LM, Ginaldi L, De Martinis M. COPD and the IL-33/ST2 axis targeted therapy: A role for vitamin D? Cytokine 2022; 158:155995. [PMID: 35952594 DOI: 10.1016/j.cyto.2022.155995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Lina Maria Magnanimi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy; Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy.
| |
Collapse
|