1
|
Zattoni F, Matrone F, Bortolus R, Giannarini G. Navigating the evolving diagnostic and therapeutic landscape of low- and intermediate-risk prostate cancer. Asian J Androl 2024; 26:549-556. [PMID: 38738954 DOI: 10.4103/aja20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 05/14/2024] Open
Abstract
ABSTRACT In this nonsystematic review of the literature, we explored the changing landscape of detection and treatment of low- and intermediate-risk prostate cancer (PCa). Through emphasizing improved cancer assessment with histology classification and genomics, we investigated key developments in PCa detection and risk stratification. The pivotal role of prostate magnetic resonance imaging (MRI) in the novel diagnostic pathway is examined, alongside the benefits and drawbacks of MRI-targeted biopsies for detection and tumor characterization. We also delved into treatment options, particularly active surveillance for intermediate-risk PCa. Outcomes are compared between intermediate- and low-risk patients, offering insights into tailored management. Surgical techniques, including Retzius-sparing surgery, precision prostatectomy, and partial prostatectomy for anterior cancer, are appraised. Each technique has the potential to enhance outcomes and minimize complications. Advancements in technology and radiobiology, including computed tomography (CT)/MRI imaging and positron emission tomography (PET) fusion, allow for precise dose adjustment and daily target monitoring with imaging-guided radiotherapy, opening new ways of tailoring patients' treatments. Finally, experimental therapeutic approaches such as focal therapy open new treatment frontiers, although they create new needs in tumor identification and tracking during and after the procedure.
Collapse
Affiliation(s)
- Fabio Zattoni
- Urologic Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Fabio Matrone
- Department of Radiotherapy, National Cancer Institute (CRO), Aviano 33081, Italy
| | - Roberto Bortolus
- Department of Radiotherapy, National Cancer Institute (CRO), Aviano 33081, Italy
| | - Gianluca Giannarini
- Urology Unit, Santa Maria Della Misericordia University Hospital, Udine 33100, Italy
| |
Collapse
|
2
|
Gaikwad U, Bajpai J, Jalali R. Combinatorial approach of immuno-proton therapy in cancer: Rationale and potential impact. Asia Pac J Clin Oncol 2024; 20:188-197. [PMID: 37194387 DOI: 10.1111/ajco.13966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2022] [Accepted: 04/02/2023] [Indexed: 05/18/2023]
Abstract
Cancer management is an expansive, growing, and evolving field. In the last decade or so, immunotherapy (IT) and particle beam therapy have made a tremendous impact in this domain. IT has already established itself as the fourth pillar of oncology. Recent emphasis has been centred around combination therapy, postulating additive or multiplicative effects of combining IT with one or more of the three conventional "pillars," that is, surgery, chemotherapy, and radiotherapy. Radio-IT is being increasingly explored and has shown promising outcomes in both preclinical and clinical settings. Particle beam therapy such as protons, when used as the radiotherapeutic modality in conjunction with IT, can potentially limit toxicities and improve this synergism further. Modern proton therapy has demonstrated a reduction in integral dose of radiation and radiation-induced lymphopenia in various sites. Protons, by virtue of their inherent clinically desirable physical and biological characteristics, namely, high linear energy transfer, relative biological effectiveness of range 1.1-1.6, and proven anti-metastatic and immunogenic potential in preclinical studies, might have a superior immunogenic profile than photons. Proton-IT combination is being studied currently by various groups in lung , head neck and brain tumors, and should be evaluated further in other subsites to replicate preclinical outcomes in a clinical setting. In this review, we summarize the currently available evidence for combinatorial approaches and feasibility of proton and IT combination, and thereafter highlight the emerging challenges for practical application of the same in clinics, while also proposing plausible solutions.
Collapse
Affiliation(s)
- Utpal Gaikwad
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| | - Jyoti Bajpai
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, India
| |
Collapse
|
3
|
Akolawala Q, Keuning F, Rovituso M, van Burik W, van der Wal E, Versteeg HH, Rondon AMR, Accardo A. Micro-Vessels-Like 3D Scaffolds for Studying the Proton Radiobiology of Glioblastoma-Endothelial Cells Co-Culture Models. Adv Healthc Mater 2024; 13:e2302988. [PMID: 37944591 PMCID: PMC11468971 DOI: 10.1002/adhm.202302988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. While X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can damage cancer cells while sparing the surrounding healthy tissue. However, the effects of protons on in vitro GBM models at the cellular level, especially when co-cultured with endothelial cells, the building blocks of brain micro-vessels, are still unexplored. In this work, novel 3D-engineered scaffolds inspired by the geometry of brain microvasculature are designed, where GBM cells cluster and proliferate. The architectures are fabricated by two-photon polymerization (2PP), pre-cultured with endothelial cells (HUVECs), and then cultured with a human GBM cell line (U251). The micro-vessel structures enable GBM in vivo-like morphologies, and the results show a higher DNA double-strand breakage in GBM monoculture samples when compared to the U251/HUVECs co-culture, with cells in 2D featuring a larger number of DNA damage foci when compared to cells in 3D. The discrepancy in terms of proton radiation response indicates a difference in the radioresistance of the GBM cells mediated by the presence of HUVECs and the possible induction of stemness features that contribute to radioresistance and improved DNA repair.
Collapse
Affiliation(s)
- Qais Akolawala
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Floor Keuning
- Erasmus University CollegeNieuwemarkt 1A, Rotterdam3011 HPRotterdamThe Netherlands
| | - Marta Rovituso
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Wouter van Burik
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
| |
Collapse
|
4
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
5
|
Wu XY, Chen M, Cao L, Li M, Chen JY. Proton Therapy in Breast Cancer: A Review of Potential Approaches for Patient Selection. Technol Cancer Res Treat 2024; 23:15330338241234788. [PMID: 38389426 PMCID: PMC10894553 DOI: 10.1177/15330338241234788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Proton radiotherapy may be a compelling technical option for the treatment of breast cancer due to its unique physical property known as the "Bragg peak." This feature offers distinct advantages, promising superior dose conformity within the tumor area and reduced radiation exposure to surrounding healthy tissues, enhancing the potential for better treatment outcomes. However, proton therapy is accompanied by inherent challenges, primarily higher costs and limited accessibility when compared to well-developed photon irradiation. Thus, in clinical practice, it is important for radiation oncologists to carefully select patients before recommendation of proton therapy to ensure the transformation of dosimetric benefits into tangible clinical benefits. Yet, the optimal indications for proton therapy in breast cancer patients remain uncertain. While there is no widely recognized methodology for patient selection, numerous attempts have been made in this direction. In this review, we intended to present an inspiring summarization and discussion about the current practices and exploration on the approaches of this treatment decision-making process in terms of treatment-related side-effects, tumor control, and cost-efficiency, including the normal tissue complication probability (NTCP) model, the tumor control probability (TCP) model, genomic biomarkers, cost-effectiveness analyses (CEAs), and so on. Additionally, we conducted an evaluation of the eligibility criteria in ongoing randomized controlled trials and analyzed their reference value in patient selection. We evaluated the pros and cons of various potential patient selection approaches and proposed possible directions for further optimization and exploration. In summary, while proton therapy holds significant promise in breast cancer treatment, its integration into clinical practice calls for a thoughtful, evidence-driven strategy. By continuously refining the patient selection criteria, we can harness the full potential of proton radiotherapy while ensuring maximum benefit for breast cancer patients.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mei Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Min Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jia-Yi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Zheng M, Wang S, Zhu Y, Wan H. A qualitative exploration of fear of progression in patients with nasopharyngeal carcinoma treated with proton and heavy ion therapy. Support Care Cancer 2023; 31:622. [PMID: 37815579 DOI: 10.1007/s00520-023-08028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate fear of progression (FOP) in nasopharyngeal carcinoma (NPC) patients treated with proton and heavy ion therapy. METHODS Thirty NPC patients were selected for face-to-face semistructured interviews through purposive sampling while using the phenomenological approach in qualitative research. The interviews were transcribed, organized, and analyzed by applying Colaizzi's seven-step analysis. RESULTS Seven themes were summarized, namely, illness uncertainty, trapped into insecurity (including four categories: insecurity about the possibility of discrimination, insecurity about the possibility of the inability to tolerate the pain of retreatment, insecurity about the difficulty of retreatment after recurrence, and insecurity of waiting for test results), hopelessness, loss, guilt toward children, enhancing tolerance toward family, and self-emotional comfort. CONCLUSION We found that women with children and patients who experienced their first episode underwent significant FOP. Patients at the postgraduate level and above were more inclined to feel loss. The finding that respondents expressed is intense FOP while waiting for test results, which provides a reference for the analysis of the trajectory of FOP. Health care professions should be cognitively aware the importance of eliminating patients' uncertainty and insecurity about disease to enhance their positive experience in coping with cancer.
Collapse
Affiliation(s)
- Mimi Zheng
- Department of Nursing, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Shuman Wang
- Department of Nursing, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yu Zhu
- Department of Nursing, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Hongwei Wan
- Department of Nursing, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.
| |
Collapse
|
8
|
Holtzman AL, Dagan R, Mendenhall WM. Proton Radiotherapy for Skull-Base Malignancies. Oral Maxillofac Surg Clin North Am 2023:S1042-3699(23)00005-5. [PMID: 37005171 DOI: 10.1016/j.coms.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Proton therapy (PT) is a form of highly conformal external-beam radiotherapy used to mitigate acute and late effects following radiotherapy. Indications for treatment include both benign and malignant skull-base and central nervous system pathologies. Studies have demonstrated that PT shows promising results in minimizing neurocognitive decline and reducing second malignancies with low rates of central nervous system necrosis. Future directions and advances in biologic optimization may provide additional benefits beyond the physical properties of particle dosimetry.
Collapse
Affiliation(s)
- Adam L Holtzman
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL 32206, USA.
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL 32206, USA
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, 2015 North Jefferson Street, Jacksonville, FL 32206, USA
| |
Collapse
|
9
|
Costs of Newly Funded Proton Therapy Using Time-Driven Activity-Based Costing in The Netherlands. Cancers (Basel) 2023; 15:cancers15020516. [PMID: 36672465 PMCID: PMC9856812 DOI: 10.3390/cancers15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Proton therapy (PT) has characteristics that enable the sparing of healthy, non-cancerous tissue surrounding the radiotherapy target volume better from radiation doses than conventional radiotherapy for patients with cancer. While this innovation entails investment costs, the information about the treatment costs per patient, especially during the start-up phase, is limited. This study aims to calculate the costs of PT at a single center during the start-up phase in the Netherlands. METHODS The cost of PT per patient was estimated for the treatment indications, head and neck cancer, breast cancer, brain cancer, thorax cancer, chordoma and eye melanoma. A time-driven activity-based costing analysis (TDABC), a methodology that calculates the costs of consumed healthcare resources by a patient, was conducted in a newly established PT center in the Netherlands (HPTC). Both direct (e.g., the human resource costs for medical staff) and indirect costs (e.g., the operating/interest costs, indirect human resource costs and depreciation costs) were included. A scenario analysis was conducted for short-term (2021), middle-term (till 2024) and long-term (after 2024) predicted patient numbers in the PT center. RESULTS The total cost of PT in 2020 at the center varied between EUR 12,062 for an eye melanoma course and EUR 89,716 for a head and neck course. Overall, indirect costs were the largest cost component. The high indirect costs implied the potential of the scale of economics; according to our estimation, the treatment cost could be reduced to 35% of the current cost when maximum treatment capacity is achieved. CONCLUSION This study estimated the PT cost delivered in a newly operated treatment center. Scenario analysis for increased patient numbers revealed the potential for cost reductions. Nevertheless, to have an estimation that reflects the matured cost of PT which could be used in cost-effectiveness analysis, a follow-up study assessing the full-fledged situation is recommended.
Collapse
|
10
|
Gaikwad U, Noufal MP, Sylvia J, Reddy AK, Panda PK, Chilukuri S, Sharma D, Jalali R. Encouraging early outcomes with image guided pencil beam proton therapy for cranio-spinal irradiation: first report from India. Radiat Oncol 2022; 17:115. [PMID: 35773667 PMCID: PMC9248189 DOI: 10.1186/s13014-022-02085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To report our experience with image guided pencil beam proton beam therapy (PBT) for craniospinal irradiation (CSI). MATERIALS AND METHODS Between January 2019 and December 2021, we carried out a detailed audit of the first forty patients treated with PBT. We had recorded acute toxicities, reporting early outcomes and discuss limitations of current contouring guidelines during CSI PBT planning. RESULTS Median age of the patient cohort was 8 years, and histologies include 20 medulloblastoma, 7 recurrent ependymoma, 3 pineoblastoma, 3 were germ cell tumors and remaining 7 constituted other diagnoses. Forty percent patients received concurrent chemotherapy. Median CSI dose was 23.4 Gy (Gray; range 21.6-35 Gy). Thirty-five patients (87.5%) completed their CSI without interruption, 5 required hospital admission. No patient had grade 2/ > weight loss during the treatment. Forty-five percent (18) developed grade 1 haematological toxicities and 20% (8) developed grade 2 or 3 toxicities; none had grade 4 toxicities. At median follow up of 12 months, 90% patients are alive of whom 88.9% are having local control. Special consideration with modification in standard contouring used at our institute helped in limiting acute toxicities in paediatric CSI patients. CONCLUSION Our preliminary experience with modern contemporary PBT using pencil beam technology and daily image guidance in a range of tumours suitable for CSI is encouraging. Patients tolerated the treatment well with acceptable acute toxicity and expected short-term survival outcome. In paediatric CSI patients, modification in standard contouring guidelines required to achieve better results with PBT.
Collapse
Affiliation(s)
- Utpal Gaikwad
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - M P Noufal
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Jacinthlyn Sylvia
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Ashok K Reddy
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Pankaj Kumar Panda
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Srinivas Chilukuri
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Dayananda Sharma
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Liu R, Zhao X, Medrano M. Experimental validation of proton physics models of Geant4 for calculating stopping power ratio. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:10.1088/1361-6498/ac7918. [PMID: 35705062 PMCID: PMC9462414 DOI: 10.1088/1361-6498/ac7918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, we conducted experiments to validate the proton physics models of Geant4 (version 10.6). The stopping power ratios (SPRs) of 11 inserts, such as acrylic, delrin, high density polyethylene, and polytetrafluoroethylene, etc, were measured using a superconducting synchrocyclotron that produces a scattering proton beam. The SPRs of the inserts were also calculated based on Geant4 simulation with six physics lists, i.e. QGSP_ FTFP_ BERT, QGSP_BIC_HP, QGSP_BIC, QGSP_FTFP_BERT, QSGP_BERT, and QBBC. The calculated SPRs were compared to the experimental SPRs, and relative per cent error was used to quantify the accuracy of the simulated SPRs of inserts. The comparison showed that the five physics lists generally agree well with the experimental SPRs with a relative difference of less than 1%. The lowest overall percentage error was observed for QGSP_FTFP_BERT and the highest overall percentage error was observed for QGSP_BIC_HP. The 0.1 mm range cut value consistently led to higher percentage error for all physics lists except for QGSP_BIC_HP and QBBC. Based on the validation, we recommend QGSP_BERT_HP physics list for proton dose calculation.
Collapse
Affiliation(s)
- Ruirui Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiandong Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Maria Medrano
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, United States of America
| |
Collapse
|
12
|
Weil CR, Lew FH, Williams VM, Burt LM, Ermoian RP, Poppe MM. Patterns of Care and Utilization Disparities in Proton Radiation Therapy for Pediatric Central Nervous System Malignancies. Adv Radiat Oncol 2022; 7:100868. [DOI: 10.1016/j.adro.2021.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
|
13
|
Belotti A, Carpenito L, Bulfamante AM, Maccari A, Bulfamante G. Sinonasal teratocarcinosarcoma treated with surgery and proton beam therapy: clinical, histological aspects and differential diagnosis of a new case. Pathologica 2022; 113:469-474. [PMID: 34974554 PMCID: PMC8720401 DOI: 10.32074/1591-951x-215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Sinonasal teratocarcinosarcoma is a rare aggressive malignant tumor with a primary setting involving the nasal cavity followed by the ethmoid sinus and maxillary sinus. It accounts for approximately 3% of all head and neck cancers and less than 1% of all tumors. Nasal obstruction, recurrent epistaxis and headache represent the typical clinical presentation. Imaging shows the presence of a mass in the nasal cavity. The treatment usually consists of surgery and adjuvant intensity modulated radiotherapy. The rarity and the variability of the histological features make its diagnosis particularly difficult. In this paper, we report a case of sinonasal teratocarcinosarcoma in a 62-year-old male treated with a multidisciplinary approach. As an alternative to intensity modulated radiotherapy, we proposed proton beam therapy for the first time. The patient benefited from the new and personalized protocol that provided excellent results and few adverse effects. At 45 months follow-up there is no evidence of relapse and the patient is in good health.
Collapse
Affiliation(s)
- Alessia Belotti
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Laura Carpenito
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Antonio Mario Bulfamante
- Otolaryngology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Alberto Maccari
- Otolaryngology Unit, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Gaetano Bulfamante
- Human Pathology and Medical Genetic Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Hyer DE, Ding X, Rong Y. Proton therapy needs further technological development to fulfill the promise of becoming a superior treatment modality (compared to photon therapy). J Appl Clin Med Phys 2021; 22:4-11. [PMID: 34730268 PMCID: PMC8598137 DOI: 10.1002/acm2.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont HospitalRoyal ParkMichiganUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
15
|
Sidebottom RB, Allison JC, Aulwes EF, Broder BA, Freeman MS, Magnelind PE, Mariam FG, Merrill FE, Neukirch LP, Schurman T, Sinnis J, Tang Z, Tupa D, Tybo JL, Wilde CH, Espy M. Contrast-enhanced proton radiographic sensitivity limits for tumor detection. J Med Imaging (Bellingham) 2021; 8:053501. [PMID: 34708145 DOI: 10.1117/1.jmi.8.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Proton radiography may guide proton therapy cancer treatments with beam's-eye-view anatomical images and a proton-based estimation of proton stopping power. However, without contrast enhancement, proton radiography will not be able to distinguish tumor from tissue. To provide this contrast, functionalized, high- Z nanoparticles that specifically target a tumor could be injected into a patient before imaging. We conducted this study to understand the ability of gold, as a high- Z , biologically compatible tracer, to differentiate tumors from surrounding tissue. Approach: Acrylic and gold phantoms simulate a tumor tagged with gold nanoparticles (AuNPs). Calculations correlate a given thickness of gold to levels of tumor AuNP uptake reported in the literature. An identity, × 3 , and × 7 proton magnifying lens acquired lens-refocused proton radiographs at the 800-MeV LANSCE proton beam. The effects of gold in the phantoms, in terms of percent density change, were observed as changes in measured transmission. Variable areal densities of acrylic modeled the thickness of the human body. Results: A 1 - μ m -thick gold strip was discernible within 1 cm of acrylic, an areal density change of 0.2%. Behind 20 cm of acrylic, a 40 - μ m gold strip was visible. A 1-cm-diameter tumor tagged with 1 × 10 5 50-nm AuNPs per cell has an amount of contrast agent embedded within it that is equivalent to a 65 - μ m thickness of gold, an areal density change of 0.63% in a tissue thickness of 20 cm, which is expected to be visible in a typical proton radiograph. Conclusions: We indicate that AuNP-enhanced proton radiography might be a feasible technology to provide image-guidance to proton therapy, potentially reducing off-target effects and sparing nearby tissue. These data can be used to develop treatment plans and clinical applications can be derived from the simulations.
Collapse
Affiliation(s)
| | - Jason C Allison
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Ethan F Aulwes
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Brittany A Broder
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Matthew S Freeman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Per E Magnelind
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Fesseha G Mariam
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Frank E Merrill
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Levi P Neukirch
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Tamsen Schurman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - James Sinnis
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Zhaowen Tang
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Dale Tupa
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Joshua L Tybo
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Carl H Wilde
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Michelle Espy
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| |
Collapse
|
16
|
Mutter RW, Choi JI, Jimenez RB, Kirova YM, Fagundes M, Haffty BG, Amos RA, Bradley JA, Chen PY, Ding X, Carr AM, Taylor LM, Pankuch M, Vega RBM, Ho AY, Nyström PW, McGee LA, Urbanic JJ, Cahlon O, Maduro JH, MacDonald SM. Proton Therapy for Breast Cancer: A Consensus Statement From the Particle Therapy Cooperative Group Breast Cancer Subcommittee. Int J Radiat Oncol Biol Phys 2021; 111:337-359. [PMID: 34048815 PMCID: PMC8416711 DOI: 10.1016/j.ijrobp.2021.05.110] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022]
Abstract
Radiation therapy plays an important role in the multidisciplinary management of breast cancer. Recent years have seen improvements in breast cancer survival and a greater appreciation of potential long-term morbidity associated with the dose and volume of irradiated organs. Proton therapy reduces the dose to nontarget structures while optimizing target coverage. However, there remain additional financial costs associated with proton therapy, despite reductions over time, and studies have yet to demonstrate that protons improve upon the treatment outcomes achieved with photon radiation therapy. There remains considerable heterogeneity in proton patient selection and techniques, and the rapid technological advances in the field have the potential to affect evidence evaluation, given the long latency period for breast cancer radiation therapy recurrence and late effects. In this consensus statement, we assess the data available to the radiation oncology community of proton therapy for breast cancer, provide expert consensus recommendations on indications and technique, and highlight ongoing trials' cost-effectiveness analyses and key areas for future research.
Collapse
Affiliation(s)
- Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Youlia M Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marcio Fagundes
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Richard A Amos
- Proton and Advanced Radiotherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Peter Y Chen
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Antoinette M Carr
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Leslie M Taylor
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Mark Pankuch
- Department of Radiation Oncology, Northwestern Medicine Proton Center, Warrenville, Illinois
| | | | - Alice Y Ho
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Petra Witt Nyström
- The Skandion Clinic, Uppsala, Sweden and the Danish Centre for Particle Therapy, Aarhus, Denmark
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona
| | - James J Urbanic
- Department of Radiation Medicine and Applied Sciences, UC San Diego Health, Encinitas, California
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H Maduro
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Dosimetry, Efficacy, Safety, and Cost-Effectiveness of Proton Therapy for Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13184545. [PMID: 34572772 PMCID: PMC8465697 DOI: 10.3390/cancers13184545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common malignancy which requires radiotherapy (RT) as an important part of its multimodality treatment. With the advent of the novel irradiation technique, the clinical outcome of NSCLC patients who receive RT has been dramatically improved. The emergence of proton therapy, which allows for a sharper dose of build-up and drop-off compared to photon therapy, has potentially improved clinical outcomes of NSCLC. Dosimetry studies have indicated that proton therapy can significantly reduce the doses for normal organs, especially the lung, heart, and esophagus while maintaining similar robust target volume coverage in both early and advanced NSCLC compared with photon therapy. However, to date, most studies have been single-arm and concluded no significant changes in the efficacy for early-stage NSCLC by proton therapy over stereotactic body radiation therapy (SBRT). The results of proton therapy for advanced NSCLC in these studies were promising, with improved clinical outcomes and reduced toxicities compared with historical photon therapy data. However, these studies were also mainly single-arm and lacked a direct comparison between the two therapies. Currently, there is much emerging evidence focusing on dosimetry, efficacy, safety, and cost-effectiveness of proton therapy for NSCLC that has been published, however, a comprehensive review comparing these therapies is, to date, lacking. Thus, this review focuses on these aspects of proton therapy for NSCLC.
Collapse
|
18
|
Fok M, Toh S, Easow J, Fowler H, Clifford R, Parsons J, Vimalachandran D. Proton beam therapy in rectal cancer: A systematic review and meta-analysis. Surg Oncol 2021; 38:101638. [PMID: 34340196 DOI: 10.1016/j.suronc.2021.101638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Locally advanced rectal cancer is often treated with neoadjuvant chemoradiotherapy and surgery. Radiotherapy carries significant risk of toxicity to organs at risk (OAR). Proton beam therapy (PBT) has demonstrated to be effective in other cancers, delivering equivalent dosimetric radiation but with the benefit of improved sparing of OAR. This review compares dosimetric irradiation of OAR and oncological outcomes for PBT versus conventional photon-based radiotherapy in locally advanced rectal cancer. METHODS An electronic literature search was performed for studies with comparative cohorts receiving proton beam therapy and photon-based radiotherapy for rectal cancer. RESULTS Eight articles with a total of 127 patients met the inclusion criteria. There was significantly less irradiated small bowel with PBT compared to three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) (MD -17.01, CI [-24.06, -9.96], p < 0.00001 and MD -6.96, CI [-12.99, -0.94], p = 0.02, respectively). Similar dosimetric results were observed for bladder and pelvic bone marrow. Three studies reported clinical and oncological results for PBT in recurrent rectal cancer with overall survival reported as 43 %, 68 % and 77.2 %, and one study in primary rectal cancer with 100 % disease free survival. CONCLUSION PBT treatment plans revealed significantly less irradiation of OAR for rectal cancer compared to conventional photon-based radiotherapy. Trials for recurrent rectal cancer and PBT have shown promising results. There are currently no ongoing clinical trials for primary rectal cancer and PBT. More research is required to validate its potential role in dose escalation, higher complete response rate and organ preservation without increasing toxicity.
Collapse
Affiliation(s)
- Matthew Fok
- Department of Colorectal Surgery, Countess of Chester NHS Foundation Trust, UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| | - Steven Toh
- School of Medicine, University of Liverpool, Liverpool, L3 9TA, UK
| | - Jeremy Easow
- School of Medicine, University of Liverpool, Liverpool, L3 9TA, UK
| | - Hayley Fowler
- Department of Colorectal Surgery, Countess of Chester NHS Foundation Trust, UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| | - Rachael Clifford
- Department of Colorectal Surgery, Countess of Chester NHS Foundation Trust, UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK
| | - Jason Parsons
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, CH63 4JY, UK
| | - Dale Vimalachandran
- Department of Colorectal Surgery, Countess of Chester NHS Foundation Trust, UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 200 London Road, Liverpool, L3 9TA, UK.
| |
Collapse
|
19
|
Chandra RA, Keane FK, Voncken FEM, Thomas CR. Contemporary radiotherapy: present and future. Lancet 2021; 398:171-184. [PMID: 34166607 DOI: 10.1016/s0140-6736(21)00233-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Oncology care is increasingly a multidisciplinary endeavour, and radiation therapy continues to have a key role across the disease spectrum in nearly every cancer. However, the field of radiation oncology is still one of the most poorly understood of the cancer disciplines. In this Review, we attempt to summarise and contextualise developments within the field of radiation oncology for the non-radiation oncologist. We discuss advancements in treatment technologies and imaging, followed by an overview of the interplay with advancements in systemic therapy and surgical techniques. Finally, we review new frontiers in radiation oncology, including advances within the metastatic disease continuum, reirradiation, and emerging types of radiation therapy.
Collapse
Affiliation(s)
- Ravi A Chandra
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Francine E M Voncken
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
Gamez ME, Ma DJ. Deintensification Strategies Using Proton Beam Therapy for HPV-Related Oropharyngeal Cancer. Int J Part Ther 2021; 8:223-233. [PMID: 34285949 PMCID: PMC8270104 DOI: 10.14338/ijpt-20-00073.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Oropharyngeal cancers related to the human papillomavirus are a growing segment of head and neck cancers throughout the world. These cancers are biologically and demographically unique with patients presenting at younger ages and with more curable disease. This combination of factors heightens the importance of normal tissue sparing because patients will live a long time with treatment sequelae. Proton therapy has demonstrated benefits in reducing normal tissue exposure, which may lead to less toxicity, a higher quality of life, less immunologic suppression, and lower cost. Research investigating deintensified radiation volumes and doses are also underway. These deintensification studies synergize well with the beam characteristics of proton beam therapy and can decrease that already reduced normal tissue exposure enabled by proton therapy. Future studies should refine patient selection to best allow for volume and dose reduction paired with proton therapy.
Collapse
Affiliation(s)
- Mauricio E. Gamez
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Daniel J. Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Huang D, Frank SJ, Verma V, Thaker NG, Brooks ED, Palmer MB, Harrison RF, Deshmukh AA, Ning MS. Cost-Effectiveness Models of Proton Therapy for Head and Neck: Evaluating Quality and Methods to Date. Int J Part Ther 2021; 8:339-353. [PMID: 34285960 PMCID: PMC8270103 DOI: 10.14338/ijpt-20-00058.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/28/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Proton beam therapy (PBT) is associated with less toxicity relative to conventional photon radiotherapy for head-and-neck cancer (HNC). Upfront delivery costs are greater, but PBT can provide superior long-term value by minimizing treatment-related complications. Cost-effectiveness models (CEMs) estimate the relative value of novel technologies (such as PBT) as compared with the established standard of care. However, the uncertainties of CEMs can limit interpretation and applicability. This review serves to (1) assess the methodology and quality of pertinent CEMs in the existing literature, (2) evaluate their suitability for guiding clinical and economic strategies, and (3) discuss areas for improvement among future analyses. MATERIALS AND METHODS PubMed was queried for CEMs specific to PBT for HNC. General characteristics, modeling information, and methodological approaches were extracted for each identified study. Reporting quality was assessed via the Consolidated Health Economic Evaluation Reporting Standards 24-item checklist, whereas methodologic quality was evaluated via the Philips checklist. The Cooper evidence hierarchy scale was employed to analyze parameter inputs referenced within each model. RESULTS At the time of study, only 4 formal CEMs specific to PBT for HNC had been published (2005, 2013, 2018, 2020). The parameter inputs among these various Markov cohort models generally referenced older literature, excluding many clinically relevant complications and applying numerous hypothetical assumptions for toxicity states, incorporating inputs from theoretical complication-probability models because of limited availability of direct clinical evidence. Case numbers among study cohorts were low, and the structural design of some models inadequately reflected the natural history of HNC. Furthermore, cost inputs were incomplete and referenced historic figures. CONCLUSION Contemporary CEMs are needed to incorporate modern estimates for toxicity risks and costs associated with PBT delivery, to provide a more accurate estimate of value, and to improve their clinical applicability with respect to PBT for HNC.
Collapse
Affiliation(s)
- Danmeng Huang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Management, Policy and Community Health, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Steven J. Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric D. Brooks
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | | | - Ross F. Harrison
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish A. Deshmukh
- Department of Management, Policy and Community Health, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Matthew S. Ning
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Bhattacharya D, Chhabda S, Lakshmanan R, Tan R, Warne R, Benenati M, Michalski A, Aquilina K, Jacques T, Hargrave D, Chang YC, Gains J, Mankad K. Spectrum of neuroimaging findings post-proton beam therapy in a large pediatric cohort. Childs Nerv Syst 2021; 37:435-446. [PMID: 32705327 DOI: 10.1007/s00381-020-04819-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Proton beam therapy (PBT) is now well established for the treatment of certain pediatric brain tumors. The intrinsic properties of PBT are known to reduce long-term negative effects of photon radiotherapy (PRT). To better understand the intracranial effects of PBT, we analyzed the longitudinal imaging changes in a cohort of children with brain tumors treated by PBT with clinical and radiotherapy dose correlations. MATERIALS AND METHODS Retrospective imaging review of 46 patients from our hospital with brain tumors treated by PBT. The imaging findings were correlated with clinical and dose parameters. RESULTS Imaging changes were assessed by reviewing serial magnetic resonance imaging (MRI) scans following PBT over a follow-up period ranging from 1 month to 7 years. Imaging changes were observed in 23 patients undergoing PBT and categorized as pseudoprogression (10 patients, 43%), white matter changes (6 patients, 23%), parenchymal atrophy (6 patients, 23%), and cerebral large vessel arteriopathy (5 patients, 25%). Three patients had more than one type of imaging change. Clinical symptoms attributable to PBT were observed in 13 (28%) patients. CONCLUSION In accordance with published literature, we found evidence of varied intracranial imaging changes in pediatric brain tumor patients treated with PBT. There was a higher incidence (10%) of large vessel cerebral arteriopathy in our cohort than previously described in the literature. Twenty-eight percent of patients had clinical sequelae as a result of these changes, particularly in the large vessel arteriopathy subgroup, arguing the need for angiographic and perfusion surveillance to pre-empt any morbidities and offer potential neuro-protection.
Collapse
Affiliation(s)
| | | | | | - Ronald Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | | | | | | | | | - Thomas Jacques
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | - Jenny Gains
- University College London Hospital, London, UK
| | | |
Collapse
|
23
|
Roman M, Wrobel TP, Panek A, Paluszkiewicz C, Kwiatek WM. Physicochemical damage and early-stage biological response to X-ray radiation studied in prostate cancer cells by Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000252. [PMID: 32844593 DOI: 10.1002/jbio.202000252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ionizing radiation significantly affects biochemistry of cancer cells. The effect of irradiation can be divided into two stages, that is, the physicochemical stage and the biological response. Both effects induce different biochemical changes in the cells and should be analyzed as two separate phenomena. Thus, in the current study, Raman spectroscopy of prostate cancer cells fixed before (the physicochemical damage model) and just after (the biological response model) irradiation was undertaken to compare biochemical composition of irradiated cancer cells at both stages. Spectroscopic analysis of the cells was performed separately for cytoplasmic and nuclear regions. Biochemical changes of irradiated cells were analyzed using partial least squares regression (PLSR) method on the basis of the collected Raman spectra. Regression coefficients were therefore used to describe differences and similarities between biochemical composition of cancer cells undergoing the physicochemical stage and biological response. Additionally, PLSR models of both phenomena were compared for linear dose-dependence and a cross prediction.
Collapse
Affiliation(s)
- Maciej Roman
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz P Wrobel
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- Solaris National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
24
|
Chilukuri S, Burela N, Uppuluri R, Indumathi D, Nangia S, Panda PK, Shamurailatpam DS, Raj R, Raja T, Jalali R. Preliminary Experience of Treating Children and Young Adults With Image-Guided Proton Beam Therapy in India. JCO Glob Oncol 2020; 6:1736-1745. [PMID: 33180633 PMCID: PMC7713582 DOI: 10.1200/go.20.00319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Proton beam therapy (PBT) has been a preferred modality in pediatric malignancies requiring radiotherapy. We report our preliminary experience of treating consecutive patients younger than 25 years with image-guided pencil beam scanning PBT from the first and only center on the Indian subcontinent. METHODS Patients were selected for PBT on the basis of a multidisciplinary tumor board decision. Patient demographic data, as well as tumor and treatment-related characteristics of the cohort, were captured. Patient and treatment-related factors and their association with acute toxicities were analyzed using univariable and multivariable analyses. RESULTS Forty-seven patients (27 with CNS and 20 with non-CNS tumors) with a median age of 9 years (range, 2-25 years) were evaluated. Most common diagnoses were ependymoma, rhabdomyosarcoma, and glioma. Seventy-seven percent of patients traveled more than 500 km, and 70% of them lived in metropolitan cities. Forty-nine percent of patients had recurrent disease at presentation, and 15% had received a previous course of radiation. The median dose delivered was 54.8 cobalt gray equivalents (range, 40.0-70.4 cobalt gray equivalents) to a median clinical target volume of 175 mL (range, 18.7-3,083.0 mL), with 34% of patients requiring concurrent chemotherapy (CCT). Acute grade 2 and grade 3 dermatitis, mucositis, and hematologic toxicity was noted in 45% and 2%, 34% and 0%, and 38% and 30% of patients, respectively. Grade 2 fatigue was noted in 26% of patients. On multivariable analysis, for CNS tumors, both CCT and craniospinal irradiation were independently associated with ≥ 2 grade hematologic toxicity, whereas among non-CNS tumors, a clinical target volume > 150 mL was associated with ≥ 2 grade fatigue, head and neck irradiation was associated with ≥ 2 grade mucositis, and CCT was associated with grade ≥ 2 hematologic toxicity. CONCLUSION This study demonstrates safe implementation of a PBT program for children and young adults on the Indian subcontinent. Image-guided pencil beam scanning PBT in judiciously selected patients is feasible and can be delivered with acceptable acute toxicities.
Collapse
|
25
|
Brandal P, Bergfeldt K, Aggerholm-Pedersen N, Bäckström G, Kerna I, Gubanski M, Björnlinger K, Evensen ME, Kuddu M, Pettersson E, Brydøy M, Hellebust TP, Dale E, Valdman A, Weber L, Høyer M. A Nordic-Baltic perspective on indications for proton therapy with strategies for identification of proper patients. Acta Oncol 2020; 59:1157-1163. [PMID: 32902341 DOI: 10.1080/0284186x.2020.1817977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The beneficial effects of protons are primarily based on reduction of low to intermediate radiation dose bath to normal tissue surrounding the radiotherapy target volume. Despite promise for reduced long-term toxicity, the percentage of cancer patients treated with proton therapy remains low. This is probably caused by technical improvements in planning and delivery of photon therapy, and by high cost, low availability and lack of high-level evidence on proton therapy. A number of proton treatment facilities are under construction or have recently opened; there are now two operational Scandinavian proton centres and two more are under construction, thereby eliminating the availability hurdle. Even with the advantageous physical properties of protons, there is still substantial ambiguity and no established criteria related to which patients should receive proton therapy. This topic was discussed in a session at the Nordic Collaborative Workshop on Particle Therapy, held in Uppsala 14-15 November 2019. This paper resumes the Nordic-Baltic perspective on proton therapy indications and discusses strategies to identify patients for proton therapy. As for indications, neoplastic entities, target volume localisation, size, internal motion, age, second cancer predisposition, dose escalation and treatment plan comparison based on the as low as reasonably achievable (ALARA) principle or normal tissue complication probability (NTCP) models were discussed. Importantly, the patient selection process should be integrated into the radiotherapy community and emphasis on collaboration across medical specialties, involvement of key decision makers and knowledge dissemination in general are important factors. An active Nordic-Baltic proton therapy organisation would also serve this purpose.
Collapse
Affiliation(s)
- Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Irina Kerna
- North Estonia Medical Centre, Tallinn, Estonia
| | | | | | | | - Maire Kuddu
- North Estonia Medical Centre, Tallinn, Estonia
| | | | | | - Taran P. Hellebust
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | | | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
26
|
Weber DC, Langendijk JA, Grau C, Thariat J. Proton therapy and the European Particle Therapy Network: The past, present and future. Cancer Radiother 2020; 24:687-690. [PMID: 32753239 PMCID: PMC7395642 DOI: 10.1016/j.canrad.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Proton therapy is delivered to selected cancer patients presenting with rare tumours, for which a dose escalation paradigm and/or a reduced dose-bath to the organs at risk is pursued. It is a costly treatment with an additional cost factor of 2–3 when compared to photon radiotherapy. Notwithstanding the 180′000 patients treated with protons, scars robust clinical evidence is available to justify the administration of this treatment modality. The European Particle Therapy Network (EPTN) was created in 2015 to answer the critical European needs for cooperation among protons and carbon ions centres in the framework of clinical research networks. EPTN with other European groups will launch a number of prospective clinical trials that could be practice changing if positive. Alternative way to generate clinical data could be provided by alternative methodologies, such as the Dutch model-based approach, or could be provided by European infrastructure projects.
Collapse
Affiliation(s)
- D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 144, WPTA, CH-5232 Villigen West Campus, Switzerland; University Hospital Zürich, Zürich, Switzerland; University of Bern, Bern, Switzerland.
| | - J A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - C Grau
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - J Thariat
- Radiation Oncology Department, centre François-Baclesse, 3, avenue General-Harris, 14000 Caen, France
| |
Collapse
|
27
|
Fernandes RRA, Vianna CMDM, Guerra RL, Cancela MDC, Almeida LMD, Pereira AJDC, Viégas CMP, Ferman SE, Corrêa FD. Cost-Effectiveness of Proton Versus Photon Therapy in Pediatric Medulloblastoma Treatment: A Patient Volume–Based Analysis. Value Health Reg Issues 2019; 20:122-128. [DOI: 10.1016/j.vhri.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 10/26/2022]
|
28
|
Jensen AD, Debus J. Cost-effectiveness analysis (CEA) of IMRT plus C12 boost vs IMRT only in adenoid cystic carcinoma (ACC) of the head and neck. Radiat Oncol 2019; 14:194. [PMID: 31694720 PMCID: PMC6836331 DOI: 10.1186/s13014-019-1395-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Particle therapy provides steep dose gradients to facilitate dose escalation in challenging anatomical sites which has been shown not only to improve local control but also overall survival in patients with ACC. Cost-effectiveness of intensity-modulated radiotherapy (IMRT) plus carbon ion (C12) boost vs IMRT alone was performed in order to objectivise and substantiate more widespread use of this technology in ACC. Methods Patients with pathologically confirmed ACC received a combination regimen of IMRT plus C12 boost. Patients presenting outside C12 treatment slots received IMRT only. Clinical results were published; economic analysis on patient-level data was carried out from a healthcare purchaser’s perspective based on costs of healthcare utilization. Cost histories were generated from resource use recorded in individual patient charts and adjusted for censoring using the Lin I method. Cost-effectiveness was measured as incremental cost-effectiveness ratio (ICER). Sensitivity analysis was performed regarding potentially differing management of recurrent disease. Results The experimental treatment increased overall costs by € 18,076 (€13,416 – €22,922) at a mean survival benefit of 0.86 years. Despite improved local control, following costs were also increased in the experimental treatment. The ICER was estimated to 26,863 €/LY. After accounting for different management of recurrent disease in the two cohorts, the ICER was calculated to 20,638 €/LY. Conclusion The combined treatment (IMRT+C12 boost) substantially increased initial and overall treatment cost. In view of limited treatment options in ACC, costs may be acceptable though. Investigations into quality of life measures may support further decisions in the future.
Collapse
|
29
|
Al-Hallaq H, Cao M, Kruse J, Klein E. Cured in a FLASH: Reducing Normal Tissue Toxicities Using Ultra-High-Dose Rates. Int J Radiat Oncol Biol Phys 2019; 104:257-260. [PMID: 31047621 DOI: 10.1016/j.ijrobp.2019.01.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
|
30
|
Yuan TZ, Zhan ZJ, Qian CN. New frontiers in proton therapy: applications in cancers. Cancer Commun (Lond) 2019; 39:61. [PMID: 31640788 PMCID: PMC6805548 DOI: 10.1186/s40880-019-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Proton therapy offers dominant advantages over photon therapy due to the unique depth-dose characteristics of proton, which can cause a dramatic reduction in normal tissue doses both distal and proximal to the tumor target volume. In turn, this feature may allow dose escalation to the tumor target volume while sparing the tumor-neighboring susceptible organs at risk, which has the potential to reduce treatment toxicity and improve local control rate, quality of life and survival. Some dosimetric studies in various cancers have demonstrated the advantages over photon therapy in dose distributions. Further, it has been observed that proton therapy confers to substantial clinical advantage over photon therapy in head and neck, breast, hepatocellular, and non-small cell lung cancers. As such, proton therapy is regarded as the standard modality of radiotherapy in many pediatric cancers from the technical point of view. However, due to the limited clinical evidence, there have been concerns about the high cost of proton therapy from an economic point of view. Considering the treatment expenses for late radiation-induced toxicities, cost-effective analysis in many studies have shown that proton therapy is the most cost-effective option for brain, head and neck and selected breast cancers. Additional studies are warranted to better unveil the cost-effective values of proton therapy and to develop newer ways for better protection of normal tissues. This review aims at reviewing the recent studies on proton therapy to explore its benefits and cost-effectiveness in cancers. We strongly believe that proton therapy will be a common radiotherapy modality for most types of solid cancers in the future.
Collapse
Affiliation(s)
- Tai-Ze Yuan
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China
| | - Ze-Jiang Zhan
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, 510095, Guangdong, P. R. China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, 510045, Guangdong, P. R. China.
| |
Collapse
|
31
|
Mangan S, Leech M. Proton therapy- the modality of choice for future radiation therapy management of Prostate Cancer? Tech Innov Patient Support Radiat Oncol 2019; 11:1-13. [PMID: 32095544 PMCID: PMC7033803 DOI: 10.1016/j.tipsro.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/09/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proton Therapy (PR) is an emerging treatment for prostate cancer (Pca) patients. However, limited and conflicting data exists regarding its ability to result in fewer bladder and rectal toxicities compared to Photon Therapy (PT), as well as its cost efficiency and plan robustness. MATERIALS AND METHODS An electronic literature search was performed to acquire eligible studies published between 2007 and 2018. Studies comparing bladder and rectal dosimetry or Gastrointestinal (GI) and Genitourinary (GU) toxicities between PR and PT, the plan robustness of PR relative to motion and its cost efficiency for Pca patients were assessed. RESULTS 28 studies were eligible for inclusion in this review. PR resulted in improved bladder and rectal dosimetry but did not manifest as improved GI/GU toxicities clinically compared to PT. PR plans were considered robust when specific corrections, techniques, positioning or immobilisation devices were applied. PR is not cost effective for intermediate risk Pca patients; however PR may be cost effective for younger or high risk Pca patients. CONCLUSION PR offers improved bladder and rectal dosimetry compared to PT but this does not specifically translate to improved GI/GU toxicities clinically. The robustness of PR plans is acceptable under specific conditions. PR is not cost effective for all Pca patients.
Collapse
Key Words
- 3DC-PR, 3D Conformal- Proton Therapy
- BT, Brachytherapy
- CT, Computed Tomography
- CTCAE, Common Terminology Criteria Adverse Effects
- EPIC, Expanded Prostate Cancer Index Composite
- GI, Gastrointestinal
- GU, Genitourinary
- HT, Helical Tomography
- IGRT, Image Guidance Radiation Therapy
- IMPR, Intensity Modulated Proton Therapy
- IMRT, Intensity Modulated Radiation Therapy
- IPSS, International Prostate Symptom Scale
- ITV, Internal Target Volume
- LR, Low Risk
- MFO-IMPR, Multi Field Optimisation-Intensity Modulated Proton Therapy
- PBS, Pencil Beam Scanning
- PR, Proton Therapy
- PT, Photon Therapy
- Photon therapy
- Prostate cancer
- Proton therapy
- QALY, Quality-Adjusted Life Year
- RA, Rapid Arc
- RBE, Radiobiological Effectiveness
- RTOG, Radiation Therapy Oncology Group
- SBRT, Stereotactic Body Radiation
- SFUD, Single Field Uniform-Dose
- SW, Sliding Window
- US, Uniform Scanning
- USPT, Uniform Scanning Proton Therapy
- VMAT, Volumetric Modulated Arc Therapy
- int/HR, intermediate/High risk
Collapse
Affiliation(s)
| | - Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
32
|
Abreha SK. Model-based cost-effectiveness analysis of external beam radiation therapy for the treatment of localized prostate cancer: a systematic review. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2019; 17:10. [PMID: 31139024 PMCID: PMC6528358 DOI: 10.1186/s12962-019-0178-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 11/11/2022] Open
Abstract
Background External beam radiotherapy is the recommended but expensive treatment option for localized prostate cancer. Prostate cancer is the most common cancer in men worldwide. A cost-effectiveness study is needed given the excessive cost of radiotherapy treatment and the high prevalence of prostate cancer. The aim of this systematic review was to assess and identify studies that examined model based economic evaluation of external beam radiation therapy for the treatment of localized prostate cancer. Methods A systematic review of the published literature was conducted through MEDLINE, NHS EED (NHS Economic Evaluation Database), and Cochrane databases with a specific search strategy. The literatures were searched according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. At first 1046 citations were identified. The extracted files were imported into the Rayyan systematic review site for inclusion or exclusion based on the defined criteria. Studies included in this review were articles published between 2003 and 2017, and that conducted full-economic evaluations of the modality of external beam radiotherapy for the treatment of localized prostate cancer. Results There were 12 studies that satisfied the inclusion and exclusion criteria. Seven studies compared intensity modulated radiation therapy (IMRT) with three-dimensional conformal radiation therapy (3D-CRT), two compared IMRT with stereotactic body radiation therapy (SBRT) another two-paper assessed IMRT with proton beam therapy (PBT). One paper compared the three external-beam radio therapy options of IMRT, SBRT and PBT. Most of the studies were originated from the US and analyzed the cost data from the payer’s perspective. Most studies were supported that IMRT was cost effective when it compared with 3D-CRT. Compared with IMRT, SBRT was found to be cost-effective. Conclusions There are limited number of studies exist on the cost effectiveness of radiation therapy options for the treatment of localize prostate cancer across Europe. Most studies are originated from the US Medicare payer Perspective. Further research is need that investigate the cost effectiveness of these radiation therapy options from the societal perspective in Europe. Electronic supplementary material The online version of this article (10.1186/s12962-019-0178-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Are further studies needed to justify the use of proton therapy for paediatric cancers of the central nervous system? A review of current evidence. Radiother Oncol 2019; 133:140-148. [DOI: 10.1016/j.radonc.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022]
|
34
|
Torres-Sánchez C, Pérez-López AM, Alqahtani MN, Unciti-Broceta A, Rubio-Ruiz B. Design and manufacture of functional catalyst-carrier structures for the bioorthogonal activation of anticancer agents. NEW J CHEM 2019. [DOI: 10.1039/c8nj05704d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Achieving the activation of a latent prodrug via bio-orthogonal chemistry on the catalytic surface of a tailored Ti-[Pd] device.
Collapse
Affiliation(s)
- Carmen Torres-Sánchez
- Wolfson School of Mechanical
- Electrical and Manufacturing Engineering
- Loughborough University
- Loughborough
- UK
| | - Ana M. Pérez-López
- Cancer Research UK Edinburgh Centre
- Institute of Genetics and Molecular Medicine
- The University of Edinburgh
- Edinburgh EH4 2XR
- UK
| | - Mohammad N. Alqahtani
- Wolfson School of Mechanical
- Electrical and Manufacturing Engineering
- Loughborough University
- Loughborough
- UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre
- Institute of Genetics and Molecular Medicine
- The University of Edinburgh
- Edinburgh EH4 2XR
- UK
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre
- Institute of Genetics and Molecular Medicine
- The University of Edinburgh
- Edinburgh EH4 2XR
- UK
| |
Collapse
|
35
|
Abstract
The physical characteristics of proton therapy result in steeper dose gradients and superior dose conformality compared to photon therapy. These properties render proton therapy ideal for skull base tumors requiring dose escalation for optimal tumor control, and may also be beneficial for brain tumors as a means of mitigating radiation-related adverse effects. This review summarizes the literature regarding the role of proton therapy compared to photon therapy in the treatment of adult brain and skull base tumors.
Collapse
Affiliation(s)
- Safia K Ahmed
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN.
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
36
|
Mondlane G, Ureba A, Gubanski M, Lind PA, Siegbahn A. Estimation of the risk for radiation-induced liver disease following photon- or proton-beam radiosurgery of liver metastases. Radiat Oncol 2018; 13:206. [PMID: 30348194 PMCID: PMC6196431 DOI: 10.1186/s13014-018-1151-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Radiotherapy of liver metastases is commonly being performed with photon-beam based stereotactic body radiation therapy (SBRT). The high risk for radiation-induced liver disease (RILD) is a limiting factor in these treatments. The use of proton-beam based SBRT could potentially improve the sparing of the healthy part of the liver. The aim of this study was to use estimations of normal tissue complication probability (NTCP) to identify liver-metastases patients that could benefit from being treated with intensity-modulated proton therapy (IMPT), based on the reduction of the risk for RILD. METHODS Ten liver metastases patients, previously treated with photon-beam based SBRT, were retrospectively planned with IMPT. A CTV-based robust optimisation (accounting for setup and range uncertainties), combined with a PTV-based conventional optimisation, was performed. A robustness criterion was defined for the CTV (V95% > 98% for at least 10 of the 12 simulated scenarios). The NTCP was estimated for different endpoints using the Lyman-Kutcher-Burman model. The ΔNTCP (NTCPIMPT - NTCPSBRT) for RILD was registered for each patient. The patients for which the NTCP (RILD) < 5% were also identified. A generic relative biological effectiveness of 1.1 was assumed for the proton beams. RESULTS For all patients, the objectives set for the PTV and the robustness criterion set for the CTV were fulfilled with the IMPT plans. An improved sparing of the healthy part of the liver, right kidney, lungs, spinal cord and the skin was achieved with the IMPT plans, compared to the SBRT plans. Mean liver doses larger than the threshold value of 32 Gy led to NTCP values for RILD exceeding 5% (7 patients with SBRT and 3 patients with the IMPT plans). ΔNTCP values (RILD) ranging between - 98% and - 17% (7 patients) and between 0 and 2% (3 patients), were calculated. CONCLUSIONS In this study, liver metastases patients that could benefit from being treated with IMPT, based on the NTCP reductions, were identified. The clinical implementation of such a model-based approach to select liver metastases patients to proton therapy needs to be made with caution while considering the uncertainties involved in the NTCP estimations.
Collapse
Affiliation(s)
- Gracinda Mondlane
- Department of Physics – Medical Radiation Physics, Stockholm University, Stockholm, Sweden
- Department of Physics, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Ana Ureba
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Gubanski
- Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - P A Lind
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Albert Siegbahn
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
37
|
Bravatà V, Minafra L, Cammarata FP, Pisciotta P, Lamia D, Marchese V, Petringa G, Manti L, Cirrone GA, Gilardi MC, Cuttone G, Forte GI, Russo G. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations. Br J Radiol 2018; 91:20170934. [PMID: 29888960 DOI: 10.1259/bjr.20170934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non-conventional linear energy transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. METHODS We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different linear energy transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non-tumorigenic MCF10A), exposed to the same sublethal dose of 9 Gy. RESULTS Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. CONCLUSION Here, we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.
Collapse
Affiliation(s)
- Valentina Bravatà
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Luigi Minafra
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Francesco Paolo Cammarata
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Pietro Pisciotta
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy.,2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy.,3 Department of Physics and Astronomy, University of Catania , Catania , Italy
| | - Debora Lamia
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Valentina Marchese
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Giada Petringa
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Lorenzo Manti
- 4 Department of Physics, University of Naples Federico II, via Cintia, I-80126 Naples , Italy
| | - Giuseppe Ap Cirrone
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Maria Carla Gilardi
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy.,5 Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca , Milan , Italy
| | - Giacomo Cuttone
- 2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| | - Giusi Irma Forte
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy
| | - Giorgio Russo
- 1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR) , Cefalù , Italy.,2 National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS , Catania , Italy
| |
Collapse
|
38
|
Proton therapy for pediatric malignancies: Fact, figures and costs. A joint consensus statement from the pediatric subcommittee of PTCOG, PROS and EPTN. Radiother Oncol 2018; 128:44-55. [PMID: 29937209 DOI: 10.1016/j.radonc.2018.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Radiotherapy plays an important role in the management of childhood cancer, with the primary aim of achieving the highest likelihood of cure with the lowest risk of radiation-induced morbidity. Proton therapy (PT) provides an undisputable advantage by reducing the radiation 'bath' dose delivered to non-target structures/volume while optimally covering the tumor with tumoricidal dose. This treatment modality comes, however, with an additional costs compared to conventional radiotherapy that could put substantial financial pressure to the health care systems with societal implications. In this review we assess the data available to the oncology community of PT delivered to children with cancer, discuss on the urgency to develop high-quality data. Additionally, we look at the advantage of combining systemic agents with protons and look at the cost-effectiveness data published so far.
Collapse
|
39
|
Abstract
The use of radiotherapy in the treatment of prostate cancer has evolved from treatments utilizing large fields with hand placed blocks to radiotherapy treatments given with a linear accelerator moving around the patient on a robotic arm. These technologic developments have allowed radiation dose escalations resulting in improvements in disease and patient reported outcomes with longer biochemical disease-free survival (DFS) as well as improved quality of life. Increased costs have accompanied these technologic improvements with some private payers questioning the increased cost of the newer treatments and in some instances refusing to pay for some treatment modalities such as intensity-modulated radiotherapy (IMRT) or proton beam therapy (PBT). Cost-effectiveness analysis have been used in an attempt to illustrate these new treatments were cost-effective when compared to the older treatments. Cost-effectiveness analyses will need to be adapted in the current health care environment to provide an assessment of value as many payers, including medicare, move to a value-based reimbursement system.
Collapse
Affiliation(s)
- Andre Konski
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Pennsylvania, USA.,Leonard Davis Institute of Health Economics, University of Pennsylvania, Pennsylvania, USA
| |
Collapse
|
40
|
Lühr A, von Neubeck C, Pawelke J, Seidlitz A, Peitzsch C, Bentzen SM, Bortfeld T, Debus J, Deutsch E, Langendijk JA, Loeffler JS, Mohan R, Scholz M, Sørensen BS, Weber DC, Baumann M, Krause M. "Radiobiology of Proton Therapy": Results of an international expert workshop. Radiother Oncol 2018; 128:56-67. [PMID: 29861141 DOI: 10.1016/j.radonc.2018.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022]
Abstract
The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full advantage of the opportunities offered by proton radiation for clinical radiotherapy requires a better understanding of the radiobiological effects of protons alone or combined with drugs or immunotherapy on normal tissues and tumors. This report summarizes the main results of the international expert workshop "Radiobiology of Proton Therapy" that was held in November 2016 in Dresden. It addresses the major topics (1) relative biological effectiveness (RBE) in proton beam therapy, (2) interaction of proton radiobiology with radiation physics in current treatment planning, (3) biological effects in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data repositories will be most important to achieve this goal.
Collapse
Affiliation(s)
- Armin Lühr
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health and the Maryland Proton Therapy Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Thomas Bortfeld
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, University Heidelberg German Consortium for Translational Oncology (DKTK), Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eric Deutsch
- Department of Radiation Oncology Gustave Roussy Cancer Campus, INSERM, 1030 Villejuif, France; Université Paris-Sud, Faculté de Medecine du Kremlin Bicetre Paris Sud, Le Kremlin-Bicêtre, France
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, USA
| | - Radhe Mohan
- Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, USA
| | - Michael Scholz
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Brita S Sørensen
- Dept. Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Michael Baumann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mechthild Krause
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | | |
Collapse
|
41
|
Blanchard P, Gunn GB, Lin A, Foote RL, Lee NY, Frank SJ. Proton Therapy for Head and Neck Cancers. Semin Radiat Oncol 2018; 28:53-63. [PMID: 29173756 DOI: 10.1016/j.semradonc.2017.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of its sharp lateral penumbra and steep distal fall-off, proton therapy offers dosimetric advantages over photon therapy. In head and neck cancer, proton therapy has been used for decades in the treatment of skull-base tumors. In recent years the use of proton therapy has been extended to numerous other disease sites, including nasopharynx, oropharynx, nasal cavity and paranasal sinuses, periorbital tumors, skin, and salivary gland, or to reirradiation. The aim of this review is to present the physical properties and dosimetric benefit of proton therapy over advanced photon therapy; to summarize the clinical benefit described for each disease site; and to discuss issues of patient selection and cost-effectiveness.
Collapse
Affiliation(s)
- Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Gary Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Robert L Foote
- Departments of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
42
|
Mee T, Kirkby NF, Kirkby KJ. Mathematical Modelling for Patient Selection in Proton Therapy. Clin Oncol (R Coll Radiol) 2018; 30:299-306. [PMID: 29452724 DOI: 10.1016/j.clon.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022]
Abstract
Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality-adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery.
Collapse
Affiliation(s)
- T Mee
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University, Manchester Academic Health Science Centre, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK.
| | - N F Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University, Manchester Academic Health Science Centre, Manchester, UK
| | - K J Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
43
|
Orecchia R, Fossati P, Rossi S. The National Center for Oncological Hadron Therapy: Status of the Project and Future Clinical use of the Facility. TUMORI JOURNAL 2018; 95:169-76. [DOI: 10.1177/030089160909500207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background Hadron therapy is an advanced radiotherapy technique that employs charged particle beams. Several particles (pions, oxygen, neon and helium ions) have been investigated in the past, but at present only protons and carbon ions are used in clinical practice. Hadron therapy has been used for more than 50 years, more than 50,000 patients have been treated worldwide, and many new facilities are being built. Indications are still a matter of debate. The Italian National Center for Oncological Hadron Therapy (CNAO) is under construction in Pavia and will begin to treat patients in the near future. Methods The CNAO will be a center capable of using both protons and carbon ions. In the first phase, three rooms with vertical and horizontal fixed beams will be available, subsequently the center will be upgraded with two more rooms equipped with a rotating gantry. The facility will use active scanning delivery systems and state-of-the-art immobilization and setup verification devices. One additional room will be devoted to physical and radiobiological research. The CNAO will be a high-patient-throughput facility capable of treating more than 3,000 patients per year. Seven areas of interest have been identified: lung cancer, liver cancer, head and neck malignancies, pediatric solid cancers, eye tumors, sarcoma and central nervous system cancers. A disease-specific working group has been created for each area and has defined selection criteria and protocols to be used at the CNAO. Two more working groups are being set up on gynecological and digestive (pancreas, biliary tract and rectum) tumors. All the patients will participate in clinical trials to establish with sound evidence the real indications for hadron therapy. National and international cooperation networks are being set up to facilitate patient referral and follow-up. A medical service is already operative to assist patients and in selected case to refer them abroad. Conclusions The CNAO will be the only carbon ion facility in Italy and will have an international basin. Close cooperation with existing oncological centers is of paramount importance to fully exploit its potential.
Collapse
Affiliation(s)
- Roberto Orecchia
- Università di Milano, European Institute of Oncology, National Center for Oncological Hadron therapy, Milan, Italy
| | - Piero Fossati
- Università di Milano, National Center for Oncological Hadron therapy, Milan, Italy
| | - Sandro Rossi
- National Centre for Oncological Hadron therapy, Milan, Italy
| |
Collapse
|
44
|
Glaser SM, Kalash R, Bongiorni DR, Roberts MS, Balasubramani GK, Jacobs BL, Beriwal S, Heron DE, Greenberger JS. Challenges in the Analysis of Outcomes for Surgical Compared to Radiotherapy Treatment of Prostate Cancer. In Vivo 2018; 32:113-120. [PMID: 29275307 PMCID: PMC5892645 DOI: 10.21873/invivo.11212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Prostate cancer can be treated with radical prostatectomy (RP), external-beam radiotherapy (EBRT), or brachytherapy (BT). These modalities have similar cancer-related outcomes. We used an innovative method to analyze the cost of such treatment. MATERIALS AND METHODS We queried our Institution's Insurance Division [University of Pittsburgh Medical Center (UPMC) Health Plan] beneficiaries from 2003-2008, who were diagnosed with prostate cancer and also queried the UPMC tumor registry for all patients with prostate cancer treated at our Institution. In a de-identified manner, data from the Health Plan and Tumor Registry were merged. RESULTS A total of 354 patients with non-metastatic disease with treatment initiated within 9 months of diagnosis were included (RP=236, EBRT=55, and BT=63). Radiotherapy-treated patients tended to be older, higher-risk, and have more comorbidities. Unadjusted median total health care expenditures during the first year after diagnosis were: RP: $16,743, EBRT: $47,256, and BT: $23,237 (p<0.0005). A propensity score-matched model comparing RP and EBRT demonstrated median total health care expenditures during year one: RP: $8,189, EBRT: $10,081; p=0.48. In a propensity-matched model comparing RP and BT, the median total health care expenditures during year one were: RP: $18,143, BT: $26,531; p=0.015 and per year during years 2 through 5 from diagnosis were: RP: $5,913, BT: $6,110; p=0.68. CONCLUSION This pilot study demonstrates the feasibility of combining healthcare costs from the payer's perspective with clinical data from a Tumor Registry within an IDFS and represents a novel approach to investigating the economic impact of cancer treatment.
Collapse
Affiliation(s)
- Scott M Glaser
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Ronny Kalash
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Dante R Bongiorni
- Department of Health Policy and Management, School of Public Health, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Mark S Roberts
- Department of Health Policy and Management, School of Public Health, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Goundappa K Balasubramani
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Bruce L Jacobs
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, U.S.A
| | - Sushil Beriwal
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Dwight E Heron
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
45
|
Indelicato DJ, Bradley JA, Sandler ES, Aldana PR, Sapp A, Gains JE, Crellin A, Rotondo RL. Clinical outcomes following proton therapy for children with central nervous system tumors referred overseas. Pediatr Blood Cancer 2017; 64. [PMID: 28544746 DOI: 10.1002/pbc.26654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND International, multidisciplinary care of children with central nervous system (CNS) tumors presents unique challenges. The aim of this study is to report patient outcomes of U.K. children referred for proton therapy to a North American facility. METHODS From 2008 to 2016, 166 U.K. children with approved CNS tumors were treated with proton therapy at a single academic medical center in the United States. Median age was 7 years (range, 1-19). Median follow-up was 2.6 years. RESULTS The 3-year actuarial overall survival (OS) and local control (LC) rates were 96% and 91%, respectively, for the overall group, 92% and 85% for the ependymoma subgroup (n = 57), 95% and 88% for the low-grade glioma subgroup (n = 54), and 100% and 100%, respectively, for the craniopharyngioma subgroup (n = 45). Cyst expansion was observed in 13 patients, including one case resulting in visual impairment. Serious side effects included new-onset seizures in three patients (1.8%), symptomatic vasculopathy in three patients (1.8%), and symptomatic brainstem necrosis in one patient (0.6%). CONCLUSIONS In this cohort of British children referred overseas for proton therapy, disease control does not appear compromised, toxicity is acceptable, and improvement in long-term function is anticipated in survivors owing to the reduced brain exposure afforded by proton therapy.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Eric S Sandler
- Department of Pediatric Hematology/Oncology, Nemours Children's Health System, Jacksonville, Florida
| | - Philipp R Aldana
- Department of Neurosurgery, University of Florida College of Medicine, Jacksonville, Florida
| | - Amy Sapp
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Jennifer E Gains
- NHS England Radiotherapy Clinical Reference Group, London, United Kingdom
| | - Adrian Crellin
- NHS England Radiotherapy Clinical Reference Group, London, United Kingdom
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
46
|
Schroeck FR, Jacobs BL, Bhayani SB, Nguyen PL, Penson D, Hu J. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy. Eur Urol 2017; 72:712-735. [PMID: 28366513 PMCID: PMC5623181 DOI: 10.1016/j.eururo.2017.03.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/17/2017] [Indexed: 02/02/2023]
Abstract
CONTEXT Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. OBJECTIVE To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. EVIDENCE ACQUISITION We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. EVIDENCE SYNTHESIS RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio <$50 000 per quality-adjusted life year. Proton beam therapy is costlier than IMRT and its cost effectiveness remains unclear given the limited comparative data on outcomes. Using the Grades of Recommendation, Assessment, Development and Evaluation approach, the quality of evidence was low for RARP and IMRT, and very low for proton beam therapy. CONCLUSIONS Treatment with new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. PATIENT SUMMARY We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated with improved cure and reduced morbidity, and whether the increased cost is worth the expense.
Collapse
Affiliation(s)
- Florian Rudolf Schroeck
- White River Junction VA Medical Center, White River Junction, VT, USA; Section of Urology and Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA; The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA.
| | - Bruce L Jacobs
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Research on Health Care, Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sam B Bhayani
- Division of Urology, Washington University School of Medicine, St Louis, MO, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David Penson
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, TN, USA
| | - Jim Hu
- Department of Urology, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
47
|
Becerra V, Ávila M, Jimenez J, Cortes-Sanabria L, Pardo Y, Garin O, Pont A, Alonso J, Cots F, Ferrer M. Economic evaluation of treatments for patients with localized prostate cancer in Europe: a systematic review. BMC Health Serv Res 2016; 16:541. [PMID: 27716267 PMCID: PMC5048403 DOI: 10.1186/s12913-016-1781-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 09/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our objective was to assess the efficiency of treatments in patients with localized prostate cancer, by synthesizing available evidence from European economic evaluations through systematic review. METHODS Articles published 2000-2015 were searched in MEDLINE, EMBASE and NHS EED (Prospero protocol CRD42015022063). Two authors independently selected studies for inclusion and extracted the data. A third reviewer resolved discrepancies. We included European economic evaluations or cost comparison studies, of any modality of surgery or radiotherapy treatments, regardless the comparator/s. Drummond's Checklist was used for quality assessment. RESULTS After reviewing 8,789 titles, 13 European eligible studies were included: eight cost-utility, two cost-effectiveness, one cost-minimization, and two cost-comparison analyses. Of them, five compared interventions with expectant management, four contrasted robotic with non robotic-assisted surgery, three assessed new modalities of radiotherapy, and three compared radical prostatectomy with brachytherapy. All but two studies scored ≥8 in the quality checklist. Considering scenario and comparator, three interventions were qualified as dominant strategies (active surveillance, robotic-assisted surgery and IMRT), and six were cost-effective (radical prostatectomy, robotic-assisted surgery, IMRT, proton therapy, brachytherapy, and 3DCRT). However, QALY gains in most of them were small. For interventions considered as dominant strategies, QALY gain was 0.013 for active surveillance over radical prostatectomy; and 0.007 for robotic-assisted over non-robotic techniques. The highest QALY gains were 0.57-0.86 for radical prostatectomy vs watchful waiting, and 0.72 for brachytherapy vs conventional radiotherapy. CONCLUSIONS Currently, relevant treatment alternatives for localized prostate cancer are scarcely evaluated in Europe. Very limited available evidence supports the cost-effectiveness of radical prostatectomy over watchful waiting, brachytherapy over radical prostatectomy, and new treatment modalities over traditional procedures. Relevant disparities were detected among studies, mainly based on effectiveness. These apparently contradictory results may be reflecting the difficulty of interpreting small differences between treatments regarding QALY gains.
Collapse
Affiliation(s)
- Virginia Becerra
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mónica Ávila
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,CIBER en Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Jorge Jimenez
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Laura Cortes-Sanabria
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, IMSS, Guadalajara, México
| | - Yolanda Pardo
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER en Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Olatz Garin
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,CIBER en Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Angels Pont
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER en Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Jordi Alonso
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,CIBER en Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
| | - Francesc Cots
- Epidemiology and Evaluation Department, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Health Services Research on Chronic Patients Network (Red de Investigación en Servicios de Salud en Enfermedades Crónicas [REDISSEC]), Barcelona, Spain
| | - Montse Ferrer
- Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | |
Collapse
|
48
|
Chan TY, Tan PW, Tang JI. Proton therapy for early stage prostate cancer: is there a case? Onco Targets Ther 2016; 9:5577-86. [PMID: 27672328 PMCID: PMC5024773 DOI: 10.2147/ott.s108559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Proton-beam therapy (PBT) for prostate cancer has been in used for several decades, with its technique evolving significantly over this period. A growing number of centers now routinely utilize pencil-beam scanning as an advanced technique of PBT. Interest and controversy concerning its use have recently come under scrutiny. While the past decade has produced an assemblage of evidence suggesting that PBT is safe and effective for early stage prostate cancer, it is still unknown whether the theoretical dosimetric advantages of PBT translate into meaningful clinical improvements over routine intensity-modulated radiation therapy, which is commonly used for these patients. Outcomes from early trials using whole courses of PBT have shown mixed results when compared with routine intensity-modulated radiation therapy. Therefore, randomized trials comparing these two techniques should be undertaken, as this would help in defining the role of PBT for this patient group. This article aims to describe the basics of PBT, review the reasons for the growing interest in PBT, review the evidence for PBT, review the controversy surrounding PBT, and inquire about PBT's future in the treatment of prostate cancer, with attention to its physical properties, comparative clinical and cost-effectiveness, and advances in its delivery.
Collapse
Affiliation(s)
- Tabitha Y Chan
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Poh Wee Tan
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Johann I Tang
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| |
Collapse
|
49
|
Main C, Dandapani M, Pritchard M, Dodds R, Stevens SP, Thorp N, Taylor RE, Wheatley K, Pizer B, Morrall M, Phillips R, English M, Kearns PR, Wilne S, Wilson JS. The effectiveness and safety of proton beam radiation therapy in children with malignant central nervous system (CNS) tumours: protocol for a systematic review. Syst Rev 2016; 5:124. [PMID: 27460473 PMCID: PMC4962509 DOI: 10.1186/s13643-016-0285-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The aim of this study is to use a systematic review framework to identify and synthesise the evidence on the use of proton beam therapy (PBT) for the treatment of children with CNS tumours and where possible compare this to the use of photon radiotherapy (RT). METHODS Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction. Twelve electronic databases have been searched, and further citation, hand searching and reference checking will be employed. Studies assessing the effects of PBT used either alone or as part of a multimodality treatment regimen in children with CNS tumours will be included. Relevant economic evaluations will also be identified. The outcomes are survival (overall, progression-free, event-free, disease-free), local and regional control rates, short- and long-term adverse events, functional status measures and quality of survival. Two reviewers will independently screen and select studies for inclusion in the review. All interventional study designs will be eligible for inclusion in the review. However, initial scoping searches indicate the evidence base is likely to be limited to case series studies, with no studies of a higher quality being identified. Quality assessment will be undertaken using pre-specified criteria and tailored to study design if applicable. Studies will be combined using a narrative synthesis, with differences in results between studies highlighted and discussed in relation to the patient population, intervention and study quality. Where appropriate, if no studies of a comparative design are identified, outcomes will be compared against a range of estimates from the literature for similar populations and treatment regimens from the best available evidence from studies that include the use of advanced conventional photon therapy. DISCUSSION The evidence base for the use of PBT in children with CNS tumours is likely to be relatively sparse, highly heterogeneous and potentially of a low quality with small sample sizes. Furthermore, selection and publication biases may limit the internal and external validity of studies. However, any tentative results from the review on potential treatment effects can be used to plan better quality research studies that are of a design appropriate for outcome comparison with conventional therapy. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42015029583.
Collapse
Affiliation(s)
- Caroline Main
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | | | | | | | - Simon P. Stevens
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | - Nicky Thorp
- The Clatterbridge Cancer Centre, Liverpool, UK
| | | | - Keith Wheatley
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | - Barry Pizer
- Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | | | - Robert Phillips
- Leeds General Infirmary, Leeds, UK
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Martin English
- Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Pamela R. Kearns
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
- Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Sophie Wilne
- Queen’s Medical Centre, Nottingham University Hospitals’ NHS Trust, Nottingham, UK
| | - Jayne S. Wilson
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| |
Collapse
|
50
|
Quik E, Feenstra T, Postmus D, Slotman B, Leemans C, Krabbe P, Langendijk J. Individual patient information to select patients for different radiation techniques. Eur J Cancer 2016; 62:18-27. [DOI: 10.1016/j.ejca.2016.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 01/19/2023]
|