1
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
2
|
López-López M, Regueiro U, Bravo SB, Chantada-Vázquez MDP, Pena C, Díez-Feijoo E, Hervella P, Lema I. Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35551575 PMCID: PMC9123485 DOI: 10.1167/iovs.63.5.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The qualitative approach followed in this study aims to obtain an extensive view of the keratoconus (KC) tear proteome, which could highlight proteins previously undetected and enlarge our knowledge of the disease's pathophysiology. Methods Twenty-five patients diagnosed with KC and 25 control subjects were studied in a prospective, cross-sectional study. KC screening examinations, including clinical and tomographic examinations, were performed on all participants. Tear samples were collected using Schirmer strips and analyzed by liquid chromatography-tandem mass spectrometry in a data-dependent workflow. A spectral count was used as a semiquantification tool. The tear proteomes of both groups were identified and profiled, and the functional interactions and biological characterization of differential proteins were analyzed using in silico tools. Results We identified a total of 232 proteins, of whom 133 were expressed in both groups’ samples; 41 were observed only in control samples and 58 were identified just in tears of patients with KC. A semiquantitative analysis showed the dysregulation of 17 proteins in the KC samples. An in silico analysis linked proteins only expressed in KC samples to oxidative stress, skin development, and apoptosis. The dysregulation of proteins involved in iron transport, inflammation, oxidative stress, and protease inhibition was observed in the semiquantitative results. Conclusions A shotgun analysis showed that the tear proteome of patients with KC differed from controls by more than one-third of the total proteins identified, highlighting the relationship of the proteins only expressed in KC tears with processes of cell death, oxidative damage, and inflammation. The underexpression of proteins involved in iron pathways might support the iron imbalance as a contributing factor to cellular damage and death in KC disease.
Collapse
Affiliation(s)
- Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Carmen Pena
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elío Díez-Feijoo
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Pan Z, Zhang Y, Li C, Yin Y, Liu R, Zheng G, Fan W, Zhang Q, Song Z, Guo Z, Rong J, Shen Y. MiR-296-5p ameliorates deep venous thrombosis by inactivating S100A4. Exp Biol Med (Maywood) 2021; 246:2259-2268. [PMID: 34192971 DOI: 10.1177/15353702211023034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep venous thrombosis is one of the most common venous thromboembolic diseases and has a low cure rate and a high postoperative recurrence rate. Furthermore, emerging evidence indicates that microRNAs are involved in deep venous thrombosis. miR-296-5p is an important microRNA that plays a critical role in various cellular functions, and S100A4 is closely related to vascular function. miR-296-5p is downregulated in deep venous thrombosis patients, and its predicted target S100A4 is upregulated in deep venous thrombosis patients. Therefore, it was hypothesized that miR-296-5p may play a vital role in the development of deep venous thrombosis by targeting S100A4. An Ox-LDL-stimulated HUVEC and deep venous thrombosis mouse model was employed to detect the biological functions of miR-296-5p and S100A4. Dual luciferase reporter assays and pull-down assays were used to authenticate the interaction between miR-296-5p and S100A4. ELISA and Western blotting were employed to detect the protein levels of thrombosis-related factors and the endothelial-to-mesenchymal transition (EndMT)-related factors. The miR-296-5p levels were reduced, while the S100A4 levels were enhanced in deep venous thrombosis patients, and the miR-296-5p levels were negatively correlated with the S100A4 levels in deep venous thrombosis patients. miR-296-5p suppressed S100A4 expression by targeting the 3' UTR of S100A4. MiR-296-5p knockdown accelerated ox-LDL-induced HUVEC apoptosis, oxidative stress, thrombosis-related factor expression, and EndMT, while S100A4 knockdown antagonized these effects in ox-LDL-induced HUVECs. S100A4 knockdown reversed the effect induced by miR-296-5p knockdown. Moreover, the in vivo studies revealed that miR-296-5p knockdown in deep venous thrombosis mice exacerbated deep venous thrombosis formation, whereas S100A4 knockdown had the opposite effect. These results indicate that elevated miR-296-5p inhibits deep venous thrombosis formation by inhibiting S100A4 expression. Both miR-296-5p and S100A4 may be potential diagnostic markers and therapeutic targets for deep venous thrombosis.
Collapse
Affiliation(s)
- Zhichang Pan
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chuanyong Li
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Yuan Yin
- Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Rui Liu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Guangfeng Zheng
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Weijian Fan
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Qiang Zhang
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Zhenyu Song
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Ziyue Guo
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Expression and modulation of S100A4 protein by human mast cells. Cell Immunol 2018; 332:85-93. [PMID: 30097176 DOI: 10.1016/j.cellimm.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
S100A4 protein is expressed in fibroblasts during tissue remodelling and in cancer stem cells and it induces the metastatic spread of tumor cells. In mast cells (MCs) S100A4 have been found in some pathological conditions, but its function in normal MCs remains to be described. The purpose of this study was to characterize the cellular localization of the S100A4 protein in MCs of human tissues with inflammatory or tumor disorders and, to determine the consequence of reducing its expression in MC response. We found that tissue resident MCs stained positive to S100A4. Both human HMC-1 cell line and resting CD34+-derived MCs expressed S100A4, whose levels were differentially modulated upon MC activation. Downregulation of the S100A4 protein resulted in MC growth inhibition, enhanced apoptosis and deregulation of MMP-1 and MMP-10 production. Our results suggest that S100A4 is also playing a role in the MC life cycle and functions.
Collapse
|
5
|
Louka ML, Ramzy MM. Involvement of fibroblast-specific protein 1 (S100A4) and matrix metalloproteinase-13 (MMP-13) in CCl4-induced reversible liver fibrosis. Gene 2015; 579:29-33. [PMID: 26721462 DOI: 10.1016/j.gene.2015.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/06/2015] [Accepted: 12/18/2015] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The intense basic research on the molecular and cellular mechanisms of liver fibrosis regression intends to translate these findings into new therapies targeting such pathways in human liver disease. Fibrosis regression is rapidly initiated in mouse models of fibrosis within days after termination of the cause, so in this study, we investigated the expression of S100A4 and MMP-13 during liver fibrogenesis and remodeling. METHODS Thirty rats were divided into three groups: control group, fibrotic group, and fibrotic resolution group (10 each). The rats were sacrificed 48h and 96h after cessation of CCL-4, respectively. Liver tissue levels of S100A4 mRNA and S100A4 protein, MMP-13 mRNA and serum levels of serum TGF-β1, ALT and AST were determined. RESULTS Expression of S100A4 was increased during fibrotic stage and declined during resolution which was in correlation with the pro-fibrotic marker TGF-β1 with concordance about 90%, while MMP-13 expression increased in both stages reaching to 40 fold during resolution. CONCLUSION These findings suggested that S100A4 level in the liver tissue was related positively with liver fibrosis making it a good marker for liver fibrogenesis and also a good target for novel antifibrotic strategies.
Collapse
Affiliation(s)
- Manal L Louka
- Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maggie M Ramzy
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
6
|
Kim SS, Michelsons S, Creber K, Rieder MJ, Hamilton DW. Nifedipine and phenytoin induce matrix synthesis, but not proliferation, in intact human gingival connective tissue ex vivo. J Cell Commun Signal 2015; 9:361-75. [PMID: 26296421 DOI: 10.1007/s12079-015-0303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
Drug-induced gingival enlargement (DIGE) is a fibrotic condition that can be caused by the antihypertensive drug nifedipine and the anti-seizure drug phenytoin, but the molecular etiology of this type of fibrosis is not well understood and the role of confounding factors such as inflammation remains to be fully investigated. The aim of this study was to develop an ex vivo gingival explant system to allow investigation of the effects of nifedipine and phenytoin alone on human gingival tissue. Comparisons were made to the histology of human DIGE tissue retrieved from individuals with DIGE. Increased collagen, fibronectin, and proliferating fibroblasts were evident, but myofibroblasts were not detected in DIGE samples caused by nifedipine and phenytoin. In healthy gingiva cultured in nifedipine or phenytoin-containing media, the number of cells positive for p-SMAD2/3 increased, concomitant with increased CCN2 and periostin immunoreactivity compared to untreated explants. Collagen content assessed through hydroxyproline assays was significantly higher in tissues cultured with either drug compared to control tissues, which was confirmed histologically. Matrix fibronectin levels were also qualitatively greater in tissues treated with either drug. No significant differences in proliferating cells were observed between any of the conditions. Our study demonstrates that nifedipine and phenytoin activate canonical transforming growth factor-beta signaling, CCN2 and periostin expression, as well as increase collagen density, but do not influence cell proliferation or induce myofibroblast differentiation. We conclude that in the absence of confounding variables, nifedipine and phenytoin alter matrix homeostasis in gingival tissue explants ex vivo, and drug administration is a significant factor influencing ECM accumulation in gingival enlargement.
Collapse
Affiliation(s)
- Shawna S Kim
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Sarah Michelsons
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Kendal Creber
- Graduate Program of Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Douglas W Hamilton
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada. .,Graduate Program of Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada. .,Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Dental Sciences Building, London, ON, N6A 5C1, Canada.
| |
Collapse
|
7
|
Liew K, Yong PVC, Navaratnam V, Lim YM, Ho ASH. Differential proteomic analysis on the effects of 2-methoxy-1,4-naphthoquinone towards MDA-MB-231 cell line. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:517-527. [PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/31/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line. PURPOSE To investigate the molecular mechanism underlying the anti-metastatic effects of MNQ towards MDA-MB-231 cell line via the comparative proteomic approach. STUDY DESIGN/METHODS Differentially expressed proteins in MNQ-treated MDA-MB-231 cells were identified by using two-dimensional gel electrophoresis coupled with tandem mass spectrometry. Proteins and signalling pathways associated with the identified MNQ-altered proteins were studied by using Western blotting. RESULTS Significant modulation of MDA-MB-231 cell proteome was observed upon treatment with MNQ in which the expressions of 19 proteins were found to be downregulated whereas another eight were upregulated (>1.5 fold, p < 0.05). The altered proteins were mainly related to cytoskeletal functions and regulations, mRNA processing, protein modifications and oxidative stress response. Notably, two of the downregulated proteins, protein S100-A4 (S100A4) and laminin-binding protein (RPSA) are known to play key roles in driving metastasis and were verified using Western blotting. Further investigation using Western blotting also revealed that MNQ decreased the activations of pro-metastatic ERK1/2 and NF-κB signalling pathways. Moreover, MNQ was shown to stimulate the expression of the metastatic suppressor, E-cadherin. CONCLUSION This study reports a proposed mechanism by which MNQ exerts its anti-metastatic effects against MDA-MB-231 cell line. The findings from this study offer new insights on the potential of MNQ to be developed as a novel anti-metastatic agent.
Collapse
Affiliation(s)
- Kitson Liew
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Phelim Voon Chen Yong
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Visweswaran Navaratnam
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
| | - Anthony Siong Hock Ho
- School of Biosciences, Taylor's University, No.1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Erlandsson MC, Svensson MD, Jonsson IM, Bian L, Ambartsumian N, Andersson S, Peng Z, Vääräniemi J, Ohlsson C, Andersson KME, Bokarewa MI. Expression of metastasin S100A4 is essential for bone resorption and regulates osteoclast function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2653-2663. [PMID: 23830916 DOI: 10.1016/j.bbamcr.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/31/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE S100A4 is a Ca-binding protein that regulates cell growth, survival, and motility. The abundant expression of S100A4 in rheumatiod arthritis contributes to the invasive growth of joint tissue and to bone damage. In the present study, we analysed the role of S100A4 in bone homeostasis. METHODS Peripheral quantitative computed tomography and histomorphometric analysis were performed in mice lacking the entire S100A4 protein (S100A4KO) and in wild-type (WT) counterparts treated with shRNA-lentiviral constructs targeting S100A4 (S100A4-shRNA). Control groups consisted of sex-matched WT counterparts and WT mice treated with a non-targeting RNA construct. RESULTS S100A4 deficiency was associated with higher trabecular and cortical bone mass, increased number and thickness of trabeculi combined with larger periosteal circumference and higher predicted bone strength. S100A4 inhibition by shRNA led to an increase in cortical bone in WT mice. S100A4-deficieny was associated with a reduced number of functional osteoclasts. S100A4KO and S100A4-shRNA-treated bone marrow progenitors gave rise to a large number of small TRAP+ cells with few nuclei and few pseudopodial processes. Poor osteoclastogenesis and the low resorptive capacity in S100A4Ko mice may be linked to low levels of surface integrins, impaired adhesion capacity, and poor multinucleation in S100A4-deficient osteoclasts, as well as a low content of proteolytic enzymes cathepsin K and MMP3 and MMP9 to break down the organic matrix. CONCLUSION S100A4 emerges as a negative regulator of bone metabolism potentially responsible for the excessive bone turnover in conditions marked by high levels of S100A4 protein, such as inflammation and rheumatoid arthritis.
Collapse
Affiliation(s)
- Malin C Erlandsson
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | - Mattias D Svensson
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | - Ing-Marie Jonsson
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | - Li Bian
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | | | - Sofia Andersson
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | | | | | - Claes Ohlsson
- Center for Bone and Arthritis Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | - Karin M E Andersson
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research at Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden.
| |
Collapse
|
10
|
Erlandsson MC, Bian L, Jonsson IM, Andersson KM, Bokarewa MI. Metastasin S100A4 is a mediator of sex hormone-dependent formation of the cortical bone. Mol Endocrinol 2013; 27:1311-21. [PMID: 23798573 DOI: 10.1210/me.2012-1398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
S100A4 is a Ca-binding protein participating in regulation of cell growth, survival, and motility. Here we studied the role of S100A4 protein in sex hormone-regulated bone formation. Bone mineral density in the trabecular and cortical compartments was evaluated in female S100A4 knockout (KO), in matched wild-type (WT) counterparts, and in WT mice treated with lentiviral small hairpin RNA construct inhibiting the S100A4 gene transcription or with a nontargeting construct, by peripheral quantitative computed tomography. The effect of sex hormones on bone was measured 5 weeks after ovariectomy (OVX) and/or dehydroepiadrosterone treatment. S100A4KO had an excessive trabecular and cortical bone formation compared with the age- and sex-matched WT mice. S100A4KO had an increased periosteal circumference (P = .001), cortical thickness (P = .056), and cortical area (P = .003), which predicted 20% higher bone strength in S100A4KO (P = .013). WT mice treated with small hairpin RNA-S100A4 showed an increase of the cortical bone parameters in a fashion identical with S100A4KO mice, indicating the key role of S100A4 in the changed bone formation. S100A4KO mice had higher serum levels of osteocalcin and a higher number of osteocalcin-positive osteoblasts under the periosteum. OVX-S100A4 resulted in the loss of the cortical bone supported by high CTX-I levels, whereas no such changes were observed in OVX-WT mice. S100A4KO mice resisted the dehydroepiadrosterone -induced bone formation observed in the WT counterparts. Our study indicates that S100A4 is a regulator of bone formation, which inhibits bone excess in the estrogen-sufficient mice and prevents the cortical bone loss in the estrogen-deprived mice.
Collapse
Affiliation(s)
- Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Göteborg, S-41346 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Dahlmann M, Sack U, Herrmann P, Lemm M, Fichtner I, Schlag PM, Stein U. Systemic shRNA mediated knock down of S100A4 in colorectal cancer xenografted mice reduces metastasis formation. Oncotarget 2013; 3:783-97. [PMID: 22878175 PMCID: PMC3478456 DOI: 10.18632/oncotarget.572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The metastasis-inducing protein S100A4 was found to be a prognostic indicator for the development of metachronous metastases. S100A4 expression levels correlate with the formation of human colorectal cancer metastases and shorter patients’ survival. Inhibition of S100A4 expression in patients might therefore result in decreased metastasis formation and prolonged survival. In the present study, we used shRNA expression plasmids to inhibit S100A4 expression in the colorectal cancer cell lines HCT116, SW620 and DLD-1. Cell lines with reduced S100A4 expression showed reduced cell migration and invasion in vitro. The knock-down of S100A4 expression also led to significantly diminished formation of liver metastases when intrasplenically transplanted in mice (P = 0.004). We then focused on the therapeutic potential of systemically applied shRNA expression plasmids acting on S100A4 via repeated hydrodynamics-based tail vein injection of plasmid DNA. Mice, intrasplenically transplanted with HCT116 cells and treated systemically with S100A4-shRNA plasmids, showed a decrease of S100A4 and MMP9 expression levels, resulting in significantly reduced liver metastases (P = 0.005). In summary, we show for the first time the intratumoral knock-down of S100A4 via systemic application of S100A4-shRNA plasmid DNA, which restricts metastasis formation in a xenografted mouse model of colorectal cancer.
Collapse
Affiliation(s)
- Mathias Dahlmann
- Experimental and Clinical Research Center, joint cooperation between Charité, Medical Faculty and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
S100A4 expression in xenograft tumors of human carcinoma cell lines is induced by the tumor microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2389-96. [PMID: 21514449 DOI: 10.1016/j.ajpath.2011.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 12/17/2010] [Accepted: 01/18/2011] [Indexed: 11/24/2022]
Abstract
Increased expression of the invasion- and metastasis-associated protein S100A4 is found in many types of cancer, but the regulation of S100A4 expression is poorly understood. The microenvironment surrounding tumors has a significant effect on tumor progression, and in the present study, we investigated the role of the microenvironment in the expression of S100A4. Tumors of three different human carcinoma cell lines were established in the tongue or skin of mice, and S100A4 expression was assessed by quantitative RT-PCR, Western blotting, and immunohistochemical analysis in tumors and stromal tissue and in cancer cells grown in vitro. Tongue tumors of the oral squamous cell carcinoma cell line HSC-4 showed a pronounced increase in S100A4 expression during tumor growth, whereas only a minor increase was detected in skin tumors of the same cell line. The S100A4 expression correlated with the methylation status of cytosine-guanine sites in the first intron of the gene. For all cell lines, S100A4 expression in the tumor stroma was related to the presence of inflammatory cells rather than to the level of S100A4 in the tumor cells.
Collapse
|
13
|
Iwashiro H, Hosoya S, Hirai K, Mima T, Ohashi S, Aihara T, Ito S, Ohara S, Adachi E. Characterization of dense artificial connective tissues generated in a newly designed bioreactor. Connect Tissue Res 2010; 52:340-52. [PMID: 21117908 DOI: 10.3109/03008207.2010.531801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dense connective tissues were generated simultaneously by accumulating collagen fibrils and fibroblasts on stainless steel mesh using a bioreactor system that we designed. The advantage of our system is that the artificial connective tissues can be generated within 24 hr in the absence of inhibitors against matrix metalloproteinases. The fibroblasts were suspended in 200 mL of Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and 0.5 mg/mL type I collagen. The mixed solution was circulated in two types of bioreactors with cylindrical or vertical configurations to generate luminal or parenchymal tissues, respectively. The gelatin zymography showed that MMPs were first detected in the media after 8 hr from the start of circulation and reached the highest levels on day 3. Glossy white aggregates, 1-3 mm in thickness, depending on the circulation period, accumulated on mesh grids. Fibroblasts were embedded in the network of collagen fibrils and possessed oval nuclei with or without prominent cell processes to form a bipolar shape. We could not observe distended cisternae of the endoplasmic reticula, the Golgi apparatus, or exploded mitochondria, showing hypoxic degenerative alterations of fibroblasts in dense connective tissues. The artificial tissues generated by our system will be useful for biological studies and transplantation therapy.
Collapse
Affiliation(s)
- Hironobu Iwashiro
- Department of Plastic and Reconstructive Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Capela e Silva F, Lamy E, Reis J, Potes J, Pereira A, Cabrita A. Expressão imunoistoquímica da proteína S-100 na discondroplasia da tíbia. ARQ BRAS MED VET ZOO 2010. [DOI: 10.1590/s0102-09352010000200035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - E. Lamy
- Universidade de Évora, Portugal
| | | | - J.C. Potes
- Universidade de Évora, Portugal; Universidade de Évora, Portugal
| | - A. Pereira
- Universidade de Évora, Portugal; Universidade de Évora, Portugal
| | | |
Collapse
|
15
|
Radestock Y, Willing C, Kehlen A, Hoang-Vu C, Hombach-Klonisch S. Relaxin Enhances S100A4 and Promotes Growth of Human Thyroid Carcinoma Cell Xenografts. Mol Cancer Res 2010; 8:494-506. [DOI: 10.1158/1541-7786.mcr-09-0307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Elenjord R, Allen JB, Johansen HT, Kildalsen H, Svineng G, Maelandsmo GM, Loennechen T, Winberg JO. Collagen I regulates matrix metalloproteinase-2 activation in osteosarcoma cells independent of S100A4. FEBS J 2009; 276:5275-86. [PMID: 19682073 DOI: 10.1111/j.1742-4658.2009.07223.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work investigates the effect of cell-collagen I interactions on the synthesis and activation of MMP-2, as well as synthesis of MT1-MMP and TIMP-1, by using an in vitro model with 3D fibrillar and 2D monomeric collagen. In order to reveal whether the metastasis-associated protein S100A4 can influence the cell's response to the two forms of collagen, osteosarcoma cell lines with high and low endogenous levels of S100A4 were used. Attachment of osteosarcoma cells to 3D fibrillar and 2D monomeric collagen resulted in opposite effects on MMP-2 activation. Attachment to 3D fibrillar collagen decreased activation of proMMP-2, with a corresponding reduction in MT1-MMP. By contrast, attachment to monomeric collagen increased the amount of fully active MMP-2. This was caused by a reduction in TIMP-1 levels when cells were attached to monomeric 2D collagen. The effect of collagen on proMMP-2 activation was independent of endogenous S100A4 levels, whereas synthesis of TIMP-1 was dependent on S100A4. When cells were attached to monomeric collagen, cells with a high level of S100A4 showed a greater reduction in the synthesis of TIMP-1 than did those with a low level of S100A4. Taken together, this study shows that synthesis and activation of MMP-2 is affected by interactions between osteosarcoma cells and collagen I in both fibrillar and monomeric form.
Collapse
|
17
|
Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ. Secretome-Based Proteomic Profiling of Ras-Transformed MDCK Cells Reveals Extracellular Modulators of Epithelial-Mesenchymal Transition. J Proteome Res 2009; 8:2827-37. [DOI: 10.1021/pr8010974] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rommel A. Mathias
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Bo Wang
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Hong Ji
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Eugene A. Kapp
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert L. Moritz
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Hong-Jian Zhu
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard J. Simpson
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, and Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|