1
|
Gomes JR, de Moraes MV, Silva FSD, da Silva ILG, de Araújo Júnior RF, de Paula Medeiros KP, Abreu BJ, da Silva Farias NS. Hyperbaric oxygen therapy prevents epithelial atrophy in distal tubules and TGF-β1 overexpression in diabetic rat kidneys. J Mol Histol 2024; 56:46. [PMID: 39695030 DOI: 10.1007/s10735-024-10330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
Diabetic nephropathy (DN) is one of the most relevant and prevalent microvascular complications associated with Diabetes Mellitus. In recent years, hyperbaric oxygen therapy (HBO) has been used to mitigate tissue damage caused by hypoxia, thereby attenuating inflammatory processes. This study aimed to explore morphological aspects associated with DN in rats subjected to HBO. Forty-eight Wistar rats were divided into the following groups: C (normoglycemic animals), n = 12; C + HBO (normoglycemic animals submitted to HBO), n = 12; D (diabetic animals) n = 12; D + HBO (diabetic animals submitted to HBO), n = 12. The C + HBO and D + HBO groups were daily treated with HBO at 2.5 atmospheres absolute pressure (ATA) for 60 min, 5 days a week, for 5 weeks. Kidneys were collected for assessment of structural changes in the tissue parenchyma, assessment of renal fibrosis and renal protein expression of tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1). Our results showed that group D had hyperglycemia and weight loss, and that there was also an increase in the renal corpuscle, Bowman's space, and distal tubular epithelium, as well as accumulation of collagen. HBO administration effectively prevented glomerular hypertrophy and attenuated the expression of TNF-α and TGF-β1. It also positively affected renal tubules, inhibiting the development of tubular atrophy. These findings suggest that HBO was effective in attenuating the initial alterations observed in DN.
Collapse
Affiliation(s)
| | | | - Flávio Santos da Silva
- Department of Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil
| | | | | | | | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
2
|
Zheng S, Hu GY, Li JH, Zheng J, Li YK. Icariin accelerates bone regeneration by inducing osteogenesis-angiogenesis coupling in rats with type 1 diabetes mellitus. World J Diabetes 2024; 15:769-782. [PMID: 38680705 PMCID: PMC11045423 DOI: 10.4239/wjd.v15.i4.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Icariin (ICA), a natural flavonoid compound monomer, has multiple pharmacological activities. However, its effect on bone defect in the context of type 1 diabetes mellitus (T1DM) has not yet been examined. AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM. METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining, alizarin red S staining, quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis. A bone defect model was established in T1DM rats. The model rats were then treated with ICA or placebo and micron-scale computed tomography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area. RESULTS ICA promoted bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation. The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers (alkaline phosphatase and osteocalcin) and angiogenesis-related markers (vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1) compared to the untreated group. ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs. In the bone defect model T1DM rats, ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Lastly, ICA effectively accelerated the rate of bone formation in the defect area. CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Guan-Yu Hu
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Jun-Hua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Yi-Kai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
3
|
Imerb N, Thonusin C, Pratchayasakul W, Chanpaisaeng K, Aeimlapa R, Charoenphandhu N, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy exerts anti-osteoporotic effects in obese and lean D-galactose-induced aged rats. FASEB J 2023; 37:e23262. [PMID: 37855727 DOI: 10.1096/fj.202301197rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.
Collapse
Affiliation(s)
- Napatsorn Imerb
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krittikan Chanpaisaeng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratchaneevan Aeimlapa
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Shen Y, Tang Q, Wang J, Zhou Z, Yin Y, Zhang Y, Zheng W, Wang X, Chen G, Sun J, Chen L. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif 2023; 56:e13474. [PMID: 37051760 PMCID: PMC10542986 DOI: 10.1111/cpr.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Qingming Tang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiajia Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Ying Yin
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Yifan Zhang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Wenhao Zheng
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Xinyuan Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Guangjin Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiwei Sun
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| |
Collapse
|
5
|
Eldisoky RH, Younes SA, Omar SS, Gharib HS, Tamara TA. Hyperbaric oxygen therapy efficacy on mandibular defect regeneration in rats with diabetes mellitus: an animal study. BMC Oral Health 2023; 23:101. [PMID: 36793042 PMCID: PMC9930221 DOI: 10.1186/s12903-023-02801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND This study aimed to investigate the influence of hyperbaric oxygen therapy on mandibular critical-sized defect regeneration in rats with experimentally induced type I diabetes mellitus. Restoration of large osseous defects in an impaired osteogenic condition such as diabetes mellitus is a challenging task in clinical practice. Therefore, investigating adjunctive therapies to accelerate the regeneration of such defects is crucial. MATERIALS AND METHODS Sixteen albino rats were divided into two groups (n = 8/group). To induce diabetes mellitus, a single streptozotocin dosage was injected. Critical-sized defects were created in the right posterior mandibles and filled with beta-tricalcium phosphate graft. The study group was subjected to 90-min sessions of hyperbaric oxygen at 2.4 ATA, for 5 consecutive days per week. Euthanasia was carried out after 3 weeks of therapy. Bone regeneration was examined histologically and histomorphometrically. Angiogenesis was assessed by immunohistochemistry against vascular endothelial progenitor cell marker (CD34) and the microvessel density was calculated. RESULTS Exposure of diabetic animals to hyperbaric oxygen resulted in superior bone regeneration and increased endothelial cell proliferation, which were revealed histologically and immunohistochemically, respectively. These results were confirmed by histomorphometric analysis which disclosed a higher percentage of new bone surface area and microvessel density in the study group. CONCLUSIONS Hyperbaric oxygen has a beneficial effect on bone regenerative capacity, qualitatively and quantitively, as well as the ability to stimulate angiogenesis.
Collapse
Affiliation(s)
- Rodina H. Eldisoky
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Salwa A. Younes
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Samia S. Omar
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Hagar S. Gharib
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Tarek A. Tamara
- grid.489816.a0000000404522383Naval Hyperbaric Medical Institute, Military Medical Academy, Alexandria, Egypt
| |
Collapse
|
6
|
Borges JS, Costa VC, Irie MS, de Rezende Barbosa GL, Spin-Neto R, Soares PBF. Definition of the Region of Interest for the Assessment of Alveolar Bone Repair Using Micro-computed Tomography. J Digit Imaging 2023; 36:356-364. [PMID: 36070014 PMCID: PMC9984626 DOI: 10.1007/s10278-022-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
The objective of this study was to evaluate the influence of the extraction socket (distal or lingual root) and the type of region of interest (ROI) definition (manual or predefined) on the assessment of alveolar repair following tooth extraction using micro-computed tomography (micro-CT). The software package used for scanning, reconstruction, reorientation, and analysis of images (NRecon®, DataViewer®, CT-Analyzer®) was acquired through Bruker < https://www.bruker.com > . The sample comprised the micro-CT volumes of seven Wistar rat mandibles, in which the right first molar was extracted. The reconstructed images were analyzed using the extraction sockets, i.e., the distal and intermediate lingual root and the method of ROI definition: manual (MA), central round (CR), and peripheral round (PR). The bone volume fraction (BV/TV) values obtained were analyzed by two-way ANOVA with Tukey's post hoc test (α = 5%). The distal extraction socket resulted in significantly lower BV/TV values than the intermediate lingual socket for MA (P = 0.001), CR (P < 0.001), and PR (P < 0.001). Regarding the ROI, when evaluating the distal extraction socket, the BV/TV was significantly higher (P < 0.001) for MA than for CR and PR, with a lower BV/TV for CR. However, no significant difference was observed for MA (P = 0.855), CR (P = 0.769), or PR (P = 0.453) in the intermediate lingual extraction socket. The bone neoformation outcome (BV/TV) for alveolar bone repair after tooth extraction is significantly influenced by the ROI and the extraction socket. Using the predefined method with a standardized ROI in the central region of the distal extraction socket resulted in the assessment of bone volume, demonstrating the most critical region of the bone neoformation process.
Collapse
Affiliation(s)
- Juliana Simeão Borges
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vitor Cardoso Costa
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Milena Suemi Irie
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | | | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Health, Aarhus University, Aarhus, Denmark
| | - Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
7
|
Linhares CRB, Rabelo GD, Limirio PHJO, Venâncio JF, Ribeiro Silva IG, Dechichi P. Automated bone healing evaluation: New approach to histomorphometric analysis. Microsc Res Tech 2022; 85:3339-3346. [PMID: 35758056 DOI: 10.1002/jemt.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to assess different approaches for bone healing evaluation on histological images and to introduce a new automatic evaluation method based on segmentation with distinct thresholds. We evaluated the hyperbaric oxygen therapy (HBO) effects on bone repair in type 1 diabetes mellitus rats. Twelve animals were divided into four groups (n = 3): non-diabetic, non-diabetic + HBO, diabetic, and diabetic + HBO. Diabetes was induced by intravenous administration of streptozotocin (50 mg/kg). Bone defects were created in femurs and HBO was immediately started at one session/day. After 7 days, the animals were euthanized, femurs were removed, demineralized, and embedded in paraffin. Histological sections were stained with hematoxylin and eosin (HE) and Mallory's trichrome (MT), and evaluated using three approaches: (1) conventional histomorphometric analysis (HE images) using a 144-point grid to quantify the bone matrix; (2) a semi-automatic method based on bone matrix segmentation to assess the bone matrix percentage (MT images); and (3) automatic approach, with the creation of a plug-in for ImageJ software. The time required to perform the analysis in each method was measured and subjected to Bland-Altman statistical analysis. All three methods were satisfactory for measuring bone formation and were not statistically different. The automatic approach reduced the working time compared to visual grid and semi-automated method (p < .01). Although histological evaluation of bone healing was performed successfully using all three methods, the novel automatic approach significantly shortened the time required for analysis and had high accuracy.
Collapse
Affiliation(s)
| | - Gustavo Davi Rabelo
- Dentistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Paula Dechichi
- Department of Cell Biology, Histology and Embryology, Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
8
|
Dai X, Heng BC, Bai Y, You F, Sun X, Li Y, Tang Z, Xu M, Zhang X, Deng X. Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioact Mater 2020; 6:2029-2038. [PMID: 33474514 PMCID: PMC7787955 DOI: 10.1016/j.bioactmat.2020.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-mediated inflammation compromises bone repair in diabetic patients. Electrical signaling cues are known to regulate macrophage functions. However, the biological effects of electrical microenvironment from charged biomaterials on the immune response for regulating osteogenesis under diabetic conditions remain to be elucidated. Herein the endogeneous electrical microenvironment of native bone tissue was recapitulated by fabricating a ferroelectric BaTiO3/poly (vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) nanocomposite membrane. In vitro, the polarized BaTiO3/poly (vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) nanocomposite membranes inhibited high glucose-induced M1-type inflammation, by effecting changes in cell morphology, M1 marker expression and pro-inflammatory cytokine secretion in macrophages. This led to enhanced osteogenic differentiation of human bone marrow mesenchymal stem cells (BM-MSCs). In vivo, the biomimetic electrical microenvironment recapitulated by the polarized nanocomposite membranes switched macrophage phenotype from the pro-inflammatory (M1) into the pro-healing (M2) phenotype, which in turn enhanced bone regeneration in rats with type 2 diabetes mellitus. Mechanistic studies revealed that the biomimetic electrical microenvironment attenuated pro-inflammatory M1 macrophage polarization under hyperglycemic conditions by suppressing expression of AKT2 and IRF5 within the PI3K-AKT signaling pathway, thereby inducing favorable osteo-immunomodulatory effects. Our study thus provides fundamental insights into the biological effects of restoring the electrical microenvironment conducive for osteogenesis under DM conditions, and offers an effective strategy to design functionalized biomaterials for bone regeneration therapy in diabetic patients. Electrical microenvironment recapitulated by BTO membranes switched pro-inflammatory M1 into pro-healing M2 phenotype. The macrophage phenotype transformation from M1 to M2 promotes bone regeneration in rats with type 2 diabetes mellitus. Restored electrical microenvironment attenuated M1 macrophage polarization via downregulation of AKT2-IRF5.
Collapse
Affiliation(s)
- Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China.,Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.,Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yiping Li
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| |
Collapse
|
9
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|