1
|
van Nieuwland M, Mulder AHL, Colin EM, Alves C, van Bon L, Brouwer E. Investigating interferon type I responses in patients with suspected giant cell arteritis and polymyalgia rheumatica. Clin Exp Immunol 2024; 218:308-313. [PMID: 39364727 PMCID: PMC11557144 DOI: 10.1093/cei/uxae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are closely related inflammatory disorders. Easily measurable biomarkers defining active disease and identifying patients in need of glucocorticoid sparing treatment options are highly desired. Interferon Type I (IFN-I) might be involved in disease pathology; however, evidence is limited. This study explores a systemic IFN-I signature and expression of IFN-I markers in GCA and PMR patients. Treatment naive GCA and PMR patients, and PMR patients with glucocorticoid treatment were included. Patients suspected of but not diagnosed with GCA were used as controls. Five relevant IFN-I-stimulated genes were identified in literature, and relative expression levels were determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR) in peripheral blood mononuclear cells. An IFN-I score was generated. Serum levels of IFN-I induced C-X-C motif chemokine 10 (CXCL10) and Galectin-9 were determined by multiplex immunoassay. There were no differences in IFN-I scores between the groups. An IFN-I signature was observed in 0/9 controls, 2/11 GCA patients, 4/20 treatment naive PMR patients, and 2/10 PMR patients with treatment. Serum CXCL10 and Galectin-9 were not increased in GCA or PMR patients compared to control patients. Treated PMR patients had lower CXCL10 levels [423.2 pg/ml (375.1-491.1)] compared to treatment naive PMR patients [641.8 pg/ml (552.8-830.6)]. An IFN-I signature does not distinguish GCA and PMR patients from controls. Also, IFN-I-induced serum markers are not upregulated in GCA and PMR patients. Easily measurable IFN-I-induced serum markers will therefore probably not aid in diagnosis and additional treatment options in newly diagnosed GCA and PMR patients.
Collapse
Affiliation(s)
- Marieke van Nieuwland
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, The Netherlands
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A H Leontine Mulder
- Clinical Laboratory, Unilabs Oost, Enschede, The Netherlands
- Department of Clinical Chemistry, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, The Netherlands
| | - Edgar M Colin
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, The Netherlands
| | - Celina Alves
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, The Netherlands
| | - Lenny van Bon
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, The Netherlands
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
van Nieuwland M, Esen I, Reitsema RD, Abdulahad WH, van Sleen Y, Jiemy WF, Sandovici M, Brouwer E, van Bon L. Evidence for increased interferon type I activity in CD8+ T cells in giant cell arteritis patients. Front Immunol 2023; 14:1197293. [PMID: 37398666 PMCID: PMC10312374 DOI: 10.3389/fimmu.2023.1197293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Giant cell arteritis (GCA) is a vasculitis of the medium- and large-sized arteries. Interferon type I (IFN-I) is increasingly recognized as a key player in autoimmune diseases and might be involved in GCA pathogenesis, however evidence is limited. IFN-I activates Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways, leading to increased expression of interferon stimulated genes. In this study, IFN-I activity in GCA is explored, focusing on CD8+ T cells. Methods Expression of phospho-STAT (pSTAT) 1, 3 and 5 was investigated in IFN-α-stimulated peripheral mononuclear cells (PBMCs) gated separately for CD8+ T cells of patients with GCA (n=18), healthy controls (HC, n=15) and infection controls (n=11) by Phosphoflow method combined with fluorescent cell barcoding technique. Furthermore, IFN-I induced myxovirus-resistance protein A (MxA) and CD8+ T cell expression was investigated by immunohistochemistry in temporal artery biopsies (TAB) of GCA patients (n=20) and mimics (n=20), and in aorta tissue of GCA (n=8) and atherosclerosis patients (n=14). Results pSTAT1 expression was increased in IFN-α stimulated CD8+ T cells from GCA patients, whereas no difference was observed in pSTAT3 and pSTAT5 expression. MxA was present in TABs of 13/20 GCA patients compared to 2/20 mimics and in 8/8 GCA+ compared to 13/14 GCA- aorta tissues. MxA location partially co-localized with CD8+T cells. Conclusions Our results provide evidence for increased IFN-I activity in CD8+ T cells of GCA patients, both systemically and locally. These findings warrant further investigation regarding IFN-I induced biomarkers and IFN-I related novel therapeutic options in GCA.
Collapse
Affiliation(s)
- Marieke van Nieuwland
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, Netherlands
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Idil Esen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rosanne D. Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lenny van Bon
- Department of Rheumatology and Clinical Immunology, Hospital Group Twente (Ziekenhuisgroep Twente), Almelo, Netherlands
| |
Collapse
|
3
|
Hysa E, Gotelli E, Sammorì S, Cimmino MA, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. Immune system activation in polymyalgia rheumatica: Which balance between autoinflammation and autoimmunity? A systematic review. Autoimmun Rev 2021; 21:102995. [PMID: 34798314 DOI: 10.1016/j.autrev.2021.102995] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Polymyalgia rheumatica (PMR) is an inflammatory rheumatic disease that is common in elderly people. Its classification in the spectrum of autoinflammatory and autoimmune diseases is difficult because of its only partially understood immune-mediated mechanisms. The literature concerning the innate and adaptive immune system activation in PMR was systematically reviewed highlighting the relative weight of autoinflammation and autoimmunity in its pathogenesis and disease progression. METHODS A literature search on PubMed Central and Embase scientific databases was performed by two independent reviewers. To be eligible, the studies needed to fully satisfy our initial PICO framework: a primary diagnosis of PMR as a population, the search for immune/inflammatory cells, cytokines and autoantibodies as an intervention, a control group consisting in healthy controls, patients with other inflammatory rheumatic diseases or PMR patients in remission after treatment and as outcomes the results of the investigations in the analyzed tissue samples. The most relevant data of the included papers were extracted by using a standardized template. RESULTS Of the 933 screened abstracts, 52 papers were included in the systematic review and categorized depending on their primary research objectives. The hyper-activity of neutrophils and monocytes, expressing toll-like receptor 7 in active disease, an impaired phagocytosis and endothelial dysfunction, as well as an increased count of innate T cells in patients with remission emerged among the major derangements of the innate immune response in PMR. Among the cytokines profile, interleukin-6 plays a key role but other pro-inflammatory mediators and angiogenesis markers such as chemokines, B-cell activating factor, vascular endothelial growth factor and angiopoietins seem to be involved in refractory or glucocorticoid-resistant PMR. The aberrant adaptive immune response was documented by tissue and serum findings of polarized T cells towards T helper 1 and 17 phenotypes, an increased expression of immunosenescent surface markers and a downregulated immunoregulatory response. The altered distribution of peripheral B cells, detected during active disease, suggested their peripheral migration towards unidentified sites. The interaction between innate and adaptive immune response was documented by a synovial infiltrate of macrophages and T cells. Despite multiple autoantibodies have been detected in PMR patients, none proved to correlate with disease activity seeming to be reactive to the marked inflammation or antigenic determinants provided by environmental triggers or tissue/cell damage. CONCLUSIONS The complex network between innate and adaptive immune system in PMR is supported by findings at molecular and cellular levels. By considering both the ends of the pathophysiological spectrum of immune-mediated rheumatic diseases, PMR may be regarded as an inflammatory immune-mediated disease with mixed mechanisms in a background of genetic and epigenetic factors together with immunological and endocrine senescence.
Collapse
Affiliation(s)
- Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy
| | - Silvia Sammorì
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy
| | - Marco Amedeo Cimmino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Department of Rheumatology, Ghent University Hospital; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS San Martino Polyclinic, Genoa, Italy.
| |
Collapse
|
4
|
LI HY, XU JN, SHUAI ZW. Cellular signaling pathways of T cells in giant cell arteritis. J Geriatr Cardiol 2021; 18:768-778. [PMID: 34659383 PMCID: PMC8501386 DOI: 10.11909/j.issn.1671-5411.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Giant cell arteritis (GCA) is a commonly occurring large vacuities characterized by angiopathy of medium and large-sized vessels. GCA granulomatous formation plays an important role in the pathogenesis of GCA. Analysis of T cell lineages and signaling pathways in GCA have revealed the essential role of T cells in the pathology of GCA. T cells are the dominant population present in GCA lesions. CD4+ T cell subtypes that are present include Th1, Th2, Th9, Th17, follicular helper T (Tfh) cells, and regulatory T (Treg) cells. CD8 T cells can primarily differentiate into cytotoxic CD8+ T lymphocytes and Treg cells. The instrumental part of GCA is the interplay between dendritic cells, macrophages and endothelial cells, which can result in the vascular injury and the characteristics granulomatous infiltrates formation. During the inflammatory loop of GCA, several signaling pathways have been reported to play an essential role in recruiting, activating and differentiating T cells, including T-cell receptor (TCR) signaling, vascular endothelial growth factor (VEGF)-Jagged-Notch signaling and the Janus kinase and signal transducer and activator of transcription (STAT) pathway (JAK-STAT) pathway. In this review, we have focused on the role of T cells and their potential signaling mechanism (s) that are involved in the pathogenesis of GCA. A better understanding of the role of T cells mediated complicated orchestration during the homeostasis and the changes could possibly favor developments of novel treatment strategies against immunological disorders associated with GCA.
Collapse
Affiliation(s)
- Hai-Yan LI
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun-Nan XU
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zong-Wen SHUAI
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Mo XB, Zhang YH, Lei SF. Integrative analysis identifies potential causal methylation-mRNA regulation chains for rheumatoid arthritis. Mol Immunol 2020; 131:89-96. [PMID: 33386149 DOI: 10.1016/j.molimm.2020.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies have identified many genetic loci for rheumatoid arthritis (RA). However, causal factors underlying these loci were largely unknown. The aim of this study was to identify potential causal methylation-mRNA regulation chains for RA. We identified differentially expressed mRNAs and methylations and conducted summary statistic data-based Mendelian randomization (SMR) analysis to detect potential causal mRNAs and methylations for RA. Then causal inference test (CIT) was performed to determine if the methylation-mRNA pairs formed causal chains. We identified 11,170 mRNAs and 24,065 methylations that were nominally associated with RA. Among them, 197 mRNAs and 104 methylations passed the SMR test. According to physical positions, we defined 16 cis methylation-mRNA pairs and inferred 5 chains containing 4 methylations and 4 genes (BACH2, MBP, MX1 and SYNGR1) to be methylation→mRNA→RA causal chains. The effect of SYNGR1 expression in peripheral blood mononuclear cells on RA risk was found to be consistent in both the in-house and public data. The identified methylations located in CpG Islands that overlap promoters in the 5' region of the genes. The promoter regions showed long-range interactions with other enhancers and promoters, suggesting a regulatory potential of these methylations. Therefore, the present study provided a new integrative analysis strategy and highlighted potential causal methylation-mRNA chains for RA. Taking the evidences together, SYNGR1 promoter methylations most probably affect mRNA expressions and then affect RA risk.
Collapse
Affiliation(s)
- Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
6
|
Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, Gonzalez-Dosal R, Rasmussen SB, Christensen MH, Yarovinsky TO, Rixon FJ, Herold BC, Fitzgerald KA, Paludan SR. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat Immunol 2012; 13:737-43. [PMID: 22706339 PMCID: PMC3411909 DOI: 10.1038/ni.2350] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/22/2012] [Indexed: 12/20/2022]
Abstract
The innate immune system senses infection by detecting evolutionarily conserved molecules essential for microbial survival or abnormal location of molecules. Here we demonstrate the existence of a novel innate detection mechanism, which is induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon (IFN) response with expression of IFN-stimulated genes (ISGs), in vivo recruitment of leukocytes, and potentiation of Toll-like receptor 7 and 9 signaling. The fusion dependent response was dependent on stimulator of interferon genes (STING) but independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant cell formation.
Collapse
|
7
|
Haller O, Kochs G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2010; 31:79-87. [PMID: 21166595 DOI: 10.1089/jir.2010.0076] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human myxovirus resistance protein 1 (MxA) is a key mediator of the interferon-induced antiviral response against a wide range of viruses. MxA expression is tightly regulated by type I and type III interferons, requires signal transducer and activator of transcription 1 signaling, and is not inducible directly by viruses or other stimuli. MxA shares many properties with the dynamin superfamily of large GTPases. It consists of 3 domains, namely, an N-terminal GTPase domain that binds and hydrolyses GTP, a middle domain mediating self-assembly, and a carboxy-terminal GTPase effector domain. Like dynamin, MxA has the ability to self-assemble into highly ordered oligomers and to form ring-like structures around liposomes, inducing liposome tubulation. The structural details of MxA oligomerization have recently been elucidated, providing new insights into the antiviral mechanism of this mechanochemical enzyme. The structural and functional data suggest that MxA targets the nucleoprotein of MxA-sensitive viruses. Thus, MxA may form oligomeric rings around tubular nucleocapsid structures, thereby inhibiting their transcriptional and replicative function. Here we briefly review the most salient features of MxA expression and antiviral function.
Collapse
Affiliation(s)
- Otto Haller
- Department of Virology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|