1
|
Li L, Sun J, Chen F, Xiong L, She L, Hao T, Zeng Y, Li L, Wang W, Zhao X, Liang G. Pedunculoside alleviates cognitive deficits and neuronal cell apoptosis by activating the AMPK signaling cascade. Chin Med 2024; 19:163. [PMID: 39574131 PMCID: PMC11583384 DOI: 10.1186/s13020-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction emerges as an early pathological hallmark of Alzheimer's disease (AD). The reduction in mitochondrial membrane potential and the elevation of reactive oxygen species (ROS) production are pivotal in the initiation of neuronal cell apoptosis. Pedunculoside(Ped), a novel triterpene saponin derived from the dried barks of Ilex rotunda Thunb, exhibits a potent anti-inflammatory effect. In the course of drug screening, we discovered that Ped offers significant protection against apoptosis induced by Aβ1-42. Nevertheless, the role and mechanism of Ped in AD are yet to be elucidated. METHODS Oxidative stress was evaluated by measuring mitochondrial membrane potential and intracellular ROS production. The expression of proteins associated with apoptosis was determined using western blot analysis and flow cytometry. In vivo, the pathological characteristics of AD were investigated through Western blot and tissue immunofluorescence techniques. Cognitive function was assessed using the Morris Water Maze and Novel Object Recognition tests. RESULTS We demonstrated that Ped decreased apoptosis in PC12 cells, reduced the generation of intracellular ROS, and restored mitochondrial membrane potential. Mechanistically, we found that the protective effect of Ped against Aβ-induced neurotoxicity was associated with activation of the AMPK/GSK-3β/Nrf2 signaling pathway. In vivo, Ped alleviated memory deficits and inhibited neuronal apoptosis, inflammation, and oxidative stress in the hippocampus of 3 × Tg AD mice, along with the activation of the AMPK signaling pathway. CONCLUSION The findings indicate that Ped exerts its neuroprotective effects against oxidative stress and apoptosis through the AMPK signaling cascade. The results demonstrate that Ped is a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Liwei Li
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinfeng Sun
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Fan Chen
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Li Xiong
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, People's Republic of China
| | - Tang Hao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yuqing Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, 325035, Zhejiang, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, 321399, Zhejiang, China
| | - Xia Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
2
|
Le DD, Jang YS, Truong V, Dinh T, Dang T, Yu S, Lee M. Anti-Inflammatory Effects and Metabolomic Analysis of Ilex Rotunda Extracted by Supercritical Fluid Extraction. Int J Mol Sci 2024; 25:11965. [PMID: 39596036 PMCID: PMC11593382 DOI: 10.3390/ijms252211965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Ilex rotunda is a famous medicinal plant with many ethnopharmacological uses. It is traditionally employed for treating inflammation and cardiovascular diseases. In this study, we established green technology to extract the leaves and twigs of I. rotunda. The obtained extracts and their fractions were evaluated for their anti-inflammatory potential. In cytokine assays, the extract, n-hexane (H), methylene chloride (MC), and EtOAc (E) fractions of the twigs of I. rotunda significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α production in RAW264.7 macrophages. Furthermore, the extract, H, and MC fractions of the leaves of I. rotunda modulated cytokine expression by downregulating LPS-induced NO, IL-6, and TNF-α production in RAW264.7 macrophages. Western blotting analysis revealed that the extracts and fractions of the leaves and twigs of I. rotunda inhibited inflammatory cytokines by inactivating nuclear factor kappa B (NFκB) action by reducing the phosphorylation of transcript factor (p65) and nuclear factor-kappa B inhibitor alpha (IκBα) degradation, or by inactivating mitogen-activated protein kinase (MAPK) through the p38 or ERK signaling pathways via the active ingredients of the leaves and twigs of I. rotunda. Ultra-high-resolution liquid chromatography-Orbitrap mass analysis (UHPLC-ESI-Orbitrap-MS/MS)-based molecular networking, in cooperation with social open platform-guided isolation and dereplication, led to the identification of metabolites in this plant. Our findings indicate that the leaves and twigs of I. rotunda could be promising candidates for developing therapeutic strategies to treat anti-inflammatory diseases.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Young Su Jang
- Nano Bio Research Center, Jeonnam Bio Foundation, Jangseong 57248, Jeonnam, Republic of Korea;
| | - Vinhquang Truong
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thientam Dinh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
| | - Soojung Yu
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (V.T.); (T.D.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jun-Gangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
3
|
Li X, Xu R, Zhou K, Cao Q. Ameliorative effect of pedunculoside on sepsis-induced acute lung injury, inflammation and pulmonary fibrosis in mice model via suppressing AKT/NF-κB pathway. J Mol Histol 2024; 55:687-698. [PMID: 39042216 DOI: 10.1007/s10735-024-10222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND/OBJECTIVES Sepsis-induced acute lung injury (ALI) is the typical complications of sepsis with a high global incidence and mortality. Inhibition of inflammatory response is a crucial and effective strategy for sepsis-induced ALI. Pedunculoside (PE) has been shown to have an anti-inflammatory effect on various diseases. However, the effect and mechanism of PE on sepsis-induced ALI remain unknown. MATERIALS/METHODS A mice model of sepsis-induced ALI was constructed by cecal ligation and puncture (CLP). The effect of PE on the CLP-induced mice were assessed using pathological staining, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot assays. RESULTS PE reduced pathological symptoms and scores, apoptosis and the W/D ratio of lung tissues in CLP-induced mice. Besides, PE decreased the level of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α), pulmonary fibrosis and the expression of fibrosis markers. Mechanically, PE inhibited AKT/NF-κB signaling in CLP-induced mice. Activation of AKT/NF-κB pathway abolished the ameliorative effect of PE on the pathological symptoms, the release of inflammatory factors and pulmonary fibrosis of CLP-induced mice. CONCLUSION PE improved inflammation and pulmonary fibrosis by inhibiting AKT/NF-κB pathway in CLP-induced mice.
Collapse
Affiliation(s)
- Xiangbo Li
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Ruiming Xu
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Kaiguo Zhou
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China
| | - Qiumei Cao
- Emergency Department, Beijing Tongren Hospital, Capital Medical University, No. 2, Xihuan South Road, Economic and Technological Development Zone, Daxing District, Beijing, 100176, China.
| |
Collapse
|
4
|
Wu L, Dong L, Zhou Z, Wang X, Lin Y, Shi X, Wang P, Xu S, Fang Z. Preclinical metabolism and metabolic drug-drug interaction profile of pedunculoside and rotundic acid. Clin Transl Sci 2024; 17:e70043. [PMID: 39392387 PMCID: PMC11469747 DOI: 10.1111/cts.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Pedunculoside and rotundic acid, the most abundant components in plants of the genus Ilex L. (Aquifoliaceae), exhibit biological and pharmacological significance in the treatment of cardiovascular diseases. However, there have been few studies on their metabolism. This study performed a systematic metabolism study of pedunculoside and rotundic acid and evaluated their potential for herb-drug interaction. Pedunculoside or rotundic acid was incubated with human liver microsomes and recombinant human metabolic enzymes, and analyzed using LC-Q-TOF/MS and LC-MS/MS. Pedunculoside was found to be the most stable in human liver microsomes, whereas rotundic acid was easily metabolized. Eight pedunculoside metabolites and six rotundic acid metabolites were detected and tentatively identified through hydroxylation, glucuronidation, acetylation, and glucose conjugation. Hydroxylation of pedunculoside is mainly catalyzed by CYP3A4/5 and partly by CYP2C8. Hydroxylation of rotundic acid is almost exclusively catalyzed by CYP3A4/5, and its glucuronidation reaction is mediated by UGT1A4. Neither pedunculoside nor rotundic acid showed CYP inhibition (IC50 values > 50 μM) with the probe substrates of major CYP isoforms during incubation with human liver microsomes. This study is the first investigation into the in vitro metabolism of pedunculoside and rotundic acid using human liver microsomes. It also aims to assess their potential as perpetrators of drug-drug interactions involving CYP enzymes. The comprehensive metabolism and drug interaction studies of pedunculoside and rotundic acid enable us to evaluate and manage potential risks with their use in pharmacotherapy.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Linling Dong
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Zhu Zhou
- Department of ChemistryYork College, City University of New YorkNew YorkNew YorkUSA
| | - Xin Wang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Yujie Lin
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Xuesong Shi
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Peijing Wang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Suocheng Xu
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| | - Zhiyi Fang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
5
|
Lan F, Xu J, Zhong Q, Cen C, Wei C. Effect of combined Zhuang medicine treatment on tricuspid annular displacement and heart rate variability in rheumatoid arthritis patients. Am J Transl Res 2024; 16:2953-2962. [PMID: 39114726 PMCID: PMC11301473 DOI: 10.62347/nhtg3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024]
Abstract
Objectives To assess the benefits of Zhuang medicine in treating rheumatoid arthritis (RA), with a focus on cardiac tricuspid annulus displacement and heart rate variability (HRV), thereby providing evidence supporting Zhuang medicine theories. METHODS This retrospective study analyzed echocardiographic data and HRV of 30 healthy subjects and 60 RA patients. RA patients were divided into two groups for a 6-month treatment: 30 received iguratimod (control group), and 30 underwent combined Zhuang medicine and needle-pricking therapy (test group). Echocardiographic assessments and HRV measures were recorded both before and after treatment. RESULTS Compared to the healthy group, RA patients showed increased late diastolic tricuspid annular velocity. However, early diastolic tricuspid annular velocity to late diastolic tricuspid annular velocity ratios, tricuspid annular plane systolic excursion (TAPSE), and the standard deviation of average normal RR intervals (SDANN) were significantly lower (all P<0.05). After treatment, the test group exhibited higher clinical efficacy (90% vs. 56.67% in the control group). Significant improvements were observed in TAPSE and HRV indices [SDANN, standard deviation of the RR intervals (SDNN), root mean square of successive RR interval differences (RMSSD), and the percentage of adjacent RR interval differences greater than 50 milliseconds (PNN50)] in the test group (all P<0.05). Additionally, a positive correlation was noted among these measurments. CONCLUSION Zhuang medicine significantly enhances right ventricular function and autonomic balance in RA patients, thus affirming its therapeutic potential.
Collapse
Affiliation(s)
- Feifei Lan
- Department of Ultrasound, Guangxi International Zhuang Medical HospitalNanning 530200, Guangxi, China
| | - Jian Xu
- Department of Electrocardiogram Diagnosis, Guangxi International Zhuang Medical HospitalNanning 530200, Guangxi, China
| | - Qiuyuan Zhong
- Department of Ultrasound, Guangxi International Zhuang Medical HospitalNanning 530200, Guangxi, China
| | - Chunjing Cen
- Department of Ultrasound, Guangxi International Zhuang Medical HospitalNanning 530200, Guangxi, China
| | - Chunmiao Wei
- Department of Electrocardiogram Diagnosis, Guangxi International Zhuang Medical HospitalNanning 530200, Guangxi, China
| |
Collapse
|
6
|
Yang H, Li D, Gao G. Kaempferol Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis (NASH) by Suppressing Neutrophil-Mediated NLRP3-ASC/TMS1-Caspase 3 Signaling. Molecules 2024; 29:2630. [PMID: 38893506 PMCID: PMC11173805 DOI: 10.3390/molecules29112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a significant hepatic condition that has gained worldwide attention. Kaempferol (Kae), renowned for its diverse biological activities, including anti-inflammatory, antioxidant, anti-aging, and cardio-protective properties, has emerged as a potential therapeutic candidate for non-alcoholic steatohepatitis (NASH). Despite its promising therapeutic potential, the precise underlying mechanism of Kae's beneficial effects in NASH remains unclear. Therefore, this study aims to clarify the mechanism by conducting comprehensive in vivo and in vitro experiments. RESULTS In this study, a murine model of non-alcoholic steatohepatitis (NASH) was established by feeding C57BL/6 female mice a high-fat diet for 12 weeks. Kaempferol (Kae) was investigated for its ability to modulate systemic inflammatory responses and lipid metabolism in this model (20 mg/kg per day). Notably, Kae significantly reduced the expression of NLRP3-ASC/TMS1-Caspase 3, a crucial mediator of liver tissue inflammation. Additionally, in a HepG2 cell model induced with palmitic acid/oleic acid (PA/OA) to mimic NASH conditions, Kae demonstrated the capacity to decrease lipid droplet accumulation and downregulate the expression of NLRP3-ASC/TMS1-Caspase 3 (20 µM and the final concentration to 20 nM). These findings suggest that Kae may hold therapeutic potential in the treatment of NASH by targeting inflammatory and metabolic pathways. CONCLUSIONS These findings suggest that kaempferol holds potential as a promising therapeutic intervention for ameliorating non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- He Yang
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Guolan Gao
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Wu L, Li D, Wang P, Dong L, Zhang W, Xu J, Jin X. In Vitro Stability and Pharmacokinetic Study of Pedunculoside and Its Beta-CD Polymer Inclusion Complex. Pharmaceutics 2024; 16:591. [PMID: 38794253 PMCID: PMC11125186 DOI: 10.3390/pharmaceutics16050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Pedunculoside, a triterpene saponin derived from various Ilex species, holds potential as a treatment for cardiovascular diseases. However, its clinical application is hindered by poor bioavailability, rapid elimination, and extensive intestinal metabolism to rotundic acid. To address these issues, a water-soluble inclusion complex of pedunculoside, namely, the beta-CD polymer inclusion complex of pedunculoside (pedunculoside-βCDP), was prepared in this study, and a comparative in vitro stability and pharmacokinetic behavior study was performed between pedunculoside and pedunculoside-βCDP. Both pedunculoside and pedunculoside-βCDP exhibited the highest stability in simulated gastric fluid and simulated intestinal fluid but were readily metabolized when co-incubated with Bifidobacterium adolescentis and Bifidobacterium breve. An LC-MS/MS analytical method for the simultaneous determination of pedunculoside and rotundic acid in rat plasma was successfully established, validated, and applied to investigate the pharmacokinetic behavior after rats were intravenously administered with pedunculoside or pedunculoside-βCDP. The results indicated that pedunculoside-βCDP could significantly improve the pharmacokinetic profile of pedunculoside by increasing plasma exposure, retarding elimination, and reducing intestinal metabolism. This study enhances our understanding of pedunculoside-βCDP's metabolic fate and pharmacokinetic properties and potentially advances its further research, development, and clinical application.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danfeng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linling Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianjun Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoliang Jin
- Clinical Pharmacology Department, Changchun GeneScience Pharmaceutical Co., Ltd., Shanghai 200235, China
| |
Collapse
|
8
|
Niu Y, Zhang J, Shi D, Zang W, Niu J. Glycosides as Potential Medicinal Components for Ulcerative Colitis: A Review. Molecules 2023; 28:5210. [PMID: 37446872 DOI: 10.3390/molecules28135210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific disease of unknown etiology. The disease develops mainly in the rectum or colon, and the main clinical symptoms include abdominal pain, diarrhea, and purulent bloody stools, with a wide variation in severity. The specific causative factors and pathogenesis of the disease are not yet clear, but most scholars believe that the disease is caused by the interaction of genetic, environmental, infectious, immune, and intestinal flora factors. As for the treatment of UC, medications are commonly used in clinical practice, mainly including aminosalicylates, glucocorticoids, and immunosuppressive drugs. However, due to the many complications associated with conventional drug therapy and the tendency for UC to recur, there is an urgent need to discover new, safer, and more effective drugs. Natural compounds with biodiversity and chemical structure diversity from medicinal plants are the most reliable source for the development of new drug precursors. Evidence suggests that glycosides may reduce the development and progression of UC by modulating anti-inflammatory responses, inhibiting oxidative stress, suppressing abnormal immune responses, and regulating signal transduction. In this manuscript, we provide a review of the epidemiology of UC and the available drugs for disease prevention and treatment. In addition, we demonstrate the protective or therapeutic role of glycosides in UC and describe the possible mechanisms of action to provide a theoretical basis for preclinical studies in drug development.
Collapse
Affiliation(s)
- Yating Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Dianhua Shi
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Weibiao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
9
|
Zeng W, Cui H, Yang W, Zhao Z. A systematic review: Botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of Ilex rotunda Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115419. [PMID: 35781006 DOI: 10.1016/j.jep.2022.115419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex rotunda Thunb. (I. rotunda) is an Ilex species of Aquifoliaceae, widely distributed in East Asia. Its dried bark is commonly used as a medicinal part in the field of traditional Chinese medicine (TCM), named Ilicis Rotundae Cortex. This medicinal plant is commonly used for clearing heat and removing toxin, draining dampness and relieving pain in TCM to treat tonsillitis, acute gastroenteritis, gastric and duodenal ulcer, rheumatism, traumatic injury, and so on. It also has significant development value on lipid-lowering, hepatoprotection and anti-inflammation, but the potential mechanism needs to be further explored. AIM OF THE REVIEW More and more medicinal substances are being discovered in I. rotunda with multiple biological activities, which help to advance the ethno-pharmacological research in I. rotunda. However, to date there is a lack of a systematic summary of research progress on I. rotunda. This review aims to provide a critical summary of the current studies on I. rotunda. The progress in research on botany, phytochemistry, traditional uses, pharmacology, toxicology, quality control and pharmacokinetics of the plant is discussed. It hopes to provide useful references and guidance for the future directions of research on I. rotunda. MATERIALS AND METHODS Studies of I. rotunda were collected via Google Scholar and Baidu Scholar, PubMed, ScienceDirect, SciFinder, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG DATA and libraries. Some local books, official websites, PhD or MS's dissertations were also included. The literature cited in this review covered the period from 1956 to January 2022. RESULTS Analysis of the literature indicates that I. rotunda is a potentially valuable herbal medicine for the therapeutic of various diseases. To date, 120 compounds were found and identified in I. rotunda, mainly including triterpenoids, phenylpropanoids, etc. Modern pharmacological studies also found that the plant has the activities of protecting the cardiovascular system, lowering lipids and protecting the liver, as well as being an anti-inflammatory, anti-tumor and antibacterial. CONCLUSIONS This review summarizes the results from current studies of I. rotunda. However, the current explanation seems insufficient and unsatisfactory, in terms of the relationships between the traditional uses and the modern pharmacological activities, the mechanisms and the material basis. Thus, a critical and comprehensive evaluation is necessary to explore its future research prospects and development direction.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Li Y, Yang X, Yuan JN, Lin R, Tian YY, Li YX, Zhang Y, Wang XF, Xie YH, Wang SW, Zheng XH. Ilex rotunda Thunb Protects Against Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Restoring the Intestinal Mucosal Barrier and Modulating the Oncostatin M/Oncostatin M Receptor Pathway. Front Pharmacol 2022; 13:819826. [PMID: 35645824 PMCID: PMC9140055 DOI: 10.3389/fphar.2022.819826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ilex rotunda Thunb (IR) is a traditional Chinese medicine used for the clinical treatment of gastric ulcers and duodenal ulcers; however, the effect of IR on ulcerative colitis (UC) and its underlying mechanism remains unclear. This study investigated the therapeutic effect of IR on UC mice induced by dextran sulfate sodium (DSS) as well as the potential underlying mechanism. The main components of IR were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Then we established a model of UC mice by administering 2.0% DSS for 7 days followed by 2 weeks of tap water for three cycles and administered IR. On day 56, the disease activity index (DAI), colon length, pathological changes, and inflammatory response of the colon tissue of mice were assessed. The oxidative stress and apoptosis of colon tissue were detected, and the integrity of the intestinal mucosal barrier was evaluated to assess the effect of IR. Furthermore, the relationship between oncostatin M (OSM) and its receptor (OSMR) in addition to the IR treatment of UC were evaluated using a mouse model and Caco2 cell model. The results showed that IR significantly alleviated the symptoms of UC including rescuing the shortened colon length; reducing DAI scores, serum myeloperoxidase and lipopolysaccharide levels, pathological damage, inflammatory cell infiltration and mRNA levels of interleukin one beta, tumor necrosis factor alpha, and interleukin six in colon tissue; alleviating oxidative stress and apoptosis by decreasing kelch-like ECH-associated protein 1 expression and increasing nuclear factor-erythroid factor 2-related factor 2 and heme oxygenase-1 protein expression; and promoting the regeneration of epithelial cells. IR also promoted the restoration of the intestinal mucosal barrier and modulated the OSM/OSMR pathway to alleviate UC. It was found that IR exerted therapeutic effects on UC by restoring the intestinal mucosal barrier and regulating the OSM/OSMR pathway.
Collapse
Affiliation(s)
- Yao Li
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xu Yang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Jia-ni Yuan
- Air Force Hospital of Western Theater Command, Chengdu, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Xi’an, China
| | - Yun-yuan Tian
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi’an, China
| | - Yu-xin Li
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Yan Zhang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xu-fang Wang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Yan-hua Xie
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Si-wang Wang
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Xiao-hui Zheng
- The College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
11
|
Li N, Li X, Su R, Wu R, Niu HQ, Luo J, Gao C, Li X, Wang C. Low-Dose Interleukin-2 Altered Gut Microbiota and Ameliorated Collagen-Induced Arthritis. J Inflamm Res 2022; 15:1365-1379. [PMID: 35241924 PMCID: PMC8887675 DOI: 10.2147/jir.s344393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Low-dose interleukin-2 (ld-IL-2) has been shown to regulate the balance between effector T and regulatory T (Treg) cells and has been used in several clinical trials to treat autoimmune diseases including rheumatoid arthritis (RA). In this study, we investigated the effects of ld-IL-2 on collagen-induced arthritis (CIA) in mice. Methods Arthritis severity in CIA mice was measured using the arthritis index (AI), radiographs, and hematoxylin and eosin staining. Cytokines were detected using enzyme-linked immunosorbent assay. Gut microbiota alterations and short-chain fatty acid production were analyzed through 16S rRNA sequencing and gas chromatography. Results The AI scores of CIA mice treated with ld-IL-2 were significantly lower compared to the model group, which significantly reduced the severity of arthritis. Ld-IL-2 also altered the gut microbiota in CIA mice. The diversity, composition, and dominant species of gut microbiota were altered by ld-IL-2 treatment. Ld-IL-2 also increased short-chain fatty acid levels. There was a strong correlation between ld-IL-2 treatment and improved gut microbiota. Conclusion Ld-IL-2 significantly ameliorated joint inflammation and bone damage and improved gut microbial dysbiosis in CIA, indicating that it may be a promising therapy for RA patients.
Collapse
Affiliation(s)
- Na Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xuefei Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Hong-Qing Niu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Correspondence: Caihong Wang, Tel +8613603515399, Fax +863513365551, Email
| |
Collapse
|
12
|
Kan X, Hu G, Huang B, Guo W, Huang Y, Chen Y, Xu P, Cai X, Fu S, Liu J. Pedunculoside protects against LPS-induced mastitis in mice by inhibiting inflammation and maintaining the integrity of blood-milk barrier. Aging (Albany NY) 2021; 13:19460-19474. [PMID: 34383710 PMCID: PMC8386561 DOI: 10.18632/aging.203357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 04/17/2023]
Abstract
Mastitis is a disease that seriously threatens the health of the mammary gland after delivery. Pedunculoside (PE) is the main bioactive component of Aquifoliaceae. The purpose of this experiment is to explore the effects of PE on mastitis and its underlying mechanisms. Our research results showed that PE could significantly inhibit the increase in the levels of inflammatory mediators such as TNF-α, IL-6, IL-1β, MPO and iNOS during mastitis. Mechanism studies have found that PE could significantly inhibit the phosphorylation of AKT protein and binds to the ASP-184 site. Further research found that PE also inhibited the activation of AKT's downstream pro-inflammatory signals NF-κB and MAPK. In addition, PE effectively promote the expression of tight junction proteins occludin and claudin-3 during inflammation, maintaining the integrity of the blood-milk barrier. In summary, our research shows that PE inhibits the phosphorylation of AKT/NF-κB and MAPK signals; It also relieves mastitis by repairing the blood-milk barrier.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Bingxu Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yaping Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ping Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiangyu Cai
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Santiago LÂM, Neto RNM, Santos Ataíde AC, Fonseca DCSC, Soares EFA, de Sá Sousa JC, Mondego-Oliveira R, Ribeiro RM, de Sousa Cartágenes MDS, Lima-Neto LG, Carvalho RC, de Sousa EM. Flavonoids, alkaloids and saponins: are these plant-derived compounds an alternative to the treatment of rheumatoid arthritis? A literature review. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00291-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AbstractRheumatoid arthritis (RA) is a systemic inflammatory disease characterized by synovial inflammation leading to progressive joint erosion and, eventually, joint deformities. RA treatment includes anti-inflammatories, corticosteroids, synthetic disease-modifying antirheumatic drugs (DMARDs), and immunosuppressants. Drug administration is associated with adverse reactions, as gastrointestinal ulcers, cardiovascular complications, and opportunistic infections. Wherefore, different plant-derived phytochemical compounds are studied like new therapeutic approach to treatment of RA. Among the phytochemical compounds of plants for treatment of RA, flavonoids, alkaloids and saponins are related for present anti-inflammatory activity and act as physiological and metabolic regulators. They have low toxicity compared to other active plant compounds, so their therapeutic properties are widely studied. The intention of the review is to present an overview of the therapeutics of flavonoids, alkaloids, and saponins for RA. An extensive literature survey was undertaken through different online platforms:PubMed, SciELO, and Virtual Health Library databases, to identify phytochemical compounds used in RA treatment and the descriptors used were medicinal plants, herbal medicines, and rheumatoid arthritis. Seventy-five research and review articles were found to be apt for inclusion into the review. The present study summarizes the phytochemicals isolated from plants that have therapeutic effects on RA models, in vitro and in vivo. The studied substances exerted anti-inflammatory, chondroprotective, immunoregulatory, anti-angiogenic, and antioxidant activities and the most compounds possess good therapeutic properties, valuable for further research for treatment of RA.
Collapse
|
14
|
Kaempferol-3-O-Glucuronide Ameliorates Non-Alcoholic Steatohepatitis in High-Cholesterol-Diet-Induced Larval Zebrafish and HepG2 Cell Models via Regulating Oxidation Stress. Life (Basel) 2021; 11:life11050445. [PMID: 34069176 PMCID: PMC8155963 DOI: 10.3390/life11050445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is one of the most prominent liver diseases in the world. As a metabolic-related disease, the development of NAFLD is closely associated with various degrees of lipid accumulation, oxidation, inflammation, and fibrosis. Ilex chinensis Sims is a form of traditional Chinese medicine which is used to treat bronchitis, burns, pneumonia, ulceration, and chilblains. Kaempferol-3-O-glucuronide (K3O) is a natural chemical present in Ilex chinensis Sims. This study was designed to investigate the antioxidative, fat metabolism-regulating, and anti-inflammatory potential of K3O. A high-cholesterol diet (HCD) was used to establish steatosis in larval zebrafish, whereby 1mM free fatty acid (FFA) was used to induce lipid accumulation in HepG2 cells, while H2O2 was used to induce oxidative stress in HepG2. The results of this experiment showed that K3O reduced lipid accumulation and the level of reactive oxygen species (ROS) both in vivo (K3O, 40 μM) and in vitro (K3O, 20 μM). Additionally, K3O (40 μM) reduced neutrophil aggregation in vivo. K3O (20 μM) also decreased the level of malondialdehyde (MDA) and significantly increased the level of glutathione peroxidase (GSH-px) in both the HCD-induced larval zebrafish model and H2O2-exposed HepG2 cells. In the mechanism study, keap1, nrf2, tnf-α, and il-6 mRNA were all significantly reversed by K3O (20 μM) in zebrafish. Changes in Keap1 and Nrf2 mRNA expression were also detected in H2O2-exposed HepG2 cells after they were treated with K3O (20 μM). In conclusion, K3O exhibited a reduction in oxidative stress and lipid peroxidation, and this may be related to the Nrf2/Keap1 pathway in the NAFLD larval zebrafish model.
Collapse
|
15
|
Liu K, Li G, Guo W, Zhang J. The protective effect and mechanism of pedunculoside on DSS (dextran sulfate sodium) induced ulcerative colitis in mice. Int Immunopharmacol 2020; 88:107017. [PMID: 33182072 DOI: 10.1016/j.intimp.2020.107017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Pedunculoside (PE) is derived from the bark of iron holly, a member of the holly family. Previous studies have shown that PE has anti-inflammatory, antitumor, antiviral, cholesterol-lowering and blood-pressure-lowering effects. In this study, we aimed to investigate the effects of PE on ulcerative colitis and to explore its potential mechanisms. We treated a mouse model of ulcerative colitis induced by DSS (dextran sulfate sodium) with PE. The results showed that PE had an obvious effect on DSS-induced ulcerative colitis. PE significantly improved the colon length and clinical score in mice, and significantly inhibited the production of inflammatory cytokines. In the LPS-induced inflammatory response of RAW264.7 macrophages, we also found that PE significantly inhibited the phosphorylation of AKT, ERK1/2, JNK1/2, P65, and P38 to reduce the production of IL-1β, IL-6, TNF-α, COX-2, and iNOS. Furthermore, PE suppressed the LPS-induced transcriptional activities of nuclear factor P65 as well as the phosphorylation of P65. In addition, we also studied the effect of PE on LPS induced AKT/NF-κB and MAPK signaling pathways with primary peritoneal macrophages. In summary, PE has a beneficial effect on ulcerative colitis, and may be a potential natural product in the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Kunjian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiao Zhang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|