1
|
Shilky, Baishya R, Saikia P. Identification of urban street trees for green belt development for optimizing pollution mitigation in Delhi, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54962-54978. [PMID: 39223410 DOI: 10.1007/s11356-024-34802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The current study evaluated the effects of air pollution on selected street trees in the National Capital Territory during the pre- and post-monsoon seasons to identify the optimally suitable tree for green belt development in Delhi. The identification was performed by measuring the air pollution tolerance index (APTI), anticipated performance index (API), dust-capturing capacity (DCC) and proline content on the trees. The APTI of street trees of Delhi varied significantly among different tree species (F11,88.91 = 47.18, p < 0.05), experimental sites (F3,12.52 = 6.65, p < 0.001) and between seasons (F1,31.12 = 16.51, p < 0.001), emphasizing the relationships between trees and other types of variables such as the climate and level of pollution, among other factors. This variability emphasizes the need to choose trees to use for urban greening in the improvement of air quality in different environments within cities. Ascorbic acid (AA) concentration and relative water content (RWC) had a strong influence on APTI with an extremely significant moderate positive correlation between AA concentration and APTI (r = 0.65, p < 0.001) along with RWC and APTI (r = 0.52, p < 0.001), indicating that higher levels of AA concentration and RWC are linked to increased air pollution tolerance. The PCA bi-plot indicates AA has poor positive loading coefficients with PC1 explaining 29.49% of the total variance in the dataset. The highest APTI was recorded in Azadirachta indica (22.01), Leucaena leucocephala (20.65), Morus alba (20.62), Ficus religiosa (20.61) and Ficus benghalensis (19.61), irrespective of sites and seasons. Similarly, based on API grading, F. religiosa and F. benghalensis were identified as excellent API grade 6 (81-90%), A. indica and Alstonia scholaris as very good API grade 5 (71-80%), M. alba, Pongamia pinnata and Monoon longifolium as good API grade 4 (61-70%) and Plumeria alba as moderate API grade 3 (51-60%) in different streets of Delhi. As these plants are indigenous to the region and hold significant socio-economic and aesthetic significance in Indian societies, they are advisable for avenue plantations as part of various government initiatives to support environmental sustainability.
Collapse
Affiliation(s)
- Shilky
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Ratul Baishya
- Department of Botany, University of Delhi, New Delhi, India
| | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Vashist M, Kumar TV, Singh SK. A comprehensive review of urban vegetation as a Nature-based Solution for sustainable management of particulate matter in ambient air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26480-26496. [PMID: 38570430 DOI: 10.1007/s11356-024-33089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Air pollution is one of the most pressing environmental threats worldwide, resulting in several health issues such as cardiovascular and respiratory disorders, as well as premature mortality. The harmful effects of air pollution are particularly concerning in urban areas, where mismanaged anthropogenic activities, such as growth in the global population, increase in the number of vehicles, and industrial activities, have led to an increase in the concentration of pollutants in the ambient air. Among air pollutants, particulate matter is responsible for most adverse impacts. Several techniques have been implemented to reduce particulate matter concentrations in the ambient air. However, despite all the threats and awareness, efforts to improve air quality remain inadequate. In recent years, urban vegetation has emerged as an efficient Nature-based Solution for managing environmental air pollution due to its ability to filter air, thereby reducing the atmospheric concentrations of particulate matter. This review characterizes the various mitigation mechanisms for particulate matter by urban vegetation (deposition, dispersion, and modification) and identifies key areas for further improvements within each mechanism. Through a systematic assessment of existing literature, this review also highlights the existing gaps in the present literature that need to be addressed to maximize the utility of urban vegetation in reducing particulate matter levels. In conclusion, the review emphasizes the urgent need for proper air pollution management through urban vegetation by integrating different fields, multiple stakeholders, and policymakers to support better implementation.
Collapse
Affiliation(s)
- Mallika Vashist
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042.
| | | | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, India, 110042
- Rajasthan Technical University, Kota (Rajasthan), India
| |
Collapse
|
3
|
Mikhailova TA, Shergina OV. Diversity and negative effect of PM 0.3-10.0 adsorbed by needles of urban trees in Irkutsk, Russia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119243-119259. [PMID: 37924402 DOI: 10.1007/s11356-023-30749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
The study was performed in natural forests preserved within the Boreal zone city, Irkutsk, Russia. Test sites were selected in the forests in different districts of the city, where samples of Scots pine (Pinus sylvestris L.) and Siberian larch (Larix sibirica Ledeb.) needles were taken to study the adsorption on their surface of aerosol particles of different sizes, in microns: PM0.3, PM0.5, PM1, PM2.5, PM5, PM10. Scanning electron microscopy was used to obtain high-resolution photographs (magnification 800- × 2000, × 16,000) and aerosol particles (particulate matter-PM) were shown to be intensively adsorbed by the surface of needles, with both size and shape of the particles characterized by a wide variety. Pine needles can be covered with particles of solid aerosol by 50-75%, stomata are often completely blocked. Larch needles often show areas, which are completely covered with aerosol particles, there are often found stomata deformed by the penetration of PMx. X-ray spectral microanalysis showed differences in the chemical composition of adsorbed PMx, the particles can be metallic if metals predominate in their composition, carbonaceous-in case of carbon predominance-or polyelemental if the composition is complex and includes significant quantities of other elements besides metals and carbon (calcium, magnesium, potassium, sodium, sulfur, chlorine, fluorine). Since the particles contain a large proportion of technogenic pollutants, accumulation by the needles of some widespread pollutants was investigated. A direct correlation of a highly significant level between the concentration of PMx in the air and the accumulation of many heavy metals in pine and larch needles, as well as sulfur, fluorine, and chlorine, has been revealed, which indicates a high cleaning capacity of urban forests. At the same time, the negative impact of PMx particles on the vital status of trees is great, which shows in intense disturbance of the parameters of photosynthesis and transpiration, leading to a significant decrease in the growth characteristics of trees and reduction in the photosynthetic volume of the crowns. We consider that the results obtained are instrumental in developing an approach to improvement of urban forests status and creating a comfortable urban environment for the population.
Collapse
Affiliation(s)
- Tatiana Alekseevna Mikhailova
- Department of Ecology, TheNaturalandAnthropogenicEcosystemsLaboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, 132, Lermontova Str., 664033, Irkutsk, Russia
| | - Olga Vladimirovna Shergina
- Department of Ecology, TheNaturalandAnthropogenicEcosystemsLaboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, 132, Lermontova Str., 664033, Irkutsk, Russia.
| |
Collapse
|
4
|
Verrelli BC, Alberti M, Des Roches S, Harris NC, Hendry AP, Johnson MTJ, Savage AM, Charmantier A, Gotanda KM, Govaert L, Miles LS, Rivkin LR, Winchell KM, Brans KI, Correa C, Diamond SE, Fitzhugh B, Grimm NB, Hughes S, Marzluff JM, Munshi-South J, Rojas C, Santangelo JS, Schell CJ, Schweitzer JA, Szulkin M, Urban MC, Zhou Y, Ziter C. A global horizon scan for urban evolutionary ecology. Trends Ecol Evol 2022; 37:1006-1019. [PMID: 35995606 DOI: 10.1016/j.tree.2022.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
Abstract
Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.
Collapse
Affiliation(s)
- Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| | - Simone Des Roches
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - Marc T J Johnson
- Department of Biology, Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Amy M Savage
- Department of Biology and Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ 08103, USA
| | | | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Lindsay S Miles
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - L Ruth Rivkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristin M Winchell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kristien I Brans
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cristian Correa
- Instituto de Conservación Biodiversidad y Territorio, Centro de Humedales Río Cruces, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ben Fitzhugh
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sara Hughes
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason Munshi-South
- Louis Calder Center & Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA
| | - Carolina Rojas
- Instituto de Estudios Urbanos y Territoriales, Centro de Desarrollo Sustentable CEDEUS, Pontificia Universidad Católica de Chile, El Comendador 1916, Providencia, 7500000, Santiago, Chile
| | - James S Santangelo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37917, USA
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology & Center of Biological Risk, University of Connecticut, Storrs, CT 06269, USA
| | - Yuyu Zhou
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
| | - Carly Ziter
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
5
|
Diener A, Mudu P. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148605. [PMID: 34271387 DOI: 10.1016/j.scitotenv.2021.148605] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
Air pollution causes the largest death toll among environmental risks globally, but interventions to purify ambient air remain inadequate. Vegetation and green spaces have shown reductive effects on air-borne pollutants concentrations, especially of particulate matter (PM). Guidance on green space utilisation for air quality control remains scarce, however, as does its application in practise. To strengthen the foundation for research and interventions, we undertook a critical review of the state of science from a public health perspective. We used inter-disciplinary search strategies for published reviews on green spaces and air pollution in key scientific databases. Using the PRISMA checklist, we systematically identified reviews with quantitative analyses. For each of the presented PM mitigation mechanisms, we conducted additional searches focused on the most recent articles published between 2016 and early 2021. The included reviews differentiate three mitigation mechanisms of green spaces for PM: deposition, dispersion and modification. The most studied mechanism is deposition, particularly measures of mass and settling velocity of PM on plant leaves. We consolidate how green space setups differ by scale and context in their potentials to reduce peak exposures, stationary (point) or mobile (line) pollution sources, and the potentially most harmful PM components. The assessed findings suggest diverse optimisation options for green space interventions, particularly concerning plant selection, spatial setup, ventilation and maintenance - all alongside the consideration of supplementary vegetation effects like on temperature or water. Green spaces' reductive effects on air-borne PM concentrations are considerable, multi-mechanistic and varied by scale, context and vegetation characteristics. Such effect-modifying factors must be considered when rethinking public space design, as accelerated by the COVID-19 pandemic. Weak linkages amid involved disciplines motivate the development of a research framework to strengthen health-oriented guidance. We conclude on an urgent need for an integrated and risk-based approach to PM mitigation through green space interventions.
Collapse
Affiliation(s)
- Arnt Diener
- European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany; Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Gurlittstr 55/II, 40223 Düsseldorf, North-Rhine Westphalia, Germany.
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany
| |
Collapse
|