1
|
Saleem W, Vereecke N, Zaman MG, Afzal F, Reman I, Khan SUH, Nauwynck H. Genotyping and phylogeography of infectious bronchitis virus isolates from Pakistan show unique linkage to GI-24 lineage. Poult Sci 2024; 103:103236. [PMID: 37980750 PMCID: PMC10685022 DOI: 10.1016/j.psj.2023.103236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023] Open
Abstract
Infectious bronchitis virus (IBV) is prevalent in Pakistan causing enormous economic losses. To date no clear data are available on circulating genotypes and phylogeographic spread of the virus. Hence current study assessed these parameters for all available IBV Pakistani isolates, based on the 9 new sequences, with respect to other Asian and non-Asian countries. Results indicated that all Pakistani isolates belonged to genotype I (GI), with more than half of them (16/27) belonging to the GI-24 lineage, against which no vaccine is available. Three possible introduction events of the GI-13 IBV lineage into Pakistan, based on the estimated IBV population using isolates from this study, were observed possibly from Afghanistan, China, and/or Egypt. These events were further analyzed on the S1 amino acid level which showed unique alterations (S250H, T270K, and Q298S) in 1 isolate (IBV4, GI-13) when compared to GI-1 lineage. Both GI-1 and GI-13 Pakistani strains showed close homology with homologous vaccine strains that are used in Pakistan. For GI-24 strains, none of the used vaccines showed substantial homology, necessitating the need for further exploration of this lineage and vaccine design. In addition, our findings highlight the importance of genomic surveillance to support phylogeographical studies on IBV in genotyping and molecular epidemiology.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium.
| | - Nick Vereecke
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Pathosense BV, Lier 2500, Belgium
| | - Muhammad Goher Zaman
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, 54770 Islamabad, Pakistan
| | - Farhan Afzal
- Disease Diagnostic Laboratory, Poultry Research Institute, 46000 Rawalpindi, Pakistan
| | - Iqra Reman
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, 54770 Islamabad, Pakistan
| | - Saeed Ul-Hasan Khan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, 54770 Islamabad, Pakistan
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Pathosense BV, Lier 2500, Belgium
| |
Collapse
|
2
|
de Wit JJ, de Wit MK, Cook JKA. Infectious Bronchitis Virus Types Affecting European Countries—A Review. Avian Dis 2021; 65:643-648. [DOI: 10.1637/aviandiseases-d-21-00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/05/2022]
Affiliation(s)
- J. J. de Wit
- Royal GD, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands
| | - M. K. de Wit
- Demetris, Impact 14, 6921 RZ, Duiven, the Netherlands
| | - J. K. A Cook
- 138 Hartford Road, Huntingdon, Cambridgeshire PE29 1XQ, United Kingdom
| |
Collapse
|
3
|
Han Z, Jiang L, Zhao W, Chen Y, Xu L, Sun J, Zhao Y, Liu S. Isolation and Characteristics of the Arkansas-Type Infectious Bronchitis Virus in China. Avian Dis 2019; 62:18-27. [PMID: 29620453 DOI: 10.1637/11719-072517-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two infectious bronchitis virus (IBV) strains, designated as γCoV/ck/China/I0712/11 (I0712/11) and γCoV/ck/China/I0108/17 (I0108/17), were isolated from diseased chicken flocks in different provinces in China and genotyped as Arkansas (Ark)-type viruses with three other Chinese Ark field strains, the Jilin vaccine strain, and the American Ark- and Ark DPI-like viruses. Complete genomic sequence analysis and pairwise comparison of nucleotide sequences encoding the S1 subunit of the spike protein and other structural and accessory proteins revealed that Chinese Ark field isolates were genetically closely related to the Jilin vaccine and American ArkDPI11 strains, although extensive nucleotide changes were found across the genomes of Chinese Ark field isolates. This suggests that Chinese Ark-type isolates are derived from the Jilin vaccine, and have diverged and evolved independently by point mutations since introduction into China. It is also possible that the Chinese Ark viruses have arisen as a result of different introductions of American ArkDPI11-like strains from the United States; this hypothesis requires further investigation. Pathogenicity testing showed that Chinese Ark viruses had comparable virulence to that of the Massachusetts-type M41 strain, although they had lower affinity for the kidneys of chickens than the M41 strain had. Although Ark-type viruses are not widespread in China, surveillance and updating the currently applied vaccination strategy for sound protection against IBV disease are important because this type of virus has caused heavy economic losses in the United States.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Lei Jiang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Wenjun Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yuqiu Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Liwen Xu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| |
Collapse
|
4
|
Ghalyanchilangeroudi A, Hosseini H, Fallah Mehrabadi MH, Ghafouri SA, Modiri Hamdan A, Ziafati Z, Esmaeelzadeh Dizaji R, Mohammadi P. Genotyping of avian infectious bronchitis virus in Iran: Detection of D274 and changing in the genotypes rate. Comp Immunol Microbiol Infect Dis 2019; 65:110-115. [PMID: 31300098 PMCID: PMC7112693 DOI: 10.1016/j.cimid.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/07/2023]
Abstract
An updating data about avian infectious bronchitis genotypes circulating in Iran. First detection of D274 genotype in Iran.
The coronavirus avian Infectious bronchitis virus (IBV) poses economic threats to poultry farms worldwide, affecting the performance of both meat-type and egg-laying birds. To define the evolution of recent IBVs in Iran, a genetic analysis based on hypervariable nucleotide sequences of S1 gene was carried out. Tracheal swab samples were collected from 170 Broiler flocks during 2017. Ten tracheal swabs from each flock pooled. From a total number of 170 flocks tested, 84.71% found to be positive. Phylogenetic tree analysis revealed the presence of D274 as a first time in Iran. IS/1494/06 was showed to be dominant IBV type circulating in broiler farms with a significantly higher prevalence than other four genotypes. Considering fluctuations in QX-type prevalence in recent years, continuous monitoring is necessary to reduce economic consequences in layer and broiler farms. The findings highlight the importance of using modified vaccination strategies that are adapted to the changing disease scenario.
Collapse
Affiliation(s)
- Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Alborz, Iran.
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | | | - Amir Modiri Hamdan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Ziafati
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Esmaeelzadeh Dizaji
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Peyman Mohammadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Bande F, Arshad SS, Omar AR, Hair-Bejo M, Mahmuda A, Nair V. Global distributions and strain diversity of avian infectious bronchitis virus: a review. Anim Health Res Rev 2017; 18:70-83. [PMID: 28776490 DOI: 10.1017/s1466252317000044] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The poultry industry faces challenge amidst global food security crisis. Infectious bronchitis is one of the most important viral infections that cause huge economic loss to the poultry industry worldwide. The causative agent, infectious bronchitis virus (IBV) is an RNA virus with great ability for mutation and recombination; thus, capable of generating new virus strains that are difficult to control. There are many IBV strains found worldwide, including the Massachusetts, 4/91, D274, and QX-like strains that can be grouped under the classic or variant serotypes. Currently, information on the epidemiology, strain diversity, and global distribution of IBV has not been comprehensively reported. This review is an update of current knowledge on the distribution, genetic relationship, and diversity of the IBV strains found worldwide.
Collapse
Affiliation(s)
- Faruku Bande
- Department of Veterinary Pathology and Microbiology,Faculty of Veterinary Medicine,Universiti Putra Malaysia,43400 UPM Serdang,Selangor Darul Ehsan,Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology,Faculty of Veterinary Medicine,Universiti Putra Malaysia,43400 UPM Serdang,Selangor Darul Ehsan,Malaysia
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology,Faculty of Veterinary Medicine,Universiti Putra Malaysia,43400 UPM Serdang,Selangor Darul Ehsan,Malaysia
| | - Mohd Hair-Bejo
- Department of Veterinary Pathology and Microbiology,Faculty of Veterinary Medicine,Universiti Putra Malaysia,43400 UPM Serdang,Selangor Darul Ehsan,Malaysia
| | - Aliyu Mahmuda
- Department of Microbiology and Parasitology,Faculty of Medicine and Health Sciences,Universiti Putra Malaysia,43400 UPM Serdang,Selangor Darul Ehsan,Malaysia
| | - Venugopal Nair
- Avian Oncogenic Virus Group,The Pirbright Institute,Working,Guildford,Surrey,GU24 0NF,UK
| |
Collapse
|
6
|
Xu Q, Han Z, Wang Q, Zhang T, Gao M, Zhao Y, Shao Y, Li H, Kong X, Liu S. Emergence of novel nephropathogenic infectious bronchitis viruses currently circulating in Chinese chicken flocks. Avian Pathol 2017; 45:54-65. [PMID: 26551660 DOI: 10.1080/03079457.2015.1118435] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence of novel infectious bronchitis viruses (IBVs) has been reported worldwide. Between 2011 and 2014, eight IBV isolates were identified from disease outbreaks in northeast China. In the current study we analysed the S1 gene of these eight IBV isolates in addition to the complete genome of five of them. We confirmed that these isolates emerged through the recombination of LX4 and Taiwan group 1 (TW1) viruses at two switch sites, one was in the Nsp 16 region and the other in the spike protein gene. The S1 gene in these viruses exhibited high nucleotide similarity with TW1-like viruses; the TW1 genotype was found to be present in southern China from 2009. Pathogenicity experiments in chickens using three of the eight virus isolates revealed that they were nephropathogenic and had similar pathogenicity to the parental viruses. The results of our study demonstrate that recombination, coupled with mutations, is responsible for the emergence of novel IBVs.
Collapse
Affiliation(s)
- Qianqian Xu
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Zongxi Han
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Qiuling Wang
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Tingting Zhang
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Mengying Gao
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Yan Zhao
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Yuhao Shao
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Huixin Li
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Xiangang Kong
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| | - Shengwang Liu
- a Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences , Harbin 150001 , People's Republic of China
| |
Collapse
|
7
|
Han Z, Zhao W, Chen Y, Xu Q, Sun J, Zhang T, Zhao Y, Liang S, Gao M, Wang Q, Kong X, Liu S. Genetic, antigenic, and pathogenic characteristics of avian infectious bronchitis viruses genotypically related to 793/B in China. Vet Microbiol 2017; 203:125-135. [PMID: 28619134 PMCID: PMC7117474 DOI: 10.1016/j.vetmic.2017.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
793/B IBV was among the most important serotype to be recognized worldwide. Twelve out of 20 IBVs genetically related to 793/B are reisolates of 4/91 vaccine strain. ck/CH/LSD/110857 was originated from recombination events between H120- and 4/91-like strains. Seven isolates were from recombination events between a 4/91-like strain and a GX-LY9-like virus.
In this study, 20 infectious bronchitis virus (IBV) strains, which were genotypically related to 793/B, as assessed by an S1 gene comparison and a complete genomic sequence analysis, were isolated and identified from 2009 to 2014 in China. Phylogenetic analysis, network tree, similarity plot analysis, Recombination Detection Program 4(RDP4) and sequence comparison revealed that 12 of the 20 isolates were likely the reisolated vaccine virus. One isolate, ck/CH/LSD/110857, was shown to have originated from recombination events between H120- and 4/91-like vaccine strains that did not result in changes of antigenicity and pathogenicity. The remaining seven IBV isolates were shown to have originated from recombination events between a 4/91-like vaccine strain and a GX-LY9-like virus, which were responsible for the emergence of a novel serotype. A vaccination-challenge test found that vaccination with the 4/91 vaccine strain did not provide protection against challenge with the recombinant viruses. In addition, the results showed that the recombination events between the vaccine and field strains resulted in altered genetics, serotype, antigenicity, and pathogenicity compared with those of their deduced parental viruses. The results are important not only because this virus is of economic importance to poultry industry, but also because it is important for elucidating the origin and evolution of other coronaviruses.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Wenjun Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yuqiu Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Qianqian Xu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Tingting Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Shuling Liang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Mengying Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Qiuling Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Xiangang Kong
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| |
Collapse
|
8
|
Marandino A, Tomás G, Hernández M, Panzera Y, Craig MI, Vagnozzi A, Vera F, Techera C, Grecco S, Banda A, Hernández D, Pérez R. Development of RT-qPCR assays for the specific identification of two major genotypes of avian infectious bronchitis virus. J Virol Methods 2016; 235:21-25. [PMID: 27181213 DOI: 10.1016/j.jviromet.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Abstract
Infectious bronchitis virus (Gammacoronavirus, Coronaviridae) is a genetically variable RNA virus (27.6kb) that causes one of the most persistent respiratory disease in poultry. The virus is classified in genotypes with different epidemiological relevance and clinical implications. The present study reports the development and validation of specific RT-qPCR assays for the detection of two major IBV genotypes: South America I (SAI) and Asia/South America II (A/SAII). The SAI genotype is an exclusive and widespread South American lineage while the A/SAII genotype is distributed in Asia, Europe and South America. Both identification assays employ TaqMan probes that hybridize with unique sequences in the spike glycoprotein gene. The assays successfully detected all the assessed strains belonging to both genotypes, showing high specificity and absence of cross-reactivity. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable determination coefficients, PCR efficiencies and relatively small intra- and inter-assay variability. The assays demonstrated a wide dynamic range between 10(1)-10(7) and 10(2)-10(7) RNA copies/reaction for SAI and A/SAII strains, respectively. The possibility to characterize a large number of samples in a rapid, sensitive and reproducible way makes these techniques suitable tools for routine testing, IBV control, and epidemiological research in poultry.
Collapse
Affiliation(s)
- Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Martín Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - María Isabel Craig
- Instituto de Virología, CICVyA, INTA-Castelar, CC 25 (1712) Castelar, Buenos Aires, Argentina
| | - Ariel Vagnozzi
- Instituto de Virología, CICVyA, INTA-Castelar, CC 25 (1712) Castelar, Buenos Aires, Argentina
| | - Federico Vera
- Laboratorio Sanidad Aviar, INTA- E.E.A, Concepción del Uruguay, Entre Ríos, Argentina
| | - Claudia Techera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Alejandro Banda
- Poultry Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39288, USA
| | - Diego Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
9
|
Homayounimehr A, Pakbin A, Momayyez R, Fatemi SMR. Detection and identification of infectious bronchitis virus by RT-PCR in Iran. Trop Anim Health Prod 2016; 48:973-8. [PMID: 27010714 DOI: 10.1007/s11250-016-1040-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Infectious bronchitis virus (IBV) causes severe diseases in poultry with significant economic consequences to the poultry industry in Iran. The aim of this study was the detection and identification of IBV by reverse transcription(RT)-PCR in Iran. Ten IB virus strains were detected by testing trachea, cecal tonsil, and kidney tissues collected from broiler and layer farms in Iran. In order to detect infectious bronchitis virus, an optimized RT-PCR was used. Primers targeting the conserved region of known IBV serotypes were used in the RT-PCR assay. Primers selectively detecting Massachusetts and 793/B type IB viruses were designed to amplify the S1 gene of the virus and used in the nested PCR test. Our findings indicate the circulation of at least three genotypes of IB viruses (Massachusetts, 793/B, and variant 2) among poultry flocks.
Collapse
Affiliation(s)
| | | | - Reza Momayyez
- Avian Disease and Scientific Research Department, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | | |
Collapse
|
10
|
Toro H, van Santen VL, Ghetas AM, Joiner KS. Cross-Protection by Infectious Bronchitis Viruses Under Controlled Experimental Conditions. Avian Dis 2016; 59:532-6. [PMID: 26629628 DOI: 10.1637/11231-070615-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infectious bronchitis virus (IBV) cross-protection trials were performed in healthy chickens maintained under controlled environmental conditions. Chickens primed or primed and boosted with a Massachusetts (Mass)-type attenuated vaccine were subsequently challenged with either IBV Arkansas (Ark) or GA13-type virulent strains. In addition, Ark-vaccinated chickens were challenged with IBV GA13. Spike protein 1 (S1) amino acid identities between IBV vaccine and challenge strains varied from 76.0% to 77.3%. Contrary to expectations, assessments of clinical signs, viral load, and histopathology indicated a significant level of cross-protection among these antigenically distant IBV strains. Moreover, prime and booster vaccination with Mass protected against GA13 and improved protection against Ark when compared with Mass single vaccination. These results emphasize the need to include both single vaccination control groups and control groups primed and boosted with a single serotype when testing the efficacy of IBV protectotypes and/or novel IBV vaccine combinations against heterologous serotypes under controlled experimental conditions. Such controls are of distinct importance in experiments supporting the introduction of attenuated IBV vaccine strains exotic to regions, since these exotic strains may provide new genetic material for recombination and emergence of novel IBV strains.
Collapse
Affiliation(s)
- H Toro
- Department of Pathobiology, College of Veterinary Medicine, 264 Greene Hall, Auburn University, AL 36849
| | - V L van Santen
- Department of Pathobiology, College of Veterinary Medicine, 264 Greene Hall, Auburn University, AL 36849
| | - A M Ghetas
- Department of Pathobiology, College of Veterinary Medicine, 264 Greene Hall, Auburn University, AL 36849
| | - K S Joiner
- Department of Pathobiology, College of Veterinary Medicine, 264 Greene Hall, Auburn University, AL 36849
| |
Collapse
|
11
|
Valastro V, Holmes EC, Britton P, Fusaro A, Jackwood MW, Cattoli G, Monne I. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. INFECTION GENETICS AND EVOLUTION 2016; 39:349-364. [PMID: 26883378 PMCID: PMC7172980 DOI: 10.1016/j.meegid.2016.02.015] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
Infectious bronchitis virus (IBV) is the causative agent of a highly contagious disease that results in severe economic losses to the global poultry industry. The virus exists in a wide variety of genetically distinct viral types, and both phylogenetic analysis and measures of pairwise similarity among nucleotide or amino acid sequences have been used to classify IBV strains. However, there is currently no consensus on the method by which IBV sequences should be compared, and heterogeneous genetic group designations that are inconsistent with phylogenetic history have been adopted, leading to the confusing coexistence of multiple genotyping schemes. Herein, we propose a simple and repeatable phylogeny-based classification system combined with an unambiguous and rationale lineage nomenclature for the assignment of IBV strains. By using complete nucleotide sequences of the S1 gene we determined the phylogenetic structure of IBV, which in turn allowed us to define 6 genotypes that together comprise 32 distinct viral lineages and a number of inter-lineage recombinants. Because of extensive rate variation among IBVs, we suggest that the inference of phylogenetic relationships alone represents a more appropriate criterion for sequence classification than pairwise sequence comparisons. The adoption of an internationally accepted viral nomenclature is crucial for future studies of IBV epidemiology and evolution, and the classification scheme presented here can be updated and revised novel S1 sequences should become available.
Collapse
Affiliation(s)
- Viviana Valastro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy; University of Padova, Padova, Italy.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul Britton
- Pirbright Institute, Compton Laboratory, Compton, UK
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Mark W Jackwood
- Department of Population Health, College of Veterinary Medicine, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA 30602, USA
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| |
Collapse
|
12
|
Dhama K, Singh SD, Barathidasan R, Desingu PA, Chakraborty S, Tiwari R, Kumar MA. Emergence of Avian Infectious Bronchitis Virus and its variants need better diagnosis, prevention and control strategies: a global perspective. Pak J Biol Sci 2015; 17:751-67. [PMID: 26035949 DOI: 10.3923/pjbs.2014.751.767] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Growth in poultry sector is being challenged due to increased incidence and re-emergence of diseases caused due to evolution of several viral pathogens and use of live vaccines. Piles of economic losses are encountered due to these diseases. Avian Infectious Bronchitis (IB), caused by Corona virus, is OIE-listed disease and characterized by respiratory, renal and urogenital involvements, causing high mortality. Economic losses are encountered due to loss of productive performance of both egg and meat-type chickens. Variant viruses evolve due to spontaneous mutations and recombinations, causing disease in vaccinated flocks of all ages. Serotyping and genotyping are the common methods of classification of IBV strains. The virus has 4 clusters, grouped into 7 serotypes and the most important strains are Massachusetts, Connecticut, Arkansas, Gray, Holte and Florida along with numerous others, distributed round the globe. Several conventional and molecular diagnostic methods have been described for the diagnosis of IB in chickens. 'All-in/all-out' operations of rearing along with good biosafety measures forms the basis of prevention, whereas vaccination forms the backbone of IB control programme. Both live and inactivated (oil emulsified) conventional vaccines are available. The new generation vaccines (recombinant and vector-based) developed against locally prevailing IBV strains may be more helpful and avoid the reversion of virulence in live vaccine viruses. The present review deals with all these perspectives of this important emerging poultry pathogen.
Collapse
|
13
|
Abolnik C. Genomic and single nucleotide polymorphism analysis of infectious bronchitis coronavirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 32:416-24. [PMID: 25843648 PMCID: PMC7106318 DOI: 10.1016/j.meegid.2015.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/13/2015] [Accepted: 03/26/2015] [Indexed: 01/03/2023]
Abstract
Infectious bronchitis virus (IBV) is a Gammacoronavirus that causes a highly contagious respiratory disease in chickens. A QX-like strain was analysed by high-throughput Illumina sequencing and genetic variation across the entire viral genome was explored at the sub-consensus level by single nucleotide polymorphism (SNP) analysis. Thirteen open reading frames (ORFs) in the order 5'-UTR-1a-1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3'UTR were predicted. The relative frequencies of missense: silent SNPs were calculated to obtain a comparative measure of variability in specific genes. The most variable ORFs in descending order were E, 3b, 5'UTR, N, 1a, S, 1ab, M, 4c, 5a, 6b. The E and 3b protein products play key roles in coronavirus virulence, and RNA folding demonstrated that the mutations in the 5'UTR did not alter the predicted secondary structure. The frequency of SNPs in the Spike (S) protein ORF of 0.67% was below the genomic average of 0.76%. Only three SNPS were identified in the S1 subunit, none of which were located in hypervariable region (HVR) 1 or HVR2. The S2 subunit was considerably more variable containing 87% of the polymorphisms detected across the entire S protein. The S2 subunit also contained a previously unreported multi-A insertion site and a stretch of four consecutive mutated amino acids, which mapped to the stalk region of the spike protein. Template-based protein structure modelling produced the first theoretical model of the IBV spike monomer. Given the lack of diversity observed at the sub-consensus level, the tenet that the HVRs in the S1 subunit are very tolerant of amino acid changes produced by genetic drift is questioned.
Collapse
Affiliation(s)
- Celia Abolnik
- Poultry Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.
| |
Collapse
|
14
|
Marandino A, Pereda A, Tomás G, Hernández M, Iraola G, Craig MI, Hernández D, Banda A, Villegas P, Panzera Y, Pérez R. Phylodynamic analysis of avian infectious bronchitis virus in South America. J Gen Virol 2015; 96:1340-1346. [PMID: 25667323 PMCID: PMC7081071 DOI: 10.1099/vir.0.000077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/31/2015] [Indexed: 11/18/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus of chickens that causes great economic losses to the global poultry industry. The present study focuses on South American IBVs and their genetic relationships with global strains. We obtained full-length sequences of the S1 coding region and N gene of IBV field isolates from Uruguay and Argentina, and performed Phylodynamic analysis to characterize the strains and estimate the time of the most recent common ancestor. We identified two major South American genotypes, which were here denoted South America I (SAI) and Asia/South America II (A/SAII). The SAI genotype is an exclusive South American lineage that emerged in the 1960s. The A/SAII genotype may have emerged in Asia in approximately 1995 before being introduced into South America. Both SAI and A/SAII genotype strains clearly differ from the Massachusetts strains that are included in the vaccine formulations being used in most South American countries.
Collapse
Affiliation(s)
- Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ariel Pereda
- Instituto de Virología, CICVyA, INTA-Castelar, CC 25 (1712) Castelar, Buenos Aires, Argentina
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Martín Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gregorio Iraola
- Unidad de Bioinformática, Instituto Pasteur de Montevideo, 11400 Montevideo, Uruguay.,Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - María Isabel Craig
- Instituto de Virología, CICVyA, INTA-Castelar, CC 25 (1712) Castelar, Buenos Aires, Argentina
| | - Diego Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Alejandro Banda
- Poultry Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, PO Box 97813, Pearl, MS 39288, USA
| | - Pedro Villegas
- College of Veterinary Medicine, Poultry Diagnostic and Research Center, University of Georgia, 953 College Station Road, Athens, GA 30602-4875, USA
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
15
|
Knoetze AD, Moodley N, Abolnik C. Two genotypes of infectious bronchitis virus are responsible for serological variation in KwaZulu-Natal poultry flocks prior to 2012. ACTA ACUST UNITED AC 2014; 81:769. [PMID: 25685887 DOI: 10.4102/ojvr.v81i1.769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 01/01/2023]
Abstract
This study describes the isolation, serotyping and genotyping of 54 infectious bronchitis virus (IBV) cases predominantly in KwaZulu-Natal and compared to several isolates from other South African provinces between 2011 and 2012 and several historic isolates. The results indicate the division of isolates into two different genotypes of IBV within the province, Massachusetts (Mass)-like and QX-like. The IBV Mass-like genotype was the most prevalent and was detected in 79% of the full spike protein S1 gene sequences. Variation up to 22.3% was detected within local Mass-type strains, supporting the hypothesis that multiple IBV serotypes may co-circulate in the same region simultaneously. Additionally, more conservation was observed amongst Mass serotypes versus QX-like serotypes, implying that vaccine use can influence the variability within the IBV population; this is deduced from the fact that the only live vaccine registered for use in South Africa at the time of the study was of Mass origin and no QX-like vaccines were available for use. This study offers the first published consolidation of IBV isolates from an area of South Africa and identifies variation within the IBV population of the broiler flock within the study area over a 2-year period.
Collapse
Affiliation(s)
- Adrian D Knoetze
- Rainbow Veterinary Laboratory, Rainbow Chicken Farms, South Africa; Department of Production Animal Studies, University of Pretoria, South Africa.
| | | | | |
Collapse
|
16
|
Pohjola LK, Ek-Kommonen SC, Tammiranta NE, Kaukonen ES, Rossow LM, Huovilainen TA. Emergence of avian infectious bronchitis in a non-vaccinating country. Avian Pathol 2014; 43:244-8. [PMID: 24766156 PMCID: PMC7114077 DOI: 10.1080/03079457.2014.913770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
Infectious bronchitis virus (IBV) is a coronavirus of the chicken. It is a highly contagious pathogen and in addition to causing respiratory and kidney diseases can affect the reproductive organs, resulting in loss of production and poor egg quality. Despite the global distribution of IBV, Finland has been free of clinical cases for almost three decades. Since April 2011, outbreaks involving genotypes QX, D274-like and 4/91-like have occurred in southern Finland. The clinical samples studied were submitted to the Finnish Food Safety Authority Evira from different regions of Finland during 2011 to 2013 and originated from a voluntary health monitoring programme, a national survey for avian influenza and diagnostic specimens from both commercial poultry production and hobby flocks. The sources of the infections are not known, but strains D274 and 4/91 are widely used in vaccines elsewhere.
Collapse
Affiliation(s)
- Leena K. Pohjola
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | | | | | | | - Laila M. Rossow
- Production Animal and Wildlife Health, Finnish Food Safety Authority Evira, Helsinki, Finland
| | | |
Collapse
|
17
|
Li M, Mo ML, Huang BC, Fan WS, Wei ZJ, Wei TC, Li KR, Wei P. Continuous evolution of avian infectious bronchitis virus resulting in different variants co-circulating in Southern China. Arch Virol 2013; 158:1783-6. [PMID: 23474985 DOI: 10.1007/s00705-013-1656-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/01/2013] [Indexed: 12/14/2022]
Abstract
Sixty field strains of avian infectious bronchitis virus (IBV) were isolated from chicken flocks in different regions of Guangxi from 1985 to 2012. Phylogenetic analysis of S1 subunit glycoprotein genes revealed that field isolates from 2009-2011 mostly belonged to the LX4 type, while those from 1985-2008 belonged to the HN08 type, and a few others belonged to the 4/91 type, the TW type and the Mass type. In addition, it is noteworthy that no obvious regional differences were found among these 60 strains isolated from six regions in Guangxi, while there was a high degree of sequence identity among the isolates in the same period of time.
Collapse
Affiliation(s)
- Meng Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530004, Guangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Infectious bronchitis virus (IBV) is a gamma coronavirus that causes a highly contagious disease in chickens. The virus can affect the upper respiratory tract and the reproductive tract, and some strains can cause a nephritis. Different serotypes and genetic types of the virus have been identified worldwide and for the most part do not cross-protect. In addition, new types of the virus continue to arise due to mutations and recombination events in the viral genome, making this virus difficult to identify and extremely difficult to control. Surveillance and identification of IBV types is extremely important for control of the disease and the advancement of molecular methods have aided in this pursuit. Genetic typing of IBV, which involves reverse transcription-PCR amplification and sequence analysis of the S1 glycoprotein gene, has revolutionized diagnosis and identification of this virus by making it possible to type and compare the relatedness of a large number of virus isolates in a short period of time. The purpose of this review is to give an update on the strains of IBV currently circulating in commercial chickens worldwide and hopefully to present a clear picture of the relationship between many of these viruses. The information on IBV types presented herein is from published manuscripts, submissions to GenBank, our own unpublished data, and personal communications with scientists and diagnosticians working with IBV worldwide.
Collapse
Affiliation(s)
- Mark W Jackwood
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Cavanagh D. Innovation and discovery: the application of nucleic acid-based technology to avian virus detection and characterization. Avian Pathol 2012; 30:581-98. [PMID: 19184952 DOI: 10.1080/03079450120092071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Polymerase chain reaction (PCR)-based approaches to the detection, differentiation and characterization of avian pathogens continue to be developed and refined. The PCRs, or reverse transcriptase-PCRs, may be general, designed to detect all or most variants of a pathogen, or to be serotype, genotype or pathotype specific. Progress is being made with respect to making nucleic acid approaches more suitable for use in diagnostic laboratories. Robotic workstations are now available for extraction of nucleic acid from many samples in a short time, for routine diagnosis. Following general PCR, the DNA products are commonly analyzed by restriction endonuclease mapping (restriction fragment length polymorphism), using a small number of restriction endonucleases, based on a large body of sequence data. Increasingly, however, nucleotide sequencing is being used to analyze the DNA product, in part due to the expanding use of non-radioactive sequencing methods that are safe and enable high throughout. In this review, I highlight some recent developments with many avian viruses: Newcastle disease virus; circoviruses in canary and pigeon; infectious bursal disease virus (Gumboro disease virus); avian adenoviruses, including Angara disease/infectious hydropericardium virus, haemorrhagic enteritis virus of turkeys, and egg drop syndrome virus; avian herpesviruses, including infectious laryngotracheitis virus, duck plague virus, psittacine herpesvirus (Pacheco's parrot disease virus), Marek's disease virus and herpesvirus of turkeys; avian leukosis virus (associated with lymphoid leukosis or myeloid leukosis, and egg transmission); avian pneumoviruses (turkey rhinotracheitis virus); avian coronaviruses, including infectious bronchitis virus, turkey coronavirus and pheasant coronavirus; astrovirus, in the context of poult enteritis and mortality syndrome, and avian nephritis virus; and avian encephalomyelitis virus, a picornavirus related to hepatitis A virus.
Collapse
|
20
|
Chacon JL, Rodrigues JN, Assayag Junior MS, Peloso C, Pedroso AC, Ferreira AJP. Epidemiological survey and molecular characterization of avian infectious bronchitis virus in Brazil between 2003 and 2009. Avian Pathol 2011; 40:153-62. [PMID: 21500035 DOI: 10.1080/03079457.2010.544641] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As part of an epidemiological study of infectious bronchitis virus (IBV) in Brazil, 252 samples from IBV-suspect flocks were tested and the IBV-positive samples were analysed by sequencing of hypervariable regions 1 and 2 of the S1 gene. A high prevalence of IBV variants was found and the sequence analysis of 41 samples revealed a high molecular similarity among the Brazilian isolates (from 90.2 to 100% and from 85.3 to 100% nucleotide and amino acid identity, respectively). The Brazilian isolates showed low genetic relationship with Massachusetts (63.4 to 70.7%), European (45.9 to 75.6%), American (49.3 to 76.4%) and other reference serotypes (67.5 to 78.8%). The Brazilian isolates branched into one unique cluster, separate from the reference serotypes used for infectious bronchitis control in other countries. The variants analysed in this work had a high similarity with all previously published Brazilian IBV isolates, suggesting the presence and high prevalence of a unique or predominant genotype circulating in Brazil. In addition, the virus neutralization test showed that the three Brazilian isolates analysed in the present study are antigenically related to one another but are different from the Massachusetts serotype. The present study shows that IBVs of a unique genotype can be associated with different clinical diseases, and that low genetic variation was detected in this genotype over a long period of time. The molecular characterization of the Brazilian variants isolated from 2003 to 2009 from different geographic regions of the country shows that only one predominant genotype is widespread in the Brazilian territory, denominated in this study as BR-I genotype.
Collapse
Affiliation(s)
- Jorge Luis Chacon
- Department of Pathology, College of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol 2011; 85:8903-12. [PMID: 21697468 DOI: 10.1128/jvi.05112-11] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of viruses to host cells is the first step in determining tropism and pathogenicity. While avian infectious bronchitis coronavirus (IBV) infection and avian influenza A virus (IAV) infection both depend on α2,3-linked sialic acids, the host tropism of IBV is restricted compared to that of IAV. Here we investigated whether the interaction between the viral attachment proteins and the host could explain these differences by using recombinant spike domains (S1) of IBV strains with different pathogenicities, as well as the hemagglutinin (HA) protein of IAV H5N1. Protein histochemistry showed that S1 of IBV strain M41 and HA of IAV subtype H5N1 displayed sialic acid-dependent binding to chicken respiratory tract tissue. However, while HA bound with high avidity to a broad range of α2,3-linked sialylated glycans, M41 S1 recognized only one particular α2,3-linked disialoside in a glycan array. When comparing the binding of recombinant IBV S1 proteins derived from IBV strains with known differences in tissue tropism and pathogenicity, we observed that while M41 S1 displayed binding to cilia and goblet cells of the chicken respiratory tract, S1 derived from the vaccine strain H120 or the nonvirulent Beaudette strain had reduced or no binding to chicken tissues, respectively, in agreement with the reduced abilities of these viruses to replicate in vivo. While the S1 protein derived from the nephropathogenic IBV strain B1648 also hardly displayed binding to respiratory tract cells, distinct binding to kidney cells was observed, but only after the removal of sialic acid from S1. In conclusion, our data demonstrate that the attachment patterns of the IBV S proteins correlate with the tropisms and pathogenicities of the corresponding viruses.
Collapse
|
22
|
Ji J, Xie J, Chen F, Shu D, Zuo K, Xue C, Qin J, Li H, Bi Y, Ma J, Xie Q. Phylogenetic distribution and predominant genotype of the avian infectious bronchitis virus in China during 2008-2009. Virol J 2011; 8:184. [PMID: 21510909 PMCID: PMC3094301 DOI: 10.1186/1743-422x-8-184] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nephropathogenic avian infectious bronchitis (IB) caused unprecedented economic losses to the commercial chicken industry of China in 2008-2009. To investigate the prevalence of nephropathogenic IB in China, eighty IBV isolates from different provinces during 2008-2009 were identified by dwarf embryo test and RT-PCR. RESULTS The strains were mostly isolated in winter and spring with a wide age range of IB outbreaks, from 4 to 69 days. By the virus recovery trials, 70/80 of the strains resulted in the deaths or distresses of birds from nephritis. To learn more about the molecular evolutionary characteristics of the circulating field strains, the coding region of major spike 1 (S1) protein gene of these strains was RT-PCR amplified and sequenced. Compared to the published representative strains, nucleotides and amino acids sequence analysis indicated that the S1 genes of these strains and the reference strains displayed homologies ranging from 75.1% to 99.8% and from 73.1% to 99.8% respectively. S1 protein of the major pandemic strains contained 540 or 542 amino acids with the cleavage site of HRRRR or RRFRR. Phylogenetic analysis revealed that recent field isolates of IBV in China were mostly belonged to A2-branch (QXIBV-branch) and HN08-branch, only one isolate was belonged to Gray-branch and M41-branch respectively. Most of the 80 strains showed evolutionarily distant from vaccine strains. CONCLUSIONS The results of this study suggested that nephropathogenic IBVs were mainly A2-like strains in China during 2008-2009.
Collapse
Affiliation(s)
- Jun Ji
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingwei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Wen's Foodstuffs Group Co. Ltd., Yunfu 527439, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kejing Zuo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianping Qin
- Guangdong Wen's Foodstuffs Group Co. Ltd., Yunfu 527439, China
| | - Hongmei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Felippe PAN, da Silva LHA, Santos MMAB, Spilki FR, Arns CW. Genetic diversity of avian infectious bronchitis virus isolated from domestic chicken flocks and coronaviruses from feral pigeons in Brazil between 2003 and 2009. Avian Dis 2011; 54:1191-6. [PMID: 21313839 DOI: 10.1637/9371-041510-reg.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To detect the presence of infectious bronchitis virus or avian coronavirus, a nested reverse transcriptase PCR (RT-PCR) method was developed with the aim of amplifying a fragment of 530 bases, comprising the gene coding S1 protein. In the first step, all samples were submitted to RNA extraction, RT-PCR, and nested PCR. Next, only the positive nested-PCR samples were propagated in specific-pathogen-free (SPF) embryonated chicken eggs for virus isolation. Positive samples were then sequenced and analyzed using a molecular phylogeny approach. Tracheal swab samples were collected from 23 different domestic chickens distributed in three regions of Brazil, in the period between 2003 and 2009. Also analyzed were six swab samples (tracheal and cloacal) from asymptomatic pigeons (Columba livia), caught in an urbanized region in southeastern Brazil. The study revealed two major phylogenetic groups: one clustered with the Massachusetts vaccine serotype and another joined with the D207 strain. Interestingly, samples grouped with the Connecticut and Arkansas serotypes were also found. Pigeon isolates clustered with the Massachusetts serotype showed significant similarity (close to 100%) to those obtained from chickens. Only one pigeon isolate was seen to be grouped with the Connecticut serotype, and no correlation was observed between sample grouping and region origin. Understanding the diversity of genotypes and eco-epizootiology of the disease in different environments is expected to be helpful for vaccine production aimed at the main circulating variants. In this respect, one could also expect benefits in the management of other bird species that may act as avian coronavirus reservoirs.
Collapse
Affiliation(s)
- P A N Felippe
- Laboratory of Virology, Institute of Biology, State University of Campinas, São Paulo, Brazil PB 6109
| | | | | | | | | |
Collapse
|
24
|
Han Z, Sun C, Yan B, Zhang X, Wang Y, Li C, Zhang Q, Ma Y, Shao Y, Liu Q, Kong X, Liu S. A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China. INFECTION GENETICS AND EVOLUTION 2010; 11:190-200. [PMID: 20833270 PMCID: PMC7106237 DOI: 10.1016/j.meegid.2010.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023]
Abstract
A comprehensive study of the epidemiology and pathogenicity of infectious bronchitis virus (IBV) in China was carried out by molecular characterization of the S1 gene from 46 isolates obtained for this study and 174 reference strains isolated over a 15-year period. Nine types were found according to sequence analysis and phylogenetic study of the S1 gene. The co-circulation of multiple IBV types and the ongoing emergence of IBV variants are the epidemiological challenges in China. Factors contributing to the continual emergence include mutations, insertions and deletions in the S1 protein genes; recombination between local IBV strains circulating in chicken flocks in China; and recombination between local strains and vaccine strains. Vaccination-challenge analysis between circulating field strains and Mass-type H120 vaccine indicated the need to develop new vaccines from local IBV strains. These results also emphasize the importance of continued IBV surveillance in China.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Farsang A, Ros C, Renström LHM, Baule C, Soós T, Belák S. Molecular epizootiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain. Avian Pathol 2010; 31:229-36. [PMID: 12396345 PMCID: PMC7154300 DOI: 10.1080/03079450220136530] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve the detection and molecular identification of infectious bronchitis virus (avian coronavirus), two reverse transcriptase-polymerase chain reaction (PCR) assays were developed. As 'diagnostic#10; PCR', a set of consensus nested primers was selected from highly conserved stretches of the nucleocapsid (N) gene. As 'phylogeny' PCR, a fragment of the spike protein gene (S1) was amplified and the PCR products were directly sequenced. To study the phylogenetic relationships of the viruses from various outbreaks, studies of molecular epizootiology were performed in Sweden, a Nordic region, where the occurrence of natural cases of the disease is relatively low and the occasional use of live vaccine(s) is well recorded and monitored. The disease appeared in the region in 1994, associated with production problems among layers of various ages. During outbreaks in 1995 and 1997, both layers and broilers were affected. To reduce losses, a live attenuated vaccine has been applied since 1997. By examining 12 cases between 1994 and 1998, molecular epizootiology revealed that, before 1997, the viruses had gene sequences very similar to strains of the Massachusetts serotype. However, comparative sequence analysis of the S1 gene revealed that the identity was not 100% to any of the strains of this serotype that we analysed. A virus related to the Dutch-type strain, D274, was also identified on one farm. Surprisingly, from 1997, the year that vaccination commenced with a live Massachusetts serotype vaccine, the majority of viruses detected had S1 sequences identical to the live Massachusetts vaccine strain. This genetic relation to the vaccine virus was also confirmed by N gene sequence analysis. The studies of molecular epizootiology reveal a strong probability that the vaccination had lead to the spread of the vaccine virus, causing various disease manifestations and a confusing epizootiological situation in the poultry population.
Collapse
Affiliation(s)
- A. Farsang
- Institute for Veterinary Medicinal Products, H-1107, Budapest, Szállás utca 8, Hungary
| | - C. Ros
- Department of Chemistry and Biochemistry, University of Bern, Freistsrasse 3, 3012 Bern and ZLB Bioplasma AG, Bern, Switzerland
| | - Lena H. M. Renström
- Department of Virology, The National Veterinary Institute, Biomedical Center, S-751 23 Uppsala, Sweden
| | - Claudia Baule
- Department of Virology, The National Veterinary Institute, Biomedical Center, S-751 23 Uppsala, Sweden
| | - T. Soós
- Institute for Veterinary Medicinal Products, H-1107, Budapest, Szállás utca 8, Hungary
| | - S. Belák
- Department of Virology, The National Veterinary Institute, Biomedical Center, S-751 23 Uppsala, Sweden
- To whom correspondence should be sent. E-mail:
| |
Collapse
|
26
|
Li L, Xue C, Chen F, Qin J, Xie Q, Bi Y, Cao Y. Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004-2008. Vet Microbiol 2009; 143:145-54. [PMID: 20022714 PMCID: PMC7117290 DOI: 10.1016/j.vetmic.2009.11.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/05/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]
Abstract
Twenty-seven strains of avian infectious bronchitis virus (IBV) were isolated from dead or diseased chickens at different chicken farms in South China during 2004–2008, of which the S1 gene was sequenced. Phylogenetic analysis of the S1 gene sequences of the isolated 27 strains together with 29 strains published in Genbank revealed that all IBV strains except for one isolated and one published were clustered into six distinct genotypes I-VI. 26 isolated strains belong to genotypes I, II, and III, forming a big phylogenetic branch without new predominant strains, whereas all five vaccine strains belong to genotype V that is evolutionarily distant from genotypes I, II, and III. The study of the protease cleavage motif within the S1 protein found 12 different cleavage motifs, of which 3 motifs are shared by both isolated and published strains, 2 motifs unique to isolated strains, and 7 motifs unique to published strains, further bolstering the notion of no new predominant strains. Alignment analysis of the S1 amino acid sequences indicated that the amino acid substitutions, insertions, and deletions are polymorphic and diverse, showing no sign of predominant genetic changes among the isolated strains. Taken together, there was no predominant new strain circulating in South China during 2004–2008. Nonetheless, circulating IBV strains have been continuously evolving with genetic compositions distant from vaccine strains; this explains why there have been constant but infrequent outbreaks in commercial flocks in South China during 2004–2008. Furthermore, in order to safe guard against the sudden emergence of new predominant strains, continuing surveillance of IBV strains circulating in the field is of extreme importance.
Collapse
Affiliation(s)
- Linlin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Worthington KJ, Currie RJW, Jones RC. A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006. Avian Pathol 2008; 37:247-57. [PMID: 18568650 DOI: 10.1080/03079450801986529] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A survey of infectious bronchitis virus (IBV) genotypes in poultry flocks in selected countries in Western Europe was carried out between March 2002 and December 2006. Identification of IBV was by reverse transcriptase-polymerase chain reaction of RNA extracted from oropharyngeal swabs taken from poultry flocks exhibiting signs of clinical disease thought to be attributable to IBV. Part of the hypervariable S1 gene of IBV was sequenced to differentiate between the various genotypes. During the survey, 4103 samples were processed, of which 2419 (59%) were positive for IBV. The predominant IBV genotypes detected were 793B and Massachusetts. The third and fourth most common genotypes were two new economically important field types: Italy02, and a virus similar to genotypes originally detected in China called QX. Analysis of the partial S1 sequences of the genotypes detected suggested that approximately 50% of all 793B, Massachusetts types and D274 IBVs were identical to the homologous commercially available live vaccines. Since 2004 the prevalence of Italy02 (present in all countries from which samples were received) has been declining in all countries except Spain, where it appeared to be the predominant genotype. Since 2004 an IBV genotype has been detected in Holland, Germany, Belgium and France similar to QX and the incidence has increased. QX was not detected in the United Kingdom or Spain. When detections thought to be attributable to vaccines were removed, the dominant genotype in France and Europe overall was 793B; in Germany, Holland and Belgium, it was QX-like IBV; and in the United Kingdom and Spain the dominant genotype was Italy02. The present study is the first to identify the prevalence of both Italy02 and QX field-type variants in poultry flocks in Western Europe. Several novel genotypes have also been detected.
Collapse
Affiliation(s)
- K J Worthington
- Department of Veterinary Pathology, University of Liverpool, Leahurst, Neston, South Wirral, UK.
| | | | | |
Collapse
|
28
|
Matthijs MGR, Bouma A, Velkers FC, van Eck JHH, Stegeman JA. Transmissibility of Infectious Bronchitis Virus H120 Vaccine Strain Among Broilers Under Experimental Conditions. Avian Dis 2008; 52:461-6. [DOI: 10.1637/8204-010708-reg.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Dolz R, Pujols J, Ordóñez G, Porta R, Majó N. Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 2008; 374:50-9. [PMID: 18215734 PMCID: PMC7103278 DOI: 10.1016/j.virol.2007.12.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/20/2007] [Accepted: 12/16/2007] [Indexed: 01/01/2023]
Abstract
An in-depth molecular study of infectious bronchitis viruses (IBV) with particular interest in evolutionary aspects of IBV in Spain was carried out in the present study based on the S1 gene molecular characterization of twenty-six Spanish strains isolated over a fourteen-year period. Four genotypes were identified based on S1 gene sequence analyses and phylogenetic studies. A drastic virus population shift was demonstrated along time and the novel Italy 02 serotype was shown to have displaced the previous predominant serotype 4/91 in the field. Detailed analyses of synonymous to non-synonymous ratio of the S1 gene sequences of this new serotype Italy 02 suggested positive selection pressures might have contributed to the successful establishment of Italy 02 serotype in our country. In addition, differences on the fitness abilities of new emergent genotypes were indicated. Furthermore, intergenic sequences (IGs)-like motifs within S1 gene sequences of IBV isolates were suggested to enhance the recombination abilities of certain serotypes.
Collapse
Affiliation(s)
- Roser Dolz
- Centre de Recerca en Sanitat Animal (CReSA), Esfera UAB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
30
|
Bochkov YA, Batchenko GV, Shcherbakova LO, Borisov AV, Drygin VV. Molecular epizootiology of avian infectious bronchitis in Russia. Avian Pathol 2007; 35:379-93. [PMID: 16990148 DOI: 10.1080/03079450600921008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular characterization of infectious bronchitis viruses (IBVs) isolated between 1998 and 2002 from chickens in Russia was performed. More than 250 field samples were tested by reverse transcriptase-polymerase chain reaction using two sets of primers corresponding to the most conserved 3'-untranslated region and the most variable S1 gene region of the viral genome. Ninety-one IBV isolates were characterized by phylogenetic analysis of the S1 gene hypervariable region comprising 136 to 558 nucleotides. The major group of isolates (38 viruses) showed very close sequence relationship with strains of the Massachusetts genotype circulating in Russia since the early 1970s. The analysed region of the other 22 Russian IBVs was similar (from 89 to 98% identity) to that from the strains of European genotypes including D274 (nine isolates), 793/B (10 isolates), and B1648, 624/I and Italy-02 (one isolate in each group). Two isolates from very distant geographic locations in Russia (Far East and the European part) clustered together with Chinese strains of QXIBV genotype. None of the remaining 27 Russian isolates showed a close sequence relationship with known IBV strains available in sequence databases. The majority of these variant viruses clustered into the six novel Russian genotypes, often correlating with their geographic location. The remaining five of them were placed outside these unique groups, also representing new genotypes. These data for the first time demonstrated the high genetic diversity of IBV isolates circulating in Russia.
Collapse
Affiliation(s)
- Yury A Bochkov
- Federal Centre for Animal Health (FGI ARRIAH), Yur'evets, Vladimir, Russia.
| | | | | | | | | |
Collapse
|
31
|
Mardani K, Noormohammadi AH, Ignatovic J, Browning GF. Typing infectious bronchitis virus strains using reverse transcription-polymerase chain reaction and restriction fragment length polymorphism analysis to compare the 3' 7.5 kb of their genomes. Avian Pathol 2007; 35:63-9. [PMID: 16448945 DOI: 10.1080/03079450500465817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Typing infectious bronchitis virus (IBV) strains is useful for implementation of control measures and for understanding the epidemiology and evolution of IBV. The aim of the work reported here was to develop a rapid and sensitive method for typing isolates of IBV, if possible directly from tissues of infected birds. A procedure was developed for differentiation of IBV strains by restriction endonuclease fragment length polymorphism (RFLP) analysis of a 7.5 kb DNA fragment amplified from their genome by reverse transcription-polymerase chain reaction (RT-PCR). This fragment encompassed all of the genes encoding the structural proteins of the virus. Viral RNA was extracted either directly from tissues of diseased birds or from virus propagated in embryonated eggs, and was subjected to RT-PCR. Three different restriction endonucleases, AluI, Sau3AI and MnlI, were used to digest the 7.5 kb PCR product from different IBV strains and the resultant RFLP patterns were compared. Patterns obtained with all three enzymes grouped IBV strains belonging to the same serotype in the same cluster. These results show that the RT-PCR-RFLP system described here can be used as a quick and inexpensive tool for differentiating IBV strains.
Collapse
Affiliation(s)
- Karim Mardani
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
32
|
Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res 2007; 38:281-97. [PMID: 17296157 DOI: 10.1051/vetres:2006055] [Citation(s) in RCA: 657] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 09/22/2006] [Indexed: 01/05/2023] Open
Abstract
Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom.
| |
Collapse
|
33
|
Mast J, Nanbru C, Decaesstecker M, Lambrecht B, Couvreur B, Meulemans G, van den Berg T. Vaccination of chicken embryos with escape mutants of La Sota Newcastle disease virus induces a protective immune response. Vaccine 2006; 24:1756-65. [PMID: 16343701 DOI: 10.1016/j.vaccine.2005.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/19/2005] [Accepted: 10/07/2005] [Indexed: 11/25/2022]
Abstract
To reduce the embryonic pathogenicity of Newcastle disease virus (NDV), escape mutants of the La Sota strain were produced with selected monoclonal antibodies. Immunoselection resulted in the elimination of an epitope by single amino acid substitution (F and HN molecule) or in a conformational change (HN molecule). The embryonic pathogenicity of these escape mutants was reduced and their dose was optimised for in ovo vaccination. Because antibody responses and protection of in ovo vaccinated chicks were similar to controls vaccinated at hatch with the La Sota strain, immunoselection appears a valuable technique to produce attenuated NDV strains, which are candidate in ovo vaccines.
Collapse
Affiliation(s)
- Jan Mast
- Veterinary and Agrochemical Research Centre, Groeselenberg 99, B-1180 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for the emergence of new coronavirus diseases in domestic birds, from both avian and mammalian sources. Modest sequence conservation within gene 1 has enabled the design of oligonucleotide primers for use in diagnostic reverse transcriptase-polymerase chain reactions, which will be useful for the detection of new coronaviruses.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK.
| |
Collapse
|
35
|
Bijlenga G, Cook JKA, Gelb J, de Wit JJ. Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review. Avian Pathol 2005; 33:550-7. [PMID: 15763721 PMCID: PMC7154294 DOI: 10.1080/03079450400013154] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The H strain of infectious bronchitis (IB) was one of the earliest live attenuated IB vaccines to be developed and has continued to be use in most parts of the world for almost 50 years. It was developed for used at both the 52nd (H52) and 120th (H120) vaccine levels and, because of it ability to provide heterologous cross-protection against a number of IB viruses of different serotypes, has proved to be one of the most enduring live attenuated IB vaccines. In fact, the H120 vaccine is possibly the most widely used live attenuated IB vaccine globally to this day. The use of H52 has, however, declined with the introduction of safe and highly efficacious inactivated IB vaccines. This review documents the original studies to isolate and attenuate the H strain by serial embryo passage, and describes the early studies to demonstrate its efficacy in laboratory studies and under field conditions. The efficacy of the H vaccine in providing cross-protection against some of the many IB variants now reported worldwide is also discussed, and possible future vaccination strategies for IB considered.
Collapse
Affiliation(s)
- Gosse Bijlenga
- Retired virologist, Chez
Gavillet, B P 9, 74250 La Tour-en-Faucigny,
France
| | - Jane K. A. Cook
- Intervet, UK,
Walton Manor, Walton, Milton Keynes, Bucks MK7 7AJ,
UK
- To whom correspondence should be addressed. E-mail:
| | - Jack Gelb
- Department of Animal and Food Sciences,
Townsend Hall, University of Delaware, Newark, Delaware 1917-1303,
USA
| | - J. J. de Wit
- Animal Health Service, POB 9, AA
Deventer, the Netherlands
| |
Collapse
|
36
|
Cavanagh D, Picault JP, Gough R, Hess M, Mawditt K, Britton P. Variation in the spike protein of the 793/B type of infectious bronchitis virus, in the field and during alternate passage in chickens and embryonated eggs. Avian Pathol 2005; 34:20-5. [PMID: 15763735 DOI: 10.1080/03079450400025414] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The degree of variation exhibited within the 793/B serotype (also known as 4/91 and CR88 serotypes) was investigated with nine French and 10 British isolates, collected between 1985 and 1994. The S1 part (1644 nucleotides) of the spike protein gene of the first known isolate of this serotype, FR/CR85131/85, had 95.9% to 97% nucleotide identity with the other isolates. Partial sequencing of isolates from Iran and Saudi Arabia, isolated in 2000, revealed approximately 95% nucleotide identity with European isolates, including the two live 793/B vaccinal strains, showing that they were not re-isolations of vaccinal virus. The data indicates that strains within the 793/B serotype have > or =96% nucleotide identity within the whole S1 gene and > or =93% nucleotide identity within the first 560 nucleotides, and > or =92% and > or =86% amino acid identities in the corresponding protein regions. This is similar to the identities exhibited within the Massachusetts serotype. Sequence analysis of a 793/B field isolate after passage in embryonated eggs, then in chickens and then again in eggs revealed selection for a serine and alanine at S1 amino acid position 95 in chicken-passaged and egg-passaged virus, respectively. There was no change in pathogenicity. This is the first demonstration at gene sequence level of host-driven selection for infectious bronchitis virus.
Collapse
Affiliation(s)
- David Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, RG20 7NN, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 2004; 32:567-82. [PMID: 14676007 PMCID: PMC7154303 DOI: 10.1080/03079450310001621198] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response. Protection is short lived, the start of the decline being apparent 9 weeks after vaccination with vaccines based on highly attenuated strains. IBV exists as scores of serotypes (defined by the neutralization test), cross-protection often being poor. Consequently, chickens may be re-vaccinated, with the same or another serotype, two or three weeks later. Single applications of inactivated virus has generally led to protection of <50% of chickens. Two applications have led to 90 to 100% protection in some reports, but remaining below 50% in others. In practice in the field, inactivated vaccines are used in laying birds that have previously been primed with two or three live attenuated virus vaccinations. This increases protection of the laying birds against egg production losses and induces a sustained level of serum antibody, which is passed to progeny. The large spike glycoprotein (S) comprises a carboxy-terminal S2 subunit (approximately 625 amino acid residues), which anchors S in the virus envelope, and an amino-terminal S1 subunit (approximately 520 residues), believed to largely form the distal bulbous part of S. The S1 subunit (purified from IBV virus, expressed using baculovirus or expressed in birds from a fowlpoxvirus vector) induced virus neutralizing antibody. Although protective immune responses were induced, multiple inoculations were required and the percentage of protected chickens was too low (<50%) for commercial application. Remarkably, expression of S1 in birds using a non-pathogenic fowl adenovirus vector induced protection in 90% and 100% of chickens in two experiments. Differences of as little as 5% between the S1 sequences can result in poor cross-protection. Differences in S1 of 2 to 3% (10 to 15 amino acids) can change serotype, suggesting that a small number of epitopes are immunodominant with respect to neutralizing antibody. Initial studies of the role of the IBV nucleocapsid protein (N) in immunity suggested that immunization with bacterially expressed N, while not inducing protection directly, improved the induction of protection by a subsequent inoculation with inactivated IBV. In another study, two intramuscular immunizations of a plasmid expressing N induced protective immunity. The basis of immunity to IBV is not well understood. Serum antibody levels do not correlate with protection, although local antibody is believed to play a role. Adoptive transfer of IBV-infection-induced alphabeta T cells bearing CD8 antigen protected chicks from challenge infection. In conclusion, live attenuated IBV vaccines induce good, although short-lived, protection against homologous challenge, although a minority of individuals may respond poorly. Inactivated IBV vaccines are insufficiently efficacious when applied only once and in the absence of priming by live vaccine. Two applications of inactivated IBV are much more efficacious, although this is not a commercially viable proposition in the poultry industry. However, the cost and logistics of multiple application of a SARS inactivated vaccine would be more acceptable for the protection of human populations, especially if limited to targeted groups (e.g. health care workers and high-risk contacts). Application of a SARS vaccine is perhaps best limited to a minimal number of targeted individuals who can be monitored, as some vaccinated persons might, if infected by SARS coronavirus, become asymptomatic excretors of virus, thereby posing a risk to non-vaccinated people. Looking further into the future, the high efficacy of the fowl adenovirus vector expressing the IBV S1 subunit provides optimism for a live SARS vaccine, if that were deemed to be necessary, with the possibility of including the N protein gene.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire, UK.
| |
Collapse
|
38
|
Zanella A, Lavazza A, Marchi R, Moreno Martin A, Paganelli F. Avian infectious bronchitis: characterization of new isolates from Italy. Avian Dis 2003; 47:180-5. [PMID: 12713175 DOI: 10.1637/0005-2086(2003)047[0180:aibcon]2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The isolation of four new variants or serotypes of avian infectious bronchitis virus in Italy is reported. The antigenic characteristics of these strains were investigated by cross-neutralization tests with the new isolates, Fa 6881/97, AZ 27/98, AZ 20/97, and BS 216/01; two of the most common European serotypes, AZ 23/74 and CR 88121 (793B); and the classic Massachusetts M41 serotype in association with a panel of 17 specific antisera. On the basis of the results obtained, the new isolates show relevant serologic differences. In fact, the four isolates were not neutralized by antisera against the most common European and American serotypes; the AZ 20/97 isolate was partially neutralized by FA 6881/97 antiserum but not reciprocally. The closely related Fa 6881/97 and AZ 27/98 isolates can be considered rather diffused in our country because they have been isolated over 20 times in the last 3 yr in different parts of Italy. On the contrary, the AZ 20/97 and BS 216/01 isolates were reported only once so far. The reverse transcription-polymerase chain reaction showed that Fa 6881/97 isolate is related to 793B isolate, whereas AZ 27/98 and BS 216/01 isolates appeared not to be related to the most common European and Massachusetts serotypes.
Collapse
Affiliation(s)
- A Zanella
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Microbiologia e Immunologia, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
39
|
Lougovskaia NN, Lougovskoi AA, Bochkov YA, Batchenko GV, Mudrak NS, Drygin VV, Borisov AV, Borisov VV, Gusev AA. Detection and estimation of avian infectious bronchitis virus antigen by a novel indirect liquid-phase blocking enzyme-linked immunosorbent assay using chicken and rabbit affinity purified immunoglobulins. Avian Pathol 2002; 31:549-57. [PMID: 12593737 DOI: 10.1080/0307945021000024571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An indirect liquid-phase blocking (LPB) enzyme-linked immunosorbent assay (ELISA) using chicken and rabbit affinity purified immunoglobulin G (IgG) has been developed to detect and estimate avian infectious bronchitis virus (IBV) antigen concentration directly in infected allantoic fluid. The method is based on the principle of binding of specific IgG to the test IBV antigen and the assay of unbound IgG on an antigen-coated ELISA plate. The immunoglobulins are chicken N-terminal S2 peplomeric protein-specific IgG isolated by immunoaffinity chromatography on synthetic peptide coupled to CNBr-activated Sepharose 4B or rabbit polyclonal IgG purified from the serum using Protein A Sepharose 4B. The assay detected all tested IBV strains and field isolates propagated in chicken embryos. Signal to noise ratios were calculated from LPB ELISA absorbance units and a diagnostic threshold was established from the signal to noise ratio frequency distribution of samples positive or negative for IBV by virus titration or reverse transcription polymerase chain reaction. The relative sensitivity of the test ranged between 10(5) and 10(6) median egg infectious doses (EID(50)) for chicken IgG and between 10(3) and 10(4) EID(50) for rabbit IgG, depending on the test strain. The assay is simple and takes less than 3 h to perform. It does not require expensive reagents and can be readily adapted to monitor the IBV antigen concentration in allantoic fluids during propagation of vaccine strains or in samples of freeze-dried, live-attenuated IBV vaccines.
Collapse
Affiliation(s)
- Natalia N Lougovskaia
- All-Russian Research Institute for Animal Health, Ministry of Agriculture of the Russian Federation, Vladimir 600900, Yur'evets, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cavanagh D, Mawditt K, Welchman DDB, Britton P, Gough RE. Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys. Avian Pathol 2002; 31:81-93. [PMID: 12425795 DOI: 10.1080/03079450120106651] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reverse-transcriptase polymerase chain reactions (RT-PCRs) were used to examine RNA extracted from mouth/nasal swabs from pheasants exhibiting signs of respiratory disease. The oligonucleotides used were based on sequences of infectious bronchitis virus (IBV), the coronavirus of domestic fowl. A RT-PCR for the highly conserved region II of the 3' untranslated region of the IBV genome detected a coronavirus in swabs from 18/21 estates. Sequence identity with the corresponding region of IBVs and coronaviruses from turkeys was > 95%. A RT-PCR for part of the S1 region of the spike protein gene was positive with 13/21 of the samples. Sequence analysis of the RT-PCR products derived from nine of the pheasant viruses revealed that some of the viruses differed from each other by approximately 24%, similar to the degree of difference exhibited by different serotypes of IBV. Further analysis of the genome of one of the viruses revealed that it contained genes 3 and 5 that are typical of IBV but absent in both the transmissible gastroenteritis virus and murine hepatitis virus groups of mammalian coronaviruses. The nucleotide sequences of genes 3 and 5 of the pheasant virus had a similar degree of identity (approximately 90%) with those of coronaviruses from turkeys and chickens, as is observed when different serotypes of IBV are compared. This work: (a) confirms that coronaviruses are present in pheasants (indeed, commonly present in pheasants with respiratory disease); (b) demonstrates that their genomes are IBV-like in their organization; and (c) shows that there is sequence heterogeneity within the group of pheasant coronaviruses, especially within the spike protein gene. Furthermore, the gene sequences of the pheasant viruses differed from those of IBV to similar extents as the sequence of one serotype of IBV differs from another. On the genetic evidence to date, there is a remarkably high degree of genetic similarity between the coronaviruses of chickens, turkeys and pheasants.
Collapse
Affiliation(s)
- D Cavanagh
- Institute for Animal Health, Compton Laboratory, Newbury, RG20 7NN, UK.
| | | | | | | | | |
Collapse
|