1
|
Zhang J, Gao P, Wu Y, Yan X, Ye C, Liang W, Yan M, Xu X, Jiang H. Identification of foodborne pathogenic bacteria using confocal Raman microspectroscopy and chemometrics. Front Microbiol 2022; 13:874658. [PMID: 36419427 PMCID: PMC9676656 DOI: 10.3389/fmicb.2022.874658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2023] Open
Abstract
Rapid and accurate identification of foodborne pathogenic bacteria is of great importance because they are often responsible for the majority of serious foodborne illnesses. The confocal Raman microspectroscopy (CRM) is a fast and easy-to-use method known for its effectiveness in detecting and identifying microorganisms. This study demonstrates that CRM combined with chemometrics can serve as a rapid, reliable, and efficient method for the detection and identification of foodborne pathogenic bacteria without any laborious pre-treatments. Six important foodborne pathogenic bacteria including S. flexneri, L. monocytogenes, V. cholerae, S. aureus, S. typhimurium, and C. botulinum were investigated with CRM. These pathogenic bacteria can be differentiated based on several characteristic peaks and peak intensity ratio. Principal component analysis (PCA) was used for investigating the difference of various samples and reducing the dimensionality of the dataset. Performances of some classical classifiers were compared for bacterial detection and identification including decision tree (DT), artificial neural network (ANN), and Fisher's discriminant analysis (FDA). Correct recognition ratio (CRR), area under the receiver operating characteristic curve (ROC), cumulative gains, and lift charts were used to evaluate the performance of models. The impact of different pretreatment methods on the models was explored, and pretreatment methods include Savitzky-Golay algorithm smoothing (SG), standard normal variate (SNV), multivariate scatter correction (MSC), and Savitzky-Golay algorithm 1st Derivative (SG 1st Der). In the DT, ANN, and FDA model, FDA is more robust for overfitting problem and offers the highest accuracy. Most pretreatment methods raised the performance of the models except SNV. The results revealed that CRM coupled with chemometrics offers a powerful tool for the discrimination of foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Jin Zhang
- Criminal Investigation School, People’s Public Security University of China, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pengya Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaomei Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meiying Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Jiang
- Criminal Investigation School, People’s Public Security University of China, Beijing, China
| |
Collapse
|
2
|
Portinha IM, Douillard FP, Korkeala H, Lindström M. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. Int J Mol Sci 2022; 23:ijms23020754. [PMID: 35054941 PMCID: PMC8775613 DOI: 10.3390/ijms23020754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
Clostridium botulinum produces the botulinum neurotoxin that causes botulism, a rare but potentially lethal paralysis. Endospores play an important role in the survival, transmission, and pathogenesis of C. botulinum. C. botulinum strains are very diverse, both genetically and ecologically. Group I strains are terrestrial, mesophilic, and produce highly heat-resistant spores, while Group II strains can be terrestrial (type B) or aquatic (type E) and are generally psychrotrophic and produce spores of moderate heat resistance. Group III strains are either terrestrial or aquatic, mesophilic or slightly thermophilic, and the heat resistance properties of their spores are poorly characterized. Here, we analyzed the sporulation dynamics in population, spore morphology, and other spore properties of 10 C. botulinum strains belonging to Groups I–III. We propose two distinct sporulation strategies used by C. botulinum Groups I–III strains, report their spore properties, and suggest a putative role for the exosporium in conferring high heat resistance. Strains within each physiological group produced spores with similar characteristics, likely reflecting adaptation to respective environmental habitats. Our work provides new information on the spores and on the population and single-cell level strategies in the sporulation of C. botulinum.
Collapse
|
3
|
Extensive Genome Exploration of Clostridium botulinum Group III Field Strains. Microorganisms 2021; 9:microorganisms9112347. [PMID: 34835472 PMCID: PMC8624178 DOI: 10.3390/microorganisms9112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In animals, botulism is commonly sustained by botulinum neurotoxin C, D or their mosaic variants, which are produced by anaerobic bacteria included in Clostridium botulinum group III. In this study, a WGS has been applied to a large collection of C. botulinum group III field strains in order to expand the knowledge on these BoNT-producing Clostridia and to evaluate the potentiality of this method for epidemiological investigations. Sixty field strains were submitted to WGS, and the results were analyzed with respect to epidemiological information and compared to published sequences. The strains were isolated from biological or environmental samples collected in animal botulism outbreaks which occurred in Italy from 2007 to 2016. The new sequenced strains belonged to subspecific groups, some of which were already defined, while others were newly characterized, peculiar to Italian strains and contained genomic features not yet observed. This included, in particular, two new flicC types (VI and VII) and new plasmids which widen the known plasmidome of the species. The extensive genome exploration shown in this study improves the C. botulinum and related species classification scheme, enriching it with new strains of rare genotypes and permitting the highest grade of discrimination among strains for forensic and epidemiological applications.
Collapse
|
4
|
Closing Clostridium botulinum Group III Genomes Using Long-Read Sequencing. Microbiol Resour Announc 2021; 10:e0136420. [PMID: 34080898 PMCID: PMC8354527 DOI: 10.1128/mra.01364-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Clostridium botulinum group III is the anaerobic Gram-positive bacterium producing the deadly neurotoxin responsible for animal botulism. Here, we used long-read sequencing to produce four complete genomes from Clostridium botulinum group III neurotoxin types C, D, C/D, and D/C. The protocol for obtaining high-molecular-weight DNA from C. botulinum group III is described.
Collapse
|
5
|
Haynes AM, Fernandez M, Romeis E, Mitjà O, Konda KA, Vargas SK, Eguiluz M, Caceres CF, Klausner JD, Giacani L. Transcriptional and immunological analysis of the putative outer membrane protein and vaccine candidate TprL of Treponema pallidum. PLoS Negl Trop Dis 2021; 15:e0008812. [PMID: 33497377 PMCID: PMC7864442 DOI: 10.1371/journal.pntd.0008812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/05/2021] [Accepted: 01/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background An effective syphilis vaccine should elicit antibodies to Treponema pallidum subsp. pallidum (T. p. pallidum) surface antigens to induce pathogen clearance through opsonophagocytosis. Although the combination of bioinformatics, structural, and functional analyses of T. p. pallidum genes to identify putative outer membrane proteins (OMPs) resulted in a list of potential vaccine candidates, still very little is known about whether and how transcription of these genes is regulated during infection. This knowledge gap is a limitation to vaccine design, as immunity generated to an antigen that can be down-regulated or even silenced at the transcriptional level without affecting virulence would not induce clearance of the pathogen, hence allowing disease progression. Principal findings We report here that tp1031, the T. p. pallidum gene encoding the putative OMP and vaccine candidate TprL is differentially expressed in several T. p. pallidum strains, suggesting transcriptional regulation. Experimental identification of the tprL transcriptional start site revealed that a homopolymeric G sequence of varying length resides within the tprL promoter and that its length affects promoter activity compatible with phase variation. Conversely, in the closely related pathogen T. p. subsp. pertenue, the agent of yaws, where a naturally-occurring deletion has eliminated the tprL promoter region, elements necessary for protein synthesis, and part of the gene ORF, tprL transcription level are negligible compared to T. p. pallidum strains. Accordingly, the humoral response to TprL is absent in yaws-infected laboratory animals and patients compared to syphilis-infected subjects. Conclusion The ability of T. p. pallidum to stochastically vary tprL expression should be considered in any vaccine development effort that includes this antigen. The role of phase variation in contributing to T. p. pallidum antigenic diversity should be further studied. Syphilis is still an endemic disease in many low- and middle-income countries and has been resurgent in high-income nations for almost two decades now. In endemic areas, syphilis still causes significant morbidity and mortality in patients, particularly when its causative agent, the bacterium Treponema pallidum subsp. pallidum is transmitted to the fetus during pregnancy. Although there are significant ongoing efforts to identify an effective syphilis vaccine to bring into clinical trials within the decade in the U.S., such efforts are partially hindered by the lack of knowledge on transcriptional regulation of many genes encoding vaccine candidates. Here, we start addressing this knowledge gap for the putative outer membrane protein (OMP) and vaccine candidates TprL, encoded by the tp1031 gene. As we previously reported for other putative OMP-encoding genes of the syphilis agent, tprL transcription level appears to be affected by the length of a homopolymeric sequence of guanosines (Gs) located within the gene promoter. This is a mechanism known as phase variation and often involved in altering the surface antigenic profile of a bacterial pathogen to facilitate immune evasion and/or adaptation to the host milieu.
Collapse
Affiliation(s)
- Austin M. Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Mark Fernandez
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Oriol Mitjà
- Fight Aids and Infectious Diseases Foundation, Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- Lihir Medical Centre-International SOS, Newcrest Mining, Lihir Island, Papua New Guinea
| | - Kelika A. Konda
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- David Geffen School of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, United States of America
| | - Silver K. Vargas
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- School of Public Health and Administration “Carlos Vidal Layseca”, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Maria Eguiluz
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Carlos F. Caceres
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Jeffrey D. Klausner
- David Geffen School of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tevell Åberg A, Karlsson I, Hedeland M. Modification and validation of the Endopep-mass spectrometry method for botulinum neurotoxin detection in liver samples with application to samples collected during animal botulism outbreaks. Anal Bioanal Chem 2020; 413:345-354. [PMID: 33119784 PMCID: PMC7806574 DOI: 10.1007/s00216-020-03001-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and they cause the paralytic disease botulism in humans and animals. In order to diagnose botulism, active BoNT must be detected in biological material. Endopep-MS is a sensitive and selective method for serum samples, based on antibody capture, enzymatic cleavage of target peptides, and detection of cleavage products using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). In many cases of animal botulism, serum samples are not available or they do not contain detectable amounts of BoNT and liver sampling is an alternative for postmortem examinations. However, the Endopep-MS method is impaired by the inherent protease activity of liver samples. In the presented study, the Endopep-MS method has been successfully modified and validated for analysis of cattle, horse, and avian liver samples, introducing a combination of a salt washing step and a protease inhibitor cocktail. These modifications resulted in a substantial decrease in interfering signals and increase in BoNT-specific signals. This led to a substantial improvement in sensitivity for especially BoNT-C and C/D which are among the most prominent serotypes for animal botulism. Botulism was diagnosed with the new method in liver samples from dead cattle and birds from outbreaks in Sweden. Graphical Abstract.
Collapse
Affiliation(s)
- Annica Tevell Åberg
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden
| | - Ida Karlsson
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden. .,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Faculty of Pharmacy, Uppsala University, P.O. Box 574, 751 23, Uppsala, Sweden.
| |
Collapse
|
7
|
Le Gratiet T, Poezevara T, Rouxel S, Houard E, Mazuet C, Chemaly M, Le Maréchal C. Development of An Innovative and Quick Method for the Isolation of Clostridium botulinum Strains Involved in Avian Botulism Outbreaks. Toxins (Basel) 2020; 12:E42. [PMID: 31936866 PMCID: PMC7020472 DOI: 10.3390/toxins12010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
Avian botulism is a serious neuroparalytic disease mainly caused by a type C/D botulinum neurotoxin produced by Clostridium botulinum group III, one of the entwined bacterial species from the Clostridiumnovyisensulato genospecies. Its isolation is very challenging due to the absence of selective media and the instability of the phage carrying the gene encoding for the neurotoxin. The present study describes the development of an original method for isolating C. botulinum group III strains. Briefly, this method consists of streaking the InstaGene matrix extraction pellet on Egg Yolk Agar plates and then collecting the colonies with lipase and lecithinase activities. Using this approach, it was possible to isolate 21 C. novyi sensu lato strains from 22 enrichment broths of avian livers, including 14 toxic strains. This method was successfully used to re-isolate type C, D, C/D, and D/C strains from liver samples spiked with five spores per gram. This method is cheap, user-friendly, and reliable. It can be used to quickly isolate toxic strains involved in avian botulism with a 64% success rate and C. novyi sensu lato with a 95% rate. This opens up new perspectives for C. botulinum genomic research, which will shed light on the epidemiology of avian botulism.
Collapse
Affiliation(s)
- Thibault Le Gratiet
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
- UFR of Life Sciences and Environment, University of Rennes 1, 35 000 Rennes, France
| | - Typhaine Poezevara
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Sandra Rouxel
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Emmanuelle Houard
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Christelle Mazuet
- National Reference Center for Anaerobic Bacteria and Botulism, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Marianne Chemaly
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| | - Caroline Le Maréchal
- Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440 Ploufragan, France; (T.L.G.)
| |
Collapse
|
8
|
Rasetti-Escargueil C, Lemichez E, Popoff MR. Public Health Risk Associated with Botulism as Foodborne Zoonoses. Toxins (Basel) 2019; 12:E17. [PMID: 31905908 PMCID: PMC7020394 DOI: 10.3390/toxins12010017] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/03/2022] Open
Abstract
Botulism is a rare but severe neurological disease in man and animals that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum and atypical strains from other Clostridium and non-Clostridium species. BoNTs are divided into more than seven toxinotypes based on neutralization with specific corresponding antisera, and each toxinotype is subdivided into subtypes according to amino acid sequence variations. Animal species show variable sensitivity to the different BoNT toxinotypes. Thereby, naturally acquired animal botulism is mainly due to BoNT/C, D and the mosaic variants CD and DC, BoNT/CD being more prevalent in birds and BoNT/DC in cattle, whereas human botulism is more frequently in the types A, B and E, and to a lower extent, F. Botulism is not a contagious disease, since there is no direct transmission from diseased animals or man to a healthy subject. Botulism occurs via the environment, notably from food contaminated with C. botulinum spores and preserved in conditions favorable for C. botulinum growth and toxin production. The high prevalence of botulism types C, D and variants DC and CD in farmed and wild birds, and to a lower extent in cattle, raises the risk of transmission to human beings. However, human botulism is much rarer than animal botulism, and botulism types C and D are exceptional in humans. Only 15 cases or suspected cases of botulism type C and one outbreak of botulism type D have been reported in humans to date. In contrast, animal healthy carriers of C. botulinum group II, such as C. botulinum type E in fish of the northern hemisphere, and C. botulinum B4 in pigs, represent a more prevalent risk of botulism transmission to human subjects. Less common botulism types in animals but at risk of transmission to humans, can sporadically be observed, such as botulism type E in farmed chickens in France (1998-2002), botulism type B in cattle in The Netherlands (1977-1979), botulism types A and B in horses, or botulism type A in dairy cows (Egypt, 1976). In most cases, human and animal botulisms have distinct origins, and cross transmissions between animals and human beings are rather rare, accidental events. But, due to the severity of this disease, human and animal botulism requires a careful surveillance.
Collapse
Affiliation(s)
| | | | - Michel R. Popoff
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, CNRS ERL6002, 75724 Paris, France; (C.R.-E.); (E.L.)
| |
Collapse
|
9
|
Chellapandi P, Prisilla A. PCR-based molecular diagnosis of botulism (types C and D) outbreaks in aquatic birds. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1390-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Post mortem findings and their relation to AA amyloidosis in free-ranging Herring gulls (Larus argentatus). PLoS One 2018; 13:e0193265. [PMID: 29494674 PMCID: PMC5832234 DOI: 10.1371/journal.pone.0193265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022] Open
Abstract
Since the late 1990s, high mortality and declining populations have been reported among sea birds including Herring gulls (Larus argentatus) from the Baltic Sea area in Northern Europe. Repeated BoNT type C/D botulism outbreaks have occurred, but it remains unclear whether this is the sole and primary cause of mortality. Thiamine deficiency has also been suggested as a causal or contributing factor. With this study, we aimed to investigate gross and microscopic pathology in Herring gulls from affected breeding sites in Sweden in search of contributing diseases. Herring gulls from Iceland served as controls. Necropsies and histopathology were performed on 75 birds, of which 12 showed signs of disease at the time of necropsy. Parasites of various classes and tissues were commonly observed independent of host age, e.g. oesophageal capillariosis and nematode infection in the proventriculus and gizzard with severe inflammation, air sac larid pentastomes and bursal trematodiasis in pre-fledglings. Gross and microscopic findings are described. Notably, amyloidosis was diagnosed in 93 and 33% of the adult birds from Sweden and Iceland, respectively (p<0.001), with more pronounced deposits in Swedish birds (p<0.001). Gastrointestinal deposits were observed in the walls of arteries or arterioles, and occasionally in villi near the mucosal surface. Amyloid was identified within the intestinal lumen in one severely affected gull suggesting the possibility of oral seeding and the existence of a primed state as previously described in some mammals and chickens. This could speculatively explain the high occurrence and previously reported rapid onset of amyloidosis upon inflammation or captivity in Herring gulls. Amyloid-induced malabsorbtion is also a possibility. The Herring gull SAA/AA protein sequence was shown to be highly conserved but differed at the N-terminus from other avian species.
Collapse
|
11
|
A bovine botulism outbreak associated with a suspected cross-contamination from a poultry farm. Vet Microbiol 2017; 208:212-216. [PMID: 28888640 DOI: 10.1016/j.vetmic.2017.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022]
Abstract
In October 2014, an outbreak of botulism type D/C occurred on two cattle farms in close proximity. A poultry farm located nearby with no history of botulism had transferred poultry manure to both bovine farms before the beginning of the outbreak. Given this context, epidemiological investigation was conducted to determine if the poultry farm was a reservoir of C. botulinum type D/C and to identify the source of contamination on the cattle farms. Environmental samples were collected at three houses on the poultry farm (boot swabs from the surroundings, swabs from the ventilation system, boot swabs from the poultry litter and darkling beetles samples), and on the two cattle farms (silage samples, boot swabs from the cattle stalls, boot swabs from the cattle pasture and poultry manure samples). These samples were analyzed using real-time PCR after an enrichment step to detect C. botulinum type D/C. On the poultry farm, three boot swabs from the surroundings, two swabs from the ventilation system, one boot swab from the litter and one sample of darkling beetles were detected positive. On one cattle farm, C. botulinum type D/C was identified in a sample of silage made from grass grown on a field on which the poultry manure had previously been stored and in a boot swab from a pasture. On the other cattle farm, C. botulinum type D/C was detected in a sample of poultry manure stored on the cattle farm and in a boot swab from a pasture. This investigation shows that the healthy poultry farm might have been the reservoir of C. botulinum type D/C and that cross-contamination between poultry and cattle likely occurred, resulting in the botulism outbreak on the two cattle farms.
Collapse
|
12
|
Le Maréchal C, Rouxel S, Ballan V, Houard E, Poezevara T, Bayon-Auboyer MH, Souillard R, Morvan H, Baudouard MA, Woudstra C, Mazuet C, Le Bouquin S, Fach P, Popoff M, Chemaly M. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism. PLoS One 2017; 12:e0169640. [PMID: 28076405 PMCID: PMC5226734 DOI: 10.1371/journal.pone.0169640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds.
Collapse
Affiliation(s)
- Caroline Le Maréchal
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité Hygiène et qualité des produits avicoles et porcins, Université Bretagne-Loire, Ploufragan, France
| | - Sandra Rouxel
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité Hygiène et qualité des produits avicoles et porcins, Université Bretagne-Loire, Ploufragan, France
| | - Valentine Ballan
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité Hygiène et qualité des produits avicoles et porcins, Université Bretagne-Loire, Ploufragan, France
| | - Emmanuelle Houard
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité Hygiène et qualité des produits avicoles et porcins, Université Bretagne-Loire, Ploufragan, France
| | - Typhaine Poezevara
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité Hygiène et qualité des produits avicoles et porcins, Université Bretagne-Loire, Ploufragan, France
| | | | - Rozenn Souillard
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité d’Epidémiologie et bien-être en aviculture et cuniculture, Université Bretagne-Loire, Ploufragan, France
| | | | | | - Cédric Woudstra
- ANSES, Laboratoire de sécurité des aliments, Maisons Alfort, France
| | | | - Sophie Le Bouquin
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité d’Epidémiologie et bien-être en aviculture et cuniculture, Université Bretagne-Loire, Ploufragan, France
| | - Patrick Fach
- ANSES, Laboratoire de sécurité des aliments, Maisons Alfort, France
| | - Michel Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris, France
| | - Marianne Chemaly
- ANSES, Laboratoire de Ploufragan – Plouzané, Unité Hygiène et qualité des produits avicoles et porcins, Université Bretagne-Loire, Ploufragan, France
| |
Collapse
|
13
|
Souillard R, Le Maréchal C, Ballan V, Rouxel S, Léon D, Balaine L, Poëzevara T, Houard E, Robineau B, Robinault C, Chemaly M, Le Bouquin S. Investigation of a type C/D botulism outbreak in free-range laying hens in France. Avian Pathol 2016; 46:195-201. [PMID: 27686664 DOI: 10.1080/03079457.2016.1240355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 2014, a botulism outbreak in a flock of laying hens was investigated in France. In the flock of 5020 hens, clinical signs of botulism occurred at 46 weeks of age. A type C/D botulism outbreak was confirmed using the mouse lethality assay for detection of botulinum toxin in serum and a real-time PCR test to detect Clostridium botulinum in intestinal contents. The disease lasted one week with a mortality rate of 2.6% without recurrence. Botulism in laying hens has rarely been reported. Five monthly visits were made to the farm between December 2014 and May 2015 for a longitudinal study of the persistence of C. botulinum in the poultry house after the outbreak, and to assess egg contamination by C. botulinum. Several samples were collected on each visit: in the house (from the ventilation circuit, the egg circuit, water and feed, droppings) and the surrounding area. Thirty clean and 30 dirty eggs were also swabbed at each visit. In addition, 12 dirty and 12 clean eggs were collected to analyse eggshell and egg content. The samples were analysed using real-time PCR to detect type C/D C. botulinum. The bacterium was still detected in the house more than 5 months after the outbreak, mostly on the walls and in the egg circuit. Regarding egg contamination, the bacteria were detected only on the shell but not in the content of the eggs. Control measures should therefore be implemented throughout the egg production period to avoid dissemination of the bacteria, particularly during egg collection.
Collapse
Affiliation(s)
- R Souillard
- a ANSES, French Agency for Food Environmental and Occupational Health Safety, Avian and Rabbit Epidemiology and Welfare Unit , University of Bretagne Loire , Ploufragan , France
| | - C Le Maréchal
- b ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit , University of Bretagne Loire , Ploufragan , France
| | - V Ballan
- b ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit , University of Bretagne Loire , Ploufragan , France
| | - S Rouxel
- b ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit , University of Bretagne Loire , Ploufragan , France
| | - D Léon
- a ANSES, French Agency for Food Environmental and Occupational Health Safety, Avian and Rabbit Epidemiology and Welfare Unit , University of Bretagne Loire , Ploufragan , France
| | - L Balaine
- a ANSES, French Agency for Food Environmental and Occupational Health Safety, Avian and Rabbit Epidemiology and Welfare Unit , University of Bretagne Loire , Ploufragan , France
| | - T Poëzevara
- b ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit , University of Bretagne Loire , Ploufragan , France
| | - E Houard
- b ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit , University of Bretagne Loire , Ploufragan , France
| | | | - C Robinault
- d DDPP des Côtes d'Armor, Direction Départementale de la Protection des Populations , Ploufragan , France
| | - M Chemaly
- b ANSES, French Agency for Food Environmental and Occupational Health Safety, Hygiene and Quality of Poultry and Pig Products Unit , University of Bretagne Loire , Ploufragan , France
| | - S Le Bouquin
- a ANSES, French Agency for Food Environmental and Occupational Health Safety, Avian and Rabbit Epidemiology and Welfare Unit , University of Bretagne Loire , Ploufragan , France
| |
Collapse
|
14
|
Differences in the Vulnerability of Waterbird Species to Botulism Outbreaks in Mediterranean Wetlands: an Assessment of Ecological and Physiological Factors. Appl Environ Microbiol 2016; 82:3092-9. [PMID: 27016572 DOI: 10.1128/aem.00119-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Avian botulism kills thousands of waterbirds every year, including endangered species, but information about the differences between species in vulnerability to botulism outbreaks and the capacity to act as carriers of Clostridium botulinum is still poorly known. Here, we estimated the vulnerability to botulism of 11 waterbird species from Mediterranean wetlands by comparing the number of affected birds with the census of individuals at risk. The capacity of different species to act as carriers was studied by detecting the presence of the C. botulinum type C/D botulinum neurotoxin (BoNT) gene in fecal samples and prey items of waterbirds in the wild and by the serial sampling of cloacal swabs of birds affected by botulism. We found differences among species in their vulnerabilities to botulism, probably related to feeding habits, season of arrival, turnover, and, possibly, phylogenetic resilience. The globally endangered white-headed duck (Oxyura leucocephala) showed mortality rates in the studied outbreaks of 7% and 17% of the maximum census, which highlights botulism as a risk factor for the conservation of the species. Invasive water snails, such as Physa acuta, may be important drivers in botulism epidemiology, because 30% of samples tested positive for the BoNT gene during outbreaks. Finally, our results show that birds may excrete the pathogen for up to 7 days, and some individuals can do it for longer periods. Rails and ducks excreted C. botulinum more often and for longer times than gulls, which could be related to their digestive physiology (i.e., cecum development). IMPORTANCE Botulism is an important cause of mortality in waterbirds, including some endangered species. The global climate change may have consequences in the ecology of wetlands that favor the occurrence of botulism outbreaks. Here, we offer some information to understand the ecology of this disease that can be useful to cope with these global changes in the future. We have found that some species (i.e., coots and dabbling ducks) are more vulnerable to botulism and have a more relevant role in the onset and amplification of the outbreaks than other species (i.e., flamingos and grebes). Feeding habits can explain these differences in part; in addition to the well-known role of necrophagous fly maggots, we found here that water snails are frequent carriers of Clostridium botulinum This is relevant, because these water snails can thrive in eutrophic and polluted wetlands, exacerbating other changes driven by climate change in wetlands.
Collapse
|
15
|
Skarin H, Lindgren Y, Jansson DS. Investigations into an Outbreak of Botulism Caused by Clostridium botulinum Type C/D in Laying Hens. Avian Dis 2015; 59:335-40. [PMID: 26473687 DOI: 10.1637/10861-051214-case] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This case report describes a recent botulism outbreak in commercial laying hens with a history of increased mortality and flaccid paralysis. Routine diagnostic gross examination and microscopy from seven hens were inconclusive, but botulinum neurotoxin (BoNT) in peripheral blood was neutralized with both type C and type D antitoxins in the mouse bioassay. During a farm visit, 10 additional hens from a 34-wk-old flock on the farm were selected for clinical examination and further sampling. Nine hens were observed in sternal recumbency, with flaccid paralysis of the neck, drooping wings and tail, inability to escape, and bilateral ptosis, and one hen showed nonspecific clinical signs. Samples from cecum and liver were collected, and the gene coding for BoNT was detected by PCR in all 10 cecal samples and in four of the liver samples. Clostridium botulinum mosaic type C/D was isolated from 5 out of 10 hens from either cecum or liver, and the isolates were subjected to pulsed-field gel electrophoresis subtyping. All five isolates produced the same banding pattern, which was identical or showed >90% similarity to isolates from three different outbreaks on broiler farms in Sweden and Denmark during the 2007-10 period. However, they were clearly distinguishable from the predominantly reported pulsotype associated with avian botulism outbreaks in Europe. The authors are unaware of any previous report of C. botulinum mosaic type C/D isolates from laying hens.
Collapse
Affiliation(s)
- Hanna Skarin
- A Department of Bacteriology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden.,B Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | - Ylva Lindgren
- C Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
| | - Désirée S Jansson
- C Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
| |
Collapse
|
16
|
Le Maréchal C, Ballan V, Rouxel S, Bayon-Auboyer MH, Baudouard MA, Morvan H, Houard E, Poëzevara T, Souillard R, Woudstra C, Le Bouquin S, Fach P, Chemaly M. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism. Anaerobe 2015; 38:7-13. [PMID: 26545739 DOI: 10.1016/j.anaerobe.2015.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022]
Abstract
Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis.
Collapse
Affiliation(s)
- Caroline Le Maréchal
- ANSES Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan, France; Université Européenne de Bretagne, France.
| | - Valentine Ballan
- ANSES Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan, France; Université Européenne de Bretagne, France
| | - Sandra Rouxel
- ANSES Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan, France; Université Européenne de Bretagne, France
| | | | | | | | - Emmanuelle Houard
- ANSES Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan, France; Université Européenne de Bretagne, France
| | - Typhaine Poëzevara
- ANSES Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan, France; Université Européenne de Bretagne, France
| | - Rozenn Souillard
- Université Européenne de Bretagne, France; ANSES Ploufragan-Plouzané Laboratory, Avian and Rabbit Epidemiology and Welfare Unit, Ploufragan, France
| | | | - Sophie Le Bouquin
- Université Européenne de Bretagne, France; ANSES Ploufragan-Plouzané Laboratory, Avian and Rabbit Epidemiology and Welfare Unit, Ploufragan, France
| | - Patrick Fach
- ANSES, Food Safety Laboratory, Maisons-Alfort, France
| | - Marianne Chemaly
- ANSES Ploufragan-Plouzané Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, Ploufragan, France; Université Européenne de Bretagne, France
| |
Collapse
|
17
|
Souillard R, Maréchal C, Hollebecque F, Rouxel S, Barbé A, Houard E, Léon D, Poëzévara T, Fach P, Woudstra C, Mahé F, Chemaly M, Bouquin S. Occurrence of C. botulinum in healthy cattle and their environment following poultry botulism outbreaks in mixed farms. Vet Microbiol 2015; 180:142-5. [DOI: 10.1016/j.vetmic.2015.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/15/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
18
|
Prathiviraj R, Prisilla A, Chellapandi P. Structure–function discrepancy inClostridium botulinumC3 toxin for its rational prioritization as a subunit vaccine. J Biomol Struct Dyn 2015; 34:1317-29. [DOI: 10.1080/07391102.2015.1078745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Single-tube nested PCR assay for the detection of avian botulism in cecal contents of chickens. Anaerobe 2015; 35:48-53. [PMID: 26159405 DOI: 10.1016/j.anaerobe.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022]
Abstract
This paper describes a novel diagnostic method for the detection of avian botulism caused by Clostridium botulinum type C and C/D, using single-tube nested PCR assay. This assay was developed to overcome the disadvantages of bioassays used in experiments with mice. Three primer pairs including an antisense primer were designed to target the N-terminal of the toxin gene from C. botulinum types C and C/D. The specificity of the PCR assay was confirmed by using 33 bacterial strains and chicken cecal contents from farms that experienced botulism outbreaks. The detection limit for purified DNA was 1.1 fg/μl, and for bacterial spores was 4.3 spores/200 mg of cecal contents. While checking for specificity of the PCR assay, the reactions with the templates form C. botulinum type C and C/D which were tested became positive, but the rest of the reactions turned negative. However, the results for all clinical samples (n = 8) were positive. The PCR assay results for cecal samples obtained from 300 healthy chickens (150 Korean native chickens and 150 broilers) were all negative. This assay is rapid and straightforward and evades ethical issues associated with mouse bioassay. Moreover, it is more economical than real-time PCR.
Collapse
|
20
|
Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 2015; 166:290-302. [PMID: 25312020 PMCID: PMC11302483 DOI: 10.1016/j.resmic.2014.09.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022]
Abstract
For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity.
Collapse
Affiliation(s)
- Theresa J Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Brian H Raphael
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
21
|
Souillard R, Woudstra C, Le Maréchal C, Dia M, Bayon-Auboyer MH, Chemaly M, Fach P, Le Bouquin S. Investigation of Clostridium botulinum in commercial poultry farms in France between 2011 and 2013. Avian Pathol 2015; 43:458-64. [PMID: 25175400 DOI: 10.1080/03079457.2014.957644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Between 2011 and 2013, 17 poultry botulism outbreaks were investigated in France. All cases were associated with Clostridium botulinum type C-D. Presence of C. botulinum was studied in seven areas: poultry house, changing room, ventilation system, surroundings, animal reservoirs, water, and feed. Swabs, litter, soil, darkling beetles, rodents and wild bird droppings, feed and water samples were collected. The presence of C. botulinum type C-D in the environment of affected flocks was detected in 39.5% of the 185 samples analysed by real-time polymerase chain reaction. C. botulinum type C-D was reported in each area. Four areas were more frequently contaminated, being found positive in more than one-half of farms: darkling beetles (9/11), poultry house (14/17), water (13/16) and surroundings (11/16). After cleaning and disinfection, the ventilation system and/or the soil (in the houses and the surroundings) returned positive results in four out of eight poultry farms. Consequently, darkling beetles, the drinking water, the ventilation system and the soil in the surroundings and the houses were identified as the main critical contaminated areas to consider in poultry farms to prevent recurrence of botulism outbreaks.
Collapse
Affiliation(s)
- R Souillard
- a Anses - UEB, Ploufragan-Plouzané Laboratory , Avian and Rabbit Epidemiology and Welfare Unit , Ploufragan , France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gismervik K, Randby ÅT, Rørvik LM, Bruheim T, Andersen A, Hernandez M, Skaar I. Effect of invasive slug populations (Arion vulgaris) on grass silage. II: Microbiological quality and feed safety. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2014.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Jang I, Kang MS, Kim HR, Oh JY, Lee JI, Lee HS, Kwon YK. Occurrence of Avian Botulism in Korea During the Period from June to September 2012. Avian Dis 2014; 58:666-9. [DOI: 10.1637/10793-020414-case] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Gismervik K, Bruheim T, Rørvik LM, Haukeland S, Skaar I. Invasive slug populations (Arion vulgaris) as potential vectors for Clostridium botulinum. Acta Vet Scand 2014; 56:65. [PMID: 25277214 PMCID: PMC4189676 DOI: 10.1186/s13028-014-0065-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022] Open
Abstract
Background Norwegian meadows, including those for silage production, are recently found heavily invaded by the slug Arion vulgaris in exposed areas. As a consequence, large numbers of slugs might contaminate grass silage and cause a possible threat to animal feed quality and safety. It is well known that silage contaminated by mammalian or avian carcasses can lead to severe outbreaks of botulism among livestock. Invertebrates, especially fly-larvae (Diptera), are considered important in the transfer of Clostridium botulinum type C and its toxins among birds in wetlands. C. botulinum form highly resistant spores that could easily be consumed by the slugs during feeding. This study aimed to determine whether Arion vulgaris could hold viable C. botulinum and enrich them, which is essential knowledge for assessing the risk of botulism from slug-contaminated silage. Slug carcasses, slug feces and live slugs were tested by a quantitative real-time PCR (qPCR) method after being fed ≅ 5.8 × 104 CFU C. botulinum type C spores/slug. Results Low amounts of C. botulinum were detected by qPCR in six of 21 slug carcasses with an even spread throughout the 17 day long experiment. Declining amounts of C. botulinum were excreted in slug feces up to day four after the inoculated feed was given. C. botulinum was only quantified the first two days in the sampling of live slugs. The viability of C. botulinum was confirmed for all three sample types (slug carcasses, slug feces and live slugs) by visible growth in enrichment media combined with obtaining a higher quantification cycle (Cq) value than from the non-enriched samples. Conclusions Neither dead nor live invasive Arion vulgaris slugs were shown to enrich Clostridium botulinum containing the neurotoxin type C gene in this study. Slugs excreted viable C. botulinum in their feces up to day four, but in rapidly decreasing numbers. Arion vulgaris appear not to support enrichment of C. botulinum type C.
Collapse
|
25
|
Skarin H, Segerman B. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens. PLoS One 2014; 9:e107777. [PMID: 25254374 PMCID: PMC4177856 DOI: 10.1371/journal.pone.0107777] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/15/2014] [Indexed: 01/26/2023] Open
Abstract
Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.
Collapse
Affiliation(s)
- Hanna Skarin
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Bo Segerman
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
- * E-mail:
| |
Collapse
|
26
|
Björnstad K, Tevell Åberg A, Kalb SR, Wang D, Barr JR, Bondesson U, Hedeland M. Validation of the Endopep-MS method for qualitative detection of active botulinum neurotoxins in human and chicken serum. Anal Bioanal Chem 2014; 406:7149-61. [PMID: 25228079 DOI: 10.1007/s00216-014-8170-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteases produced by anaerobic bacteria. Traditionally, a mouse bioassay (MBA) has been used for detection of BoNTs, but for a long time, laboratories have worked with alternative methods for their detection. One of the most promising in vitro methods is a combination of an enzymatic and mass spectrometric assay called Endopep-MS. However, no comprehensive validation of the method has been presented. The main purpose of this work was to perform a validation for the qualitative analysis of BoNT-A, B, C, C/D, D, D/C, and F in serum. The limit of detection (LOD), selectivity, precision, stability in matrix and solution, and correlation with the MBA were evaluated. The LOD was equal to or even better than that of the MBA for BoNT-A, B, D/C, E, and F. Furthermore, Endopep-MS was for the first time successfully used to differentiate between BoNT-C and D and their mosaics C/D and D/C by different combinations of antibodies and target peptides. In addition, sequential antibody capture was presented as a new way to multiplex the method when only a small sample volume is available. In the comparison with the MBA, all the samples analyzed were positive for BoNT-C/D with both methods. These results indicate that the Endopep-MS method is a valid alternative to the MBA as the gold standard for BoNT detection based on its sensitivity, selectivity, and speed and that it does not require experimental animals.
Collapse
Affiliation(s)
- Kristian Björnstad
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Production of recombinant botulism antigens: A review of expression systems. Anaerobe 2014; 28:130-6. [DOI: 10.1016/j.anaerobe.2014.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022]
|
28
|
Woudstra C, Tevell Åberg A, Skarin H, Anniballi F, De Medici D, Bano L, Koene M, Löfström C, Hansen T, Hedeland M, Fach P. Animal botulism outcomes in the AniBioThreat project. Biosecur Bioterror 2014; 11 Suppl 1:S177-82. [PMID: 23971804 DOI: 10.1089/bsp.2012.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Botulism disease in both humans and animals is a worldwide concern. Botulinum neurotoxins produced by Clostridium botulinum and other Clostridium species are the most potent biological substances known and are responsible for flaccid paralysis leading to a high mortality rate. Clostridium botulinum and botulinum neurotoxins are considered potential weapons for bioterrorism and have been included in the Australia Group List of Biological Agents. In 2010 the European Commission (DG Justice, Freedom and Security) funded a 3-year project named AniBioThreat to improve the EU's capacity to counter animal bioterrorism threats. A detection portfolio with screening methods for botulism agents and incidents was needed to improve tracking and tracing of accidental and deliberate contamination of the feed and food chain with botulinum neurotoxins and other Clostridia. The complexity of this threat required acquiring new genetic information to better understand the diversity of these Clostridia and develop detection methods targeting both highly specific genetic markers of these Clostridia and the neurotoxins they are able to produce. Several European institutes participating in the AniBioThreat project collaborated on this program to achieve these objectives. Their scientific developments are discussed here.
Collapse
|
29
|
Skarin H, Tevell Åberg A, Woudstra C, Hansen T, Löfström C, Koene M, Bano L, Hedeland M, Anniballi F, De Medici D, Olsson Engvall E. The workshop on animal botulism in Europe. Biosecur Bioterror 2014; 11 Suppl 1:S183-90. [PMID: 23971805 DOI: 10.1089/bsp.2012.0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A workshop on animal botulism was held in Uppsala, Sweden, in June 2012. Its purpose was to explore the current status of the disease in Europe by gathering the European experts in animal botulism and to raise awareness of the disease among veterinarians and others involved in biopreparedness. Animal botulism is underreported and underdiagnosed, but an increasing number of reports, as well as the information gathered from this workshop, show that it is an emerging problem in Europe. The workshop was divided into 4 sessions: animal botulism in Europe, the bacteria behind the disease, detection and diagnostics, and European collaboration and surveillance. An electronic survey was conducted before the workshop to identify the 3 most needed discussion points, which were: prevention, preparedness and outbreak response; detection and diagnostics; and European collaboration and surveillance. The main conclusions drawn from these discussions were that there is an urgent need to replace the mouse bioassay for botulinum toxin detection with an in vitro test and that there is a need for a European network to function as a reference laboratory, which could also organize a European supply of botulinum antitoxin and vaccines. The foundation of such a network was discussed, and the proposals are presented here along with the outcome of discussions and a summary of the workshop itself.
Collapse
|
30
|
Anza I, Skarin H, Vidal D, Lindberg A, Båverud V, Mateo R. The same clade of Clostridium botulinum strains is causing avian botulism in southern and northern Europe. Anaerobe 2014; 26:20-3. [PMID: 24418766 DOI: 10.1016/j.anaerobe.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/19/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
Avian botulism is a paralytic disease caused by Clostridium botulinum-produced botulinum neurotoxins (BoNTs), most commonly of type C/D. It is a serious disease of waterbirds and poultry flocks in many countries in Europe. The objective of this study was to compare the genetic relatedness of avian C. botulinum strains isolated in Spain with strains isolated in Sweden using pulsed-field gel electrophoresis (PFGE). Fifteen strains were isolated from Spanish waterbirds using an immunomagnetic separation technique. Isolates were characterized by PCR, and all were identified as the genospecies Clostridium novyi sensu lato and eight harboured the gene coding for the BoNT type C/D. PFGE analysis of the strains revealed four highly similar pulsotypes, out of which two contained strains from both countries. It also showed that outbreaks in wild and domestic birds can be caused by the same strains. These results support a clonal spreading of the mosaic C. botulinum type C/D through Europe and give relevant information for future epidemiological studies.
Collapse
Affiliation(s)
- Ibone Anza
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain.
| | - Hanna Skarin
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Dolors Vidal
- Área de Microbiología, Departamento de Ciencias Médicas, Facultad de Medicina de Ciudad Real, Edificio Polivalente, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - Anna Lindberg
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Viveca Båverud
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
31
|
Type C and C/D toxigenic Clostridium botulinum is not normally present in the intestine of healthy broilers. Vet Microbiol 2013; 165:466-8. [DOI: 10.1016/j.vetmic.2013.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 11/21/2022]
|
32
|
Woudstra C, Skarin H, Anniballi F, Auricchio B, De Medici D, Bano L, Drigo I, Hansen T, Löfström C, Hamidjaja R, van Rotterdam BJ, Koene M, Bäyon-Auboyer MH, Buffereau JP, Fach P. Validation of a real-time PCR based method for detection of Clostridium botulinum types C, D and their mosaic variants C-D and D-C in a multicenter collaborative trial. Anaerobe 2013; 22:31-7. [PMID: 23669132 DOI: 10.1016/j.anaerobe.2013.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 11/29/2022]
Abstract
Two real-time PCR arrays based on the GeneDisc(®) cycler platform (Pall-GeneDisc Technologies) were evaluated in a multicenter collaborative trial for their capacity to specifically detect and discriminate Clostridium botulinum types C, D and their mosaic variants C-D and D-C that are associated with avian and mammalian botulism. The GeneDisc(®) arrays developed as part of the DG Home funded European project 'AnibioThreat' were highly sensitive and specific when tested on pure isolates and naturally contaminated samples (mostly clinical specimen from avian origin). Results of the multicenter collaborative trial involving eight laboratories in five European Countries (two laboratories in France, Italy and The Netherlands, one laboratory in Denmark and Sweden), using DNA extracts issued from 33 pure isolates and 48 naturally contaminated samples associated with animal botulism cases, demonstrated the robustness of these tests. Results showed a concordance among the eight laboratories of 99.4%-100% for both arrays. The reproducibility of the tests was high with a relative standard deviation ranging from 1.1% to 7.1%. Considering the high level of agreement achieved between the laboratories these PCR arrays constitute robust and suitable tools for rapid detection of C. botulinum types C, D and mosaic types C-D and D-C. These are the first tests for C. botulinum C and D that have been evaluated in a European multicenter collaborative trial.
Collapse
Affiliation(s)
- Cedric Woudstra
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Food Safety Laboratory, 23 Av du Général De Gaulle, Fr-94706 Maisons-Alfort, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Environmental factors influencing the prevalence of a Clostridium botulinum type C/D mosaic strain in nonpermanent Mediterranean wetlands. Appl Environ Microbiol 2013; 79:4264-71. [PMID: 23645197 DOI: 10.1128/aem.01191-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between 1978 and 2008, 13 avian botulism outbreaks were recorded in the wetlands of Mancha Húmeda (central Spain). These outbreaks caused the deaths of around 20,000 birds from over 50 species, including globally endangered white-headed ducks (Oxyura leucoceophala). Here, a significant association was found between the number of dead birds recorded in each botulism outbreak and the mean temperature in July (always >26°C). The presence of Clostridium botulinum type C/D in wetland sediments was detected by real-time PCR (quantitative PCR [qPCR]) in 5.8% of 207 samples collected between 2005 and 2008. Low concentrations of Cl(-) and high organic matter content in sediments were significantly associated with the presence of C. botulinum. Seventy-five digestive tracts of birds found dead during botulism outbreaks were analyzed; C. botulinum was present in 38.7% of them. The prevalence of C. botulinum was 18.2% (n = 22 pools) in aquatic invertebrates (Chironomidae and Corixidae families) and 33.3% (n = 18 pools) in necrophagous invertebrates (Sarcophagidae and Calliphoridae families), including two pools of adult necrophagous flies collected around bird carcasses. The presence of the bacteria in the adult fly form opens up new perspectives in the epidemiology of avian botulism, since these flies may be transporting C. botulinum from one carcass to another.
Collapse
|
34
|
Hedeland M, Moura H, Båverud V, Woolfitt AR, Bondesson U, Barr JR. Confirmation of botulism in birds and cattle by the mouse bioassay and Endopep-MS. J Med Microbiol 2011; 60:1299-1305. [PMID: 21566090 DOI: 10.1099/jmm.0.031179-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There have been several outbreaks of botulism among poultry and wild birds in Sweden in recent years. The National Veterinary Institute of Sweden (SVA) has identified botulinum neurotoxin (BoNT)/C1 or the mosaic BoNT/C1D using the mouse bioassay. This is believed to be the first report on the application of the Endopep mass spectrometry (Endopep-MS) method to selected clinical animal (serum and liver) samples and a feed sample that had previously given positive test results with the mouse bioassay. In the mouse bioassay eight of the eleven samples were found to be neutralized by both BoNT/C1 and /D antitoxins; the other three were neutralized only by BoNT/C1 antitoxin, but the mice showed a prolonged survival time when the samples had been treated with /D antitoxin. The Endopep-MS analysis, on the other hand, demonstrated only BoNT/C1 activity for all eleven samples. This suggests that at least eight of the samples were of the chimeric toxin type BoNT/C1D, where the enzymically active site is identical to that of BoNT/C1, while other parts of the protein contain sequences of BoNT/D. This is the first step of a cross-validation between the established mouse bioassay and the Endopep-MS of serotypes BoNT/C1 and /C1D. Endopep-MS is concluded to have potential as an attractive alternative to the mouse bioassay.
Collapse
Affiliation(s)
- Mikael Hedeland
- Uppsala University, Division of Analytical Pharmaceutical Chemistry, Biomedical Centre, PO Box 574, SE-751 23 Uppsala, Sweden.,National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - Hercules Moura
- Centers for Disease Control and Prevention, NCEH/DLS, 4770 Buford Hwy NE, Atlanta, GA 30341-3724, USA
| | - Viveca Båverud
- National Veterinary Institute (SVA), Department of Bacteriology, SE-751 89 Uppsala, Sweden
| | - Adrian R Woolfitt
- Centers for Disease Control and Prevention, NCEH/DLS, 4770 Buford Hwy NE, Atlanta, GA 30341-3724, USA
| | - Ulf Bondesson
- Uppsala University, Division of Analytical Pharmaceutical Chemistry, Biomedical Centre, PO Box 574, SE-751 23 Uppsala, Sweden.,National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89 Uppsala, Sweden
| | - John R Barr
- Centers for Disease Control and Prevention, NCEH/DLS, 4770 Buford Hwy NE, Atlanta, GA 30341-3724, USA
| |
Collapse
|
35
|
Skarin H, Håfström T, Westerberg J, Segerman B. Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics 2011; 12:185. [PMID: 21486474 PMCID: PMC3098183 DOI: 10.1186/1471-2164-12-185] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/12/2011] [Indexed: 11/12/2022] Open
Abstract
Background Clostridium botulinum strains can be divided into four physiological groups that are sufficiently diverged to be considered as separate species. Here we present the first complete genome of a C. botulinum strain from physiological group III, causing animal botulism. We also compare the sequence to three new draft genomes from the same physiological group. Results The 2.77 Mb chromosome was highly conserved between the isolates and also closely related to that of C. novyi. However, the sequence was very different from the human C. botulinum group genomes. Replication-directed translocations were rare and conservation of synteny was high. The largest difference between C. botulinum group III isolates occurred within their surprisingly large plasmidomes and in the pattern of mobile elements insertions. Five plasmids, constituting 13.5% of the total genetic material, were present in the completed genome. Interestingly, the set of plasmids differed compared to other isolates. The largest plasmid, the botulinum-neurotoxin carrying prophage, was conserved at a level similar to that of the chromosome while the medium-sized plasmids seemed to be undergoing faster genetic drift. These plasmids also contained more mobile elements than other replicons. Several toxins and resistance genes were identified, many of which were located on the plasmids. Conclusions The completion of the genome of C. botulinum group III has revealed it to be a genome with dual identity. It belongs to the pathogenic species C. botulinum, but as a genotypic species it should also include C. novyi and C. haemolyticum. The genotypic species share a conserved chromosomal core that can be transformed into various pathogenic variants by modulation of the highly plastic plasmidome.
Collapse
Affiliation(s)
- Hanna Skarin
- Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | | |
Collapse
|