1
|
Hossain I, Parvin R, Rahman MM, Begum JA, Chowdhury EH, Islam MR, Diel DG, Nooruzzaman M. Comparative pathogenicity of a genotype XXI.1.2 pigeon Newcastle disease virus isolate in pigeons and chickens. Microb Pathog 2023; 178:106068. [PMID: 36933579 DOI: 10.1016/j.micpath.2023.106068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Here, we performed molecular and pathogenic characterization of a Newcastle disease virus (NDV) isolate from pigeons in Bangladesh. Molecular phylogenetic analysis based on the complete fusion gene sequences classified the three study isolates into genotype XXI (sub-genotype XXI.1.2) together with recent NDV isolates obtained from pigeons in Pakistan (2014-2018). The Bayesian Markov Chain Monte Carlo analysis revealed that the ancestor of Bangladeshi pigeon NDVs and the viruses from sub-genotype XXI.1.2 existed in the late 1990s. Pathogenicity testing using mean embryo death time pathotyped the viruses as mesogenic, while all isolates carried multiple basic amino acid residues at the fusion protein cleavage site. Experimental infection of chickens and pigeons revealed no or minimum clinical signs in chickens, while a relatively high morbidity (70%) and mortality (60%) were observed in pigeons. The infected pigeons showed extensive and systemic lesions including hemorrhagic and/or vascular changes in the conjunctiva, respiratory and digestive system and brain, and atrophy in the spleen, while only mild congestion in the lungs was noticed in the inoculated chickens. Histologically, consolidation in the lungs with collapsed alveoli and edema around the blood vessels, hemorrhages in the trachea, severe hemorrhages and congestion, focal aggregation of mononuclear cells, and single hepatocellular necrosis in the liver, severe congestion, multifocal tubular degeneration, and necrosis, as well as mononuclear cell infiltration in the renal parenchyma, encephalomalacia with severe neuronal necrosis with neuronophagia were noticed in the brain in infected pigeons. In contrast, only slight congestion was found in lungs of the infected chickens. qRT-PCR revealed the replication of the virus in both pigeons and chickens; however, higher viral RNA loads were observed in oropharyngeal and cloacal swabs, respiratory tissues, and spleen of infected pigeons than the chickens. In conclusion, genotype XXI.1.2 NDVs are circulating in the pigeon population of Bangladesh since 1990s, produce high mortality in pigeons with pneumonia, hepatocellular necrosis, renal tubular degeneration, and neuronal necrosis in pigeons, and may infect chickens without overt signs of clinical disease and are likely to shed viruses via the oral or cloacal routes.
Collapse
Affiliation(s)
- Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mijanur Rahman
- Department of Livestock Services, Ministry of Fisheries and Livestock, Krishi Khamar Sarak, Dhaka, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Zhang Y, Wang W, Li Y, Liu J, Wang W, Bai J, Yang Z, Liu H, Xiao S. A pigeon paramyxovirus type 1 isolated from racing pigeon as an inactivated vaccine candidate provides effective protection. Poult Sci 2022; 101:102097. [PMID: 36055029 PMCID: PMC9449850 DOI: 10.1016/j.psj.2022.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Pigeon paramyxovirus type 1 (PPMV-1), a variant of Newcastle disease virus (NDV), causes severe Newcastle disease (ND) in pigeons. However, there is no PPMV-1 vaccine available worldwide. In this study, a strain of PPMV-1 was isolated from outbreaks in a vaccinated racing pigeon (Columbia livia) loft in China, namely, PPMV-1/pigeon/Gansu/China/02/2020 (GS02). Experimental infection with GS02 showed mortality rates of 100% and 87.50% in 4- and 12-week-old pigeons, respectively, suggesting that GS02 is virulent and more sensitive to young pigeons. The whole genome of GS02 determined the fusion (F) protein possessing virulence cleavage site 112RRQKRF117. Phylogenetic analysis indicated that GS02 was a subgenotype VI.2.1.1.2.2 (VIk) of Class II NDV and more closely related to the JS/06/20/Pi (MW271791) strain, but it was far from the genetic distance from the commercial vaccine chicken-origin La Sota strain. Using inactivated GS02 as a vaccine candidate and inactivated vaccine La Sota to immunize the pigeons, both of them provided complete protection against GS02 challenge. The GS02 vaccine candidate induced higher antibody titers than the La Sota vaccine, and cross-reactivity testing showed antigenically slight differences between GS02 and La Sota. These results indicated that the GS02 candidate could be a potential pigeon-derived vaccine for the prevention and control of PPMV-1 in pigeons.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weifan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongkun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinming Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Jun Bai
- Yangling Vocational and Technical College, Yangling 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Hirschinger J, Vergne T, Corre T, Hingrat Y, Guerin JL, Le Loc'h G. Exposure assessment for avian influenza and Newcastle disease viruses from peridomestic wild birds in a conservation breeding site in the United Arab Emirates. Transbound Emerg Dis 2021; 69:2361-2372. [PMID: 34333870 DOI: 10.1111/tbed.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/16/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
Worldwide, wild birds are frequently suspected to be involved in the occurrence of outbreaks of different diseases in captive-bred birds although proofs are lacking and most of the dedicated studies are insufficiently conclusive to confirm or characterize the roles of wild birds in such outbreaks. The aim of this study was to assess and compare, for the most abundant peridomestic wild birds, the different exposure routes for avian influenza and Newcastle disease viruses in conservation breeding sites of Houbara bustards in the United Arab Emirates. To do so, we considered all of the potential pathways by which captive bustards could be exposed to avian influenza and Newcastle disease viruses by wild birds, and ran a comparative study of the likelihood of exposure via each of the pathways considered. We merged data from an ecological study dedicated to local wild bird communities with an analysis of the contacts between wild birds and captive bustards and with a prevalence survey of avian influenza and Newcastle disease viruses in wild bird populations. We also extracted data from an extensive review of the scientific literature and by the elicitation of expert opinion. Overall, this analysis highlighted those captive bustards had a high risk of being exposed to pathogens by wild birds. This risk was higher for Newcastle disease virus than avian influenza virus, and House sparrows represented the riskiest species for the transmission of both viruses through direct exposure from direct contact with an infectious bird that got inside the aviary and indirect exposure from consumption of water contaminated from the faeces of an infected bird that got inside the aviary for Newcastle disease virus and avian influenza virus, respectively. These results also reaffirm the need to implement biosecurity measures to limit contacts between wild and captive birds and highlight priority targets for a thoughtful and efficient sanitary management strategy.
Collapse
Affiliation(s)
- Julien Hirschinger
- Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Hôtes Agents Pathogènes, Toulouse, France.,Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Timothée Vergne
- Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Hôtes Agents Pathogènes, Toulouse, France
| | - Tifenn Corre
- INRAE, US-ODR 0685, Observatoire du Développement Rural, Centre Occitanie-Toulouse, Castanet Tolosan, France
| | - Yves Hingrat
- Reneco International Wildlife Consultants LLC, Abu Dhabi, United Arab Emirates
| | - Jean Luc Guerin
- Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Hôtes Agents Pathogènes, Toulouse, France
| | - Guillaume Le Loc'h
- Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Hôtes Agents Pathogènes, Toulouse, France
| |
Collapse
|
4
|
Molouki A, Soltani M, Akhijahani MM, Merhabadi MHF, Abtin A, Shoushtari A, Langeroudi AG, Lim SHE, Allahyari E, Abdoshah M, Pourbakhsh SA. Circulation of at Least Six Distinct Groups of Pigeon-Derived Newcastle Disease Virus in Iran Between 1996 and 2019. Curr Microbiol 2021; 78:2672-2681. [PMID: 34008101 DOI: 10.1007/s00284-021-02505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022]
Abstract
According to the latest Newcastle disease virus (NDV) classification system, Iranian PPMV-1 isolates were classified as either XXI.1.1 or XXI.2 subgenotypes only. However, a few recent studies have suggested the possible existence of other Iranian PPMV-1 genotypes/subgenotypes. Recently, we isolated a PPMV-1 closely related to the African origin subgenotype VI.2.1.2 from an ill captive pigeon in a park aviary in central Tehran (Pg/IR/AMMM160/2019). This subgenotype had never been reported from Iran or neighboring countries. We also isolated a subgenotype VII.1.1 NDV (Pg/IR/AMMM117/2018), usually reported from non-pigeon birds in Iran. The nucleotide distance of AMMM117 was 1.0-2.5% compared to other Iranian subgenotypes VII.1.1 isolates. However, usually the same year VII.1.1 viruses that we isolate from Iranian poultry farms show negligible distances (0.0-0.5%). More isolates are required to study if this difference is due to subgenotype VII.1.1 being circulated and mutated in pigeons. Here, we also characterized two other isolates, namely Pg/IR/AMMM168/2019 and Pg/IR/MAM39/2017. The latter is the first Iranian subgenotype XXI.1.1 to be featured in the NDV datasets of the international NDV consortium. We also investigated the phylogenetic relation of all the published Iranian pigeon-derived NDV to date and updated the grouping according to the latest classification system. We have concluded that at least six different groups of pigeon-derived NDV have been circulating in Iran since 1996, four of which have been reported from just one city over the last seven years. This study suggests that the Iranian pigeon-origin NDV have been more diverse than the Iranian poultry-derived NDV in recent years.
Collapse
Affiliation(s)
- Aidin Molouki
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Soltani
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran.
| | - Mohsen Mahmoudzadeh Akhijahani
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Hossein Fallah Merhabadi
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Alireza Abtin
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Abdelhamid Shoushtari
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Swee Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | | | - Mohammad Abdoshah
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Seyed Ali Pourbakhsh
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
5
|
Occurrence and Role of Selected RNA-Viruses as Potential Causative Agents of Watery Droppings in Pigeons. Pathogens 2020; 9:pathogens9121025. [PMID: 33291258 PMCID: PMC7762127 DOI: 10.3390/pathogens9121025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
The diseases with watery droppings (diarrhea and/or polyuria) can be considered some of the most severe health problems in domestic pigeons of various ages. Although they do not always lead to bird death, they can contribute to poor weight gains and hindered development of young pigeons and, potentially, to poor racing results in sports birds. The gastrointestinal tract disorders of pigeons may be of various etiology, but some of the causative agents are viral infections. This review article provides information collected from scientific reports on RNA-viruses belonging to the Astroviridae, Picornaviridae, and Coronaviridae families; the Avulavirinae subfamily; and the Rotavirus genus that might be implicated in such health problems. It presents a brief characterization, and possible interspecies transmission of these viruses. We believe that this review article will help clinical signs of infection, isolation methods, occurrence in pigeons and poultry, systemize and summarize knowledge on pigeon enteropathogenic viruses and raise awareness of the importance of disease control in pigeons.
Collapse
|
6
|
Comparative pathogenicity of two closely related Newcastle disease virus isolates from chicken and pigeon respectively. Virus Res 2020; 286:198091. [PMID: 32659306 DOI: 10.1016/j.virusres.2020.198091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
Newcastle disease (ND), caused by virulent Newcastle disease virus (NDV), is a highly contagious disease that has led to tremendous economic losses worldwide. Pigeon paramyxovirus type 1 (PPMV-1) is an antigenic and host variant of NDV. However, limited in-depth studies are available concerning side-by-side comparison of pathogenicity of PPMV-1 and its phylogenetically close NDV both in chickens and pigeons. To this end, two phylogenetically closely related NDV isolates, Kuwait 256 and JS/07/04/Pi from chicken and pigeon respectively were pathotypically and genotypically characterized in this study. The results indicated that Kuwait 256 was a velogenic strain, while JS/07/04/Pi was a mesogenic strain based on the mean death time of chick embryos (MDT) and intracerebral pathogenicity index in 1-day-old chicks (ICPI). Pathogenicity tests showed that Kuwait 256 caused severe clinical signs and 100 % mortality, while JS/07/04/Pi caused no apparent disease in chickens. Interestingly, both Kuwait 256 and JS/07/04/Pi caused morbidity and mortality in pigeons. Notably, pigeons infected with JS/07/04/Pi exhibited viral shedding for longer time compared to Kuwait 256-infected pigeons. Collectively, the findings of this study suggested that PPMV-1 decreased the pathogenicity in chickens but gained a survival advantage over NDV of chicken origin after its adaptive variation in pigeons based on the previous evidence that PPMV-1 originated from chicken-origin viruses. This study laid the foundation for the elucidation of the molecularmechanism underlying difference in pathogenicity of PPMV-1 and chicken-origin NDV in chickens.
Collapse
|
7
|
Aziz-Ul-Rahman, Rohaim MA, El Naggar RF, Mustafa G, Chaudhry U, Shabbir MZ. Comparative clinico-pathological assessment of velogenic (sub-genotype VIIi) and mesogenic (sub-genotype VIm) Avian avulavirus 1 in chickens and pigeons. Avian Pathol 2019; 48:610-621. [PMID: 31403322 DOI: 10.1080/03079457.2019.1648751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Newcastle disease (ND), caused by virulent Avian avulavirus 1 (AAvV 1), affects a wide range of avian species worldwide. Recently, several AAvVs of diverse genotypes have emerged with varying genomic and residue substitutions, and subsequent clinical impact on susceptible avian species. We assessed the clinico-pathological influence of two different AAvV 1 pathotypes [wild bird originated-velogenic strain (sub-genotype VIIi, MF437287) and feral pigeon originated-mesogenic strain (sub-genotype VIm, KU885949)] in commercial broiler chickens and pigeons. The velogenic strain caused 100% mortality in both avian species while the mesogenic strain caused 0% and 30% mortality in chickens and pigeons, respectively. Both strains showed tissue tropism for multiple tissues including visceral organs; however, minor variances were observed according to host and pathotype. The observed gross and microscopic lesions were typical of AAvV 1 infection. Utilizing oropharyngeal and cloacal swabs, a comparable pattern of viral shedding was observed for both strains from each of the infected individuals of both avian species. The study concludes a varying susceptibility of chickens and pigeons to different wild bird-originated AAvV 1 pathotypes and, therefore, suggests continuous monitoring and surveillance of currently prevailing strains for effective control of the disease worldwide, particularly in disease-endemic countries.
Collapse
Affiliation(s)
- Aziz-Ul-Rahman
- Department of Microbiology, University of Veterinary and Animal Sciences , Lahore Pakistan.,Quality Operation Laboratory, University of Veterinary and Animal Sciences , Lahore Pakistan
| | - Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University , Giza , Egypt.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University , Lancaster , UK
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City , Sadat , Egypt
| | - Ghulam Mustafa
- Department of Pathology, University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Umer Chaudhry
- Roslin Institute, Easter Bush Veterinary Centre, University of Edinburgh , Roslin, Midlothian , UK
| | - Muhammad Zubair Shabbir
- Quality Operation Laboratory, University of Veterinary and Animal Sciences , Lahore Pakistan
| |
Collapse
|
8
|
Ellakany HF, Elbestawy AR, Abd El-Hamid HS, Zedan RE, Gado AR, Taha AE, Soliman MA, Abd El-Hack ME, Swelum AA, Saadeldin IM, Ba-Awadh H, Hussein EOS. Role of Pigeons in the Transmission of Avian Avulavirus (Newcastle Disease-Genotype VIId) to Chickens. Animals (Basel) 2019; 9:ani9060338. [PMID: 31185682 PMCID: PMC6617408 DOI: 10.3390/ani9060338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Newcastle disease is an acute fatal disease of poultry. All broiler chickens and 8/15 pigeons were killed when infected intramuscularly (IM), while 7/10 chickens and only 1/15 pigeons were killed when infected intranasally (IN) with the virus in an experimental setting. Chickens in contact with infected pigeons developed severe respiratory, digestive and nervous signs. The mortality rates in chickens in contact with IM and IN infected pigeons were 2/5 and 3/5, respectively. Chickens in contact with IM infected pigeons had higher viral shedding titres than those in contact with IN infected pigeons. Free-range pigeons are considered an efficient carrier and transmitter of NDV-VIId to commercial broiler chickens raised in open houses. Abstract Newcastle disease is an acute fatal disease of poultry. The aim of this study was to determine the dynamics of the transmission of avian avulavirus (velogenic viscerotropic Newcastle disease-genotype VIId) from either intramuscularly (IM)- or intranasally (IN) infected 8-week-old Egyptian Baladi pigeons in contact with commercial Arbor Acres broiler chickens (4 weeks of age). The mortality of IM infected chickens and pigeons was 10/10 for chickens and 8/15 for pigeons, while the mortality of IN infected chickens and pigeons was 7/10 for chickens and only 1/15 for pigeons. The concentration of viral shedding in the oropharynx was higher than that in the cloaca for both IN and IM infected pigeons. Pigeons infected IN continued shedding the virus from the oropharynx from the 4th day post-infection (dpi) up to the 16th dpi, while IM infected pigeons stopped oropharyngeal shedding at the 11th dpi. Chickens in contact with infected pigeons developed severe respiratory, digestive and nervous signs. The mortality rates in chickens in contact with IM and IN infected pigeons were 2/5 and 3/5, respectively. Chickens in contact with IM infected pigeons showed higher viral shedding titres in both the oropharynx and cloaca than chickens in contact with pigeons infected IN. In conclusion, free-range pigeons are considered an efficient carrier and transmitter of NDV-VIId compared to commercial broiler chickens raised in open houses.
Collapse
Affiliation(s)
- Hany F Ellakany
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt.
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt.
| | - Hatem S Abd El-Hamid
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt.
| | - Rasha E Zedan
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt.
| | - Ahmed R Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira 22511, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Rasheed, Edfina 22758, Egypt.
| | - Mohamed A Soliman
- Poultry Diseases Department, Faculty of Veterinary Medicine, Minia University, El-Minia 61519, Egypt.
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Song Y, Pei Y, Yang YL, Xue J, Zhang GZ. The Ntail region of nucleocapsid protein is associated with the pathogenicity of pigeon paramyxovirus type 1 in chickens. J Gen Virol 2019; 100:950-957. [PMID: 31050626 DOI: 10.1099/jgv.0.001264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The nucleoprotein (NP) of pigeon paramyxovirus type 1 (PPMV-1) and other paramyxoviruses plays an important role in virus proliferation. A previous study found that NP is associated with the low pathogenicity of PPMV-1 strains in chickens. Here, we investigated which domain of NP is responsible for regulating the pathogenicity of PPMV-1. We found that the Ntail sequences were more diverse for different viral genotypes compared to Ncore sequences. The chimeric rBJ-SG10Ntail strain caused more severe clinical symptoms than the parental rBJ strain, increased the viral copy number in sampled tissues and induced higher IFN-γ gene expression. This demonstrated that the Ntail sequence plays a role in regulating viral virulence. These findings increase our understanding of the Ntail of NP protein and the virulence factors associated with PPMV-1.
Collapse
Affiliation(s)
- Yang Song
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yu Pei
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yan-Ling Yang
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jia Xue
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Guo-Zhong Zhang
- 1 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
10
|
Rauf I, Wajid A, Hussain I, Ather S, Ali MA. Immunoprotective role of LaSota vaccine under immunosuppressive conditions in chicken challenged with velogenic avian avulavirus-1. Trop Anim Health Prod 2019; 51:1357-1365. [DOI: 10.1007/s11250-019-01814-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
|
11
|
Souza SO, Fredo G, Dupont PM, Leite-Filho RV, Teifke JP, Pavarini SP, Canal CW, Driemeier D. Pathological and molecular findings of avian avulavirus type 1 outbreak in pigeons (Columba livia) of southern Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: The Newcastle disease, caused by avian avulavirus type 1 strains (APMV-1) is an important avian disease involved into high rates of mortality and economic losses. Several outbreaks have been reported over the last 30 years in Columbiformes in different parts of the world, caused by a adapted variant strain of AAvV-1, called pigeon paramyxovirus type 1 (PPMV-1). A high mortality associated with an outbreak was analyzed in free-living pigeons (Columba livia) in a public square in Porto Alegre in Southern Brazil. A total of 24 pigeons moribund or freshly dead, within five weeks interval were submitted to necropsy, histopathological, immunohistochemical (anti-Newcastle), and RT-PCR followed by sequencing of the amplification products analysis. They presented neurological signs, non-suppurative encephalitis and encephalomyelitis, and mononuclear inflammatory infiltrate in different organs. Immunohistochemical analysis in nine pigeons tissue showed that anti-Newcastle was expressed in brain, kidney, liver and pancreas. The RT-PCR test for the M protein of Newcastle disease virus was positive in six pigeons. The differential diagnosis of Influenza, West Nile, Mycoplasma gallisepticum and Mycoplasma synoviae in all pigeons presented negative results. The sequence of amino acids in the cleavage site region of the F protein was 112RRQKRF117 classifying the strain as virulent. The phylogenetic analysis classified this virus strain into Class II and VI genotype.
Collapse
Affiliation(s)
| | | | | | | | - Jens P. Teifke
- Bundesforschungsinstitut für Tiergesundheit Südufer, Germany
| | | | | | | |
Collapse
|
12
|
Xiang B, You R, Kang Y, Xie P, Zhu W, Sun M, Gao P, Li Y, Ren T. Host immune responses of pigeons infected with Newcastle disease viruses isolated from pigeons. Microb Pathog 2018; 127:131-137. [PMID: 30508624 DOI: 10.1016/j.micpath.2018.11.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Newcastle disease (ND), affecting over 250 bird species, is caused by the Newcastle disease virus (NDV). ND is one of the leading causes of morbidity and mortality in pigeons. Most studies investigating NDV in pigeons have focused on the epidemiology and pathogenicity of the virus. However, the host immune responses in pigeons infected with NDVs remains largely unclear. In this study, we investigated the host immune responses in pigeons infected with two NDV stains, a pigeon paramyxovirus type 1(PPMV-1) strain, GZH14, and a genotype II virus, KP08. Although no mortality was observed upon infection with either virus, obvious neurological effects were observed in the GZH14-infected pigeons but not in the KP08-infected pigeons. Both viruses could replicate in the examined tissues, namely brain, lung, spleen, trachea, kidney, and bursa of Fabricius. The expression level of RIG-I, IL-6, IL-1β, CCL5, and IL-8 were up-regulated by both viruses in the brain, lung and spleen at 3 and 7 days post-infection. Notably, these proinflammatory cytokines and chemokines showed more intense expression in the brain, when induced by the GZH14 strain than with the KP08 strain. These results indicate that the intense inflammatory responses induced by PPMV-1 in the brain may be a critical determinant of neurological symptoms in pigeons infected with PPMV-1. Our study provides new insight into the pathogenicity of PPMV-1 in pigeons attributable to the host immune responses.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Renrong You
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Yinfeng Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Peng Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Wenxian Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Minhua Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Pei Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Yaling Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China.
| |
Collapse
|
13
|
Dziewulska D, Stenzel T, Smialek M, Tykalowski B, Koncicki A. An evaluation of the impact of aloe vera and licorice extracts on the course of experimental pigeon paramyxovirus type 1 infection in pigeons. Poult Sci 2018; 97:470-476. [PMID: 29182728 PMCID: PMC5850270 DOI: 10.3382/ps/pex341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
The progressive decrease in the efficiency of synthetic drugs has prompted research into phytogenic feed additives with potentially immunomodulatory and anti-infective properties. Complex diseases with a mixed etiology, including viral, pose a growing problem in domestic pigeons. The aim of this study was to determine the effectiveness of various doses of aloe vera and licorice extracts on the course of experimental PPMV-1 infection in pigeons. The experiment was performed on pigeons divided into 5 groups, including one control group and 4 experimental groups, which were orally administered aloe vera or licorice extracts at 300 or 500 mg/kg BW for 7 d after experimental inoculation with PPMV-1. On d 4, 7, and 14 after inoculation, cloacal swabs and samples of organs were collected from 4 birds in each group. The samples were analyzed to determine the copy number of PPMV-1 RNA by TaqMan qPCR. The results indicate that licorice and aloe vera extracts inhibited PPMV-1 replication by decreasing viral RNA copy numbers in the examined organs. The most inhibitory effect was observed in pigeons receiving aloe vera extract at 300 mg/kg BW, for which PPMV-1 RNA copy numbers were approximately 7-fold lower (brain), 9-fold lower (kidneys), and 14-fold lower (liver) than in the control group. The results of this study point to the potentially antiviral effects of aloe vera and licorice extracts in pigeons infected with PPMV-1. To the best of our knowledge, this is the first study to investigate the antiviral properties of aloe vera and licorice extracts in domestic pigeons.
Collapse
Affiliation(s)
- D Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - T Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - M Smialek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - B Tykalowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - A Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
14
|
Dziewulska D, Stenzel T, Śmiałek M, Tykałowski B, Koncicki A. The impact of Aloe vera and licorice extracts on selected mechanisms of humoral and cell-mediated immunity in pigeons experimentally infected with PPMV-1. BMC Vet Res 2018; 14:148. [PMID: 29716604 PMCID: PMC5930501 DOI: 10.1186/s12917-018-1467-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Background The aim of the study was to evaluate the impact of herbal extracts on selected immunity mechanisms in clinically healthy pigeons and pigeons inoculated with the pigeon paramyxovirus type 1 (PPMV-1). For the first 7 days post-inoculation (dpi), an aqueous solution of Aloe vera or licorice extract was administered daily at 300 or 500 mg/kg body weight (BW). The birds were euthanized at 4, 7 and 14 dpi, and spleen samples were collected during necropsy. Mononuclear cells were isolated from spleen samples and divided into two parts: one part was used to determine the percentage of IgM+ B cells in a flow cytometric analysis, and the other was used to evaluate the expression of genes encoding IFN-γ and surface receptors on CD3+, CD4+ and CD8+ T cells. Results The expression of the IFN-γ gene increased in all birds inoculated with PPMV-1 and receiving both herbal extracts. The expression of the CD3 gene was lowest at 14 dpi in healthy birds and at 7 dpi in inoculated pigeons. The expression of the CD4 gene was higher in uninoculated pigeons receiving both herbal extracts than in the control group throughout nearly the entire experiment with a peak at 7 dpi. A reverse trend was observed in pigeons inoculated with PPMV-1 and receiving both herbal extracts. In uninoculated birds, increased expression of the CD8 gene was noted in the pigeons receiving a lower dose of the Aloe vera extract and both doses of licorice extracts. No significant differences in the expression of this gene were found between inoculated pigeons receiving both herbal extracts. The percentage of IgM+ B cells did not differ between any of the evaluated groups. Conclusions This results indicate that Aloe vera and licorice extracts have immunomodulatory properties and can be used successfully to prevent viral diseases, enhance immunity and as supplementary treatment for viral diseases in pigeons.
Collapse
Affiliation(s)
- Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland.
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| |
Collapse
|
15
|
Fan W, Xu Y, Zhang P, Chen P, Zhu Y, Cheng Z, Zhao X, Liu Y, Liu J. Analysis of molecular evolution of nucleocapsid protein in Newcastle disease virus. Oncotarget 2017; 8:97127-97136. [PMID: 29228598 PMCID: PMC5722550 DOI: 10.18632/oncotarget.21373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/30/2017] [Indexed: 11/25/2022] Open
Abstract
The present study investigated the molecular evolution of nucleocapsid protein (NP) in different Newcastle disease virus (NDV) genotypes. The evolutionary timescale and rate were estimated using the Bayesian Markov chain Monte Carlo (MCMC) method. The p-distance, Bayesian skyline plot (BSP), and positively selected sites were also analyzed. The MCMC tree indicated that NDV diverged about 250 years ago with a rapid evolution rate (1.059 × 10-2 substitutions/site/year) and that different NDV genotypes formed three lineages. The p-distance results reflected the great genetic diversity of NDV. BSP analysis suggested that the effective population size of NDV has been increasing since 2000 and that the basic reproductive number (R0) of NDV ranged from 1.003 to 1.006. The abundance of negatively selected sites in the NP and the mean dN/dS value of 0.07 indicated that the NP of NDV may have undergone purifying selection. However, the predicted positively selected site at position 370 was located in the known effective epitopic region of the NP. In conclusion, although NDV evolved at a high rate and showed great genetic diversity, the structure and function of the NP had been well conserved. However, R0>1 suggests that NDV might have been causing an epidemic since the time of radiation.
Collapse
Affiliation(s)
- Wentao Fan
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Yuliang Xu
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China
| | - Pu Zhang
- Central Hospital of Tai'an City, Tai'an 271018, China
| | - Peng Chen
- Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yiran Zhu
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Ziqiang Cheng
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiaona Zhao
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yongxia Liu
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jianzhu Liu
- College of Animal Medicine and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China.,Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, PR China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
16
|
RETRACTED ARTICLE: Emergence of new sub-genotypes of Newcastle disease virus in Pakistan. WORLD POULTRY SCI J 2017. [DOI: 10.1017/s0043933917000411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Shabbir MZ, Akhtar S, Tang Y, Yaqub T, Ahmad A, Mustafa G, Alam MA, Santhakumar D, Nair V, Munir M. Infectivity of wild bird-origin avian paramyxovirus serotype 1 and vaccine effectiveness in chickens. J Gen Virol 2016; 97:3161-3173. [DOI: 10.1099/jgv.0.000618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
| | - Sameera Akhtar
- University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Yi Tang
- The Pennsylvania State University, University Park, PA 16802, USA
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Arfan Ahmad
- University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Ghulam Mustafa
- University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | | | | | | | | |
Collapse
|
18
|
Akhtar S, Muneer MA, Muhammad K, Tipu MY, Rabbani M, Ul-Rahman A, Shabbir MZ. Genetic characterization and phylogeny of pigeon paramyxovirus isolate (PPMV-1) from Pakistan. SPRINGERPLUS 2016; 5:1295. [PMID: 27547669 PMCID: PMC4977264 DOI: 10.1186/s40064-016-2939-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022]
Abstract
Background Knowing the genome characteristics of circulating Newcastle disease viruses [avian paramyxoviruses (APMV-1) and pigeon paramyxoviruses (PPMV-1)] is important to devise appropriate diagnostics and control strategies. APMVs originating from chicken and wildlife in Pakistan are well-elucidated; nevertheless, molecular characterization for the circulating PPMV-1 is largely unknown. Findings Here, we have performed fusion (F) and hemagglutinin (HN) gene based characterization of PPMV-1 isolated from an outbreak in a pigeon flock. With F0 proteolytic cleavage site (112RRQKR↓F117), characteristic of velogenic/mesogenic serotype, the complete F and HN gene based sequence analysis of the isolate revealed evolutionary relationship to genotype VI. Further analysis of hyper-variable region of F-gene demonstrated clustering of the study isolate with genotype VIb. The deduced residue analysis for both F and HN protein showed a number of substitution mutations in the functional domains distinct from representative strains of each genotype including the vaccine strains; some of them were found exclusive to the study isolate. Conclusions Though limited and preliminary data, the findings enhance our knowledge towards circulating strains of PPMVs in Pakistan. Further studies are needed to ascertain its potential for transmission in the wild birds, commercial and backyard poultry and its subsequent shedding into the environment.
Collapse
Affiliation(s)
- Sameera Akhtar
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Muhammad Akram Muneer
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Khushi Muhammad
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Muhammad Yasin Tipu
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Masood Rabbani
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Aziz Ul-Rahman
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, 54600 Pakistan
| |
Collapse
|
19
|
Xu H, Song Q, Zhu J, Liu J, Cheng X, Hu S, Wu S, Wang X, Liu X, Liu X. A single R36Q mutation in the matrix protein of pigeon paramyxovirus type 1 reduces virus replication and shedding in pigeons. Arch Virol 2016; 161:1949-55. [PMID: 27038826 DOI: 10.1007/s00705-016-2847-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Pigeon paramyxovirus type 1 (PPMV-1) is considered an antigenic and variant of avian paramyxovirus type 1 (APMV-1) that has adapted to pigeons as hosts. However, how this host-specific adaption of PPMV-1 is related to its biological characteristics is unknown. In this study, seven unique amino acids in PPMV-1 that are not present in other APMV-1 strains (n = 39 versus n = 106) were identified. R36 of the M protein was found to be not only a unique amino acid but also a positive-selection site. To investigate the role of R36 in host adaptation, a recombinant PPMV-1 with R36Q mutation was constructed. Our results indicated that the an R36Q mutation significantly attenuates pathogenicity in chickens, viral growth in both chicken embryo fibroblasts (CEFs) and pigeon embryo fibroblasts (PEFs), and virus replication and shedding in pigeons in comparison with the wild-type virus, suggesting that R36 is a key residue that evolved during the adaptation of PPMV-1 in pigeons.
Collapse
Affiliation(s)
- Haixu Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qingqing Song
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jie Zhu
- Shandong Binzhou Wohua Biological Engineering Co., Ltd., Binzhou, 256600, China
| | - Jiajia Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xin Cheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
20
|
Kang Y, Xiang B, Yuan R, Zhao X, Feng M, Gao P, Li Y, Li Y, Ning Z, Ren T. Phylogenetic and Pathotypic Characterization of Newcastle Disease Viruses Circulating in South China and Transmission in Different Birds. Front Microbiol 2016; 7:119. [PMID: 26903997 PMCID: PMC4746259 DOI: 10.3389/fmicb.2016.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Although Newcastle disease virus (NDV) with high pathogenicity has frequently been isolated in poultry in China since 1948, the mode of its transmission among avian species remains largely unknown. Given that various wild bird species have been implicated as sources of transmission, in this study we genotypically and pathotypically characterized 23 NDV isolates collected from chickens, ducks, and pigeons in live bird markets (LBMs) in South China as part of an H7N9 surveillance program during December 2013–February 2014. To simulate the natural transmission of different kinds of animals in LBMs, we selected three representative NDVs—namely, GM, YF18, and GZ289—isolated from different birds to evaluate the pathogenicity and transmission of the indicated viruses in chickens, ducks, and pigeons. Furthermore, to investigate the replication and shedding of NDV in poultry, we inoculated the chickens, ducks, and pigeons with 106 EID50 of each virus via intraocular and intranasal routes. Eight hour after infection, the naïve contact groups were housed with those inoculated with each of the viruses as a means to monitor contact transmission. Our results indicated that genetically diverse viruses circulate in LBMs in South China's Guangdong Province and that NDV from different birds have different tissue tropisms and host ranges when transmitted in different birds. We therefore propose the continuous epidemiological surveillance of LBMs to support the prevention of the spread of these viruses in different birds, especially chickens, and highlight the need for studies of the virus–host relationship.
Collapse
Affiliation(s)
- Yinfeng Kang
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Bin Xiang
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Runyu Yuan
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China; Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China
| | - Xiaqiong Zhao
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Minsha Feng
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Pei Gao
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yanling Li
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Yulian Li
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| | - Zhangyong Ning
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Tao Ren
- Key Laboratory of Animal Vaccine Development, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhou, China
| |
Collapse
|
21
|
Śmietanka K, Olszewska M, Domańska-Blicharz K, Bocian Ł, Minta Z. Experimental Infection of Different Species of Birds with Pigeon Paramyxovirus Type 1 Virus—Evaluation of Clinical Outcomes, Viral Shedding, and Distribution in Tissues. Avian Dis 2014; 58:523-30. [DOI: 10.1637/10769-011514-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, Bibi T, Khan TA, Yaqub T, Setiyaningsih S, Afonso CL. Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features. INFECTION GENETICS AND EVOLUTION 2014; 29:216-29. [PMID: 25445644 DOI: 10.1016/j.meegid.2014.10.032] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/25/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
Virulent Newcastle disease virus (NDV) isolates from new sub-genotypes within genotype VII are rapidly spreading through Asia and the Middle East causing outbreaks of Newcastle disease (ND) characterized by significant illness and mortality in poultry, suggesting the existence of a fifth panzootic. These viruses, which belong to the new sub-genotypes VIIh and VIIi, have epizootic characteristics and do not appear to have originated directly from other genotype VII NDV isolates that are currently circulating elsewhere, but are related to the present and past Indonesian NDV viruses isolated from wild birds since the 80s. Viruses from sub-genotype VIIh were isolated in Indonesia (2009-2010), Malaysia (2011), China (2011), and Cambodia (2011-2012) and are closely related to the Indonesian NDV isolated in 2007, APMV1/Chicken/Karangasem, Indonesia (Bali-01)/2007. Since 2011 and during 2012 highly related NDV isolates from sub-genotype VIIi have been isolated from poultry production facilities and occasionally from pet birds, throughout Indonesia, Pakistan and Israel. In Pakistan, the viruses of sub-genotype VIIi have replaced NDV isolates of genotype XIII, which were commonly isolated in 2009-2011, and they have become the predominant sub-genotype causing ND outbreaks since 2012. In a similar fashion, the numbers of viruses of sub-genotype VIIi isolated in Israel increased in 2012, and isolates from this sub-genotype are now found more frequently than viruses from the previously predominant sub-genotypes VIId and VIIb, from 2009 to 2012. All NDV isolates of sub-genotype VIIi are approximately 99% identical to each other and are more closely related to Indonesian viruses isolated from 1983 through 1990 than to those of genotype VII, still circulating in the region. Similarly, in addition to the Pakistani NDV isolates of the original genotype XIII (now called sub-genotype XIIIa), there is an additional sub-genotype (XIIIb) that was initially detected in India and Iran. This sub-genotype also appears to have as an ancestor a NDV strain from an Indian cockatoo isolated in 1982. These data suggest the existence of a new panzootic composed of viruses of subgenotype VIIi and support our previous findings of co-evolution of multiple virulent NDV genotypes in unknown reservoirs, e.g. as recorded with the virulent NDV identified in Dominican Republic in 2008. The co-evolution of at least three different sub-genotypes reported here and the apparent close relationship of some of those genotypes from ND viruses isolated from wild birds, suggests that identifying wild life reservoirs may help predict new panzootics.
Collapse
Affiliation(s)
- Patti J Miller
- Southeast Poultry Research Laboratory, Agricultural Research Service-United States Department of Agriculture (USDA), Athens, GA 30605, USA
| | - Ruth Haddas
- Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Luba Simanov
- Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | | | - Shafqat Fatima Rehmani
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Abdul Wajid
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Tasra Bibi
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Taseer Ahmad Khan
- Poultry Research Laboratory, Department of Physiology, University of Karachi, Karachi, Pakistan
| | - Tahir Yaqub
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Surachmi Setiyaningsih
- Department of Infectious Diseases & Veterinary Public Health, Faculty of Veterinary Medicine-Bogor Agricultural University, Jl. Agatis, IPB Dramaga, Bogor 16680, Indonesia
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service-United States Department of Agriculture (USDA), Athens, GA 30605, USA.
| |
Collapse
|
23
|
Sun J, Han Z, Shao Y, Cao Z, Kong X, Liu S. Comparative proteome analysis of tracheal tissues in response to infectious bronchitis coronavirus, Newcastle disease virus, and avian influenza virus H9 subtype virus infection. Proteomics 2014; 14:1403-23. [PMID: 24610701 PMCID: PMC7167649 DOI: 10.1002/pmic.201300404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/16/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023]
Abstract
Infectious bronchitis coronavirus (IBV), Newcastle disease virus (NDV), and avian influenza virus (AIV) H9 subtype are major pathogens of chickens causing serious respiratory tract disease and heavy economic losses. To better understand the replication features of these viruses in their target organs and molecular pathogenesis of these different viruses, comparative proteomic analysis was performed to investigate the proteome changes of primary target organ during IBV, NDV, and AIV H9 infections, using 2D‐DIGE followed MALDI‐TOF/TOF‐MS. In total, 44, 39, 41, 48, and 38 proteins were identified in the tracheal tissues of the chickens inoculated with IBV (ck/CH/LDL/97I, H120), NDV (La Sota), and AIV H9, and between ck/CH/LDL/97I and H120, respectively. Bioinformatics analysis showed that IBV, NDV, and AIV H9 induced similar core host responses involved in biosynthetic, catabolic, metabolic, signal transduction, transport, cytoskeleton organization, macromolecular complex assembly, cell death, response to stress, and immune system process. Comparative analysis of host response induced by different viruses indicated differences in protein expression changes induced by IBV, NDV, and AIV H9 may be responsible for the specific pathogenesis of these different viruses. Our result reveals specific host response to IBV, NDV, and AIVH9 infections and provides insights into the distinct pathogenic mechanisms of these avian respiratory viruses.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | | | | | | | | | | |
Collapse
|
24
|
Guo H, Liu X, Xu Y, Han Z, Shao Y, Kong X, Liu S. A comparative study of pigeons and chickens experimentally infected with PPMV-1 to determine antigenic relationships between PPMV-1 and NDV strains. Vet Microbiol 2014; 168:88-97. [DOI: 10.1016/j.vetmic.2013.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022]
|
25
|
Phan TG, Vo NP, Boros Á, Pankovics P, Reuter G, Li OTW, Wang C, Deng X, Poon LLM, Delwart E. The viruses of wild pigeon droppings. PLoS One 2013; 8:e72787. [PMID: 24023772 PMCID: PMC3762862 DOI: 10.1371/journal.pone.0072787] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 01/14/2023] Open
Abstract
Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nguyen Phung Vo
- Blood Systems Research Institute, San Francisco, California, United States of America
- Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Olive T. W. Li
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Chunling Wang
- Stanford Genome Technology Center, Stanford, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Leo L. M. Poon
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Liu H, Zhang P, Wu P, Chen S, Mu G, Duan X, Hao H, Du E, Wang X, Yang Z. Phylogenetic characterization and virulence of two Newcastle disease viruses isolated from wild birds in China. INFECTION GENETICS AND EVOLUTION 2013; 20:215-24. [PMID: 23999544 DOI: 10.1016/j.meegid.2013.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 11/19/2022]
Abstract
Wild birds are considered as a natural reservoir of Newcastle disease virus (NDV). However, there is no information about genotype IX NDV from wild birds, especially from Columbiformes. In this study, two genotype IX NDV viruses were isolated from wild birds. One was from Eurasian Blackbird, while the other was from Spotted-necked dove. After purification by plaque technique, complete genomes of both viruses were sequenced. Phylogenetic analysis of partial fusion (F) gene and complete genome indicated both strains belonged to genotype IX. Based on intracerebral pathogenicity index (ICPI), the virus from Eurasian Blackbird was velogenic virus, while the strain from Spotted-necked dove was lentogenic virus. However, both strains showed one of velogenic cleavage sites. In addition, the strain from Eurasian Blackbird showed greater replication ability and generated larger fusion foci in vitro than that of strain from Spotted-necked dove. Comparing all the corresponding protein sequences of both strains, there were only 9 different amino acid residues between them. Furthermore, after analysis of these differences, the information about lentogenic NDV with multi-basic cleavage site was presented.
Collapse
Affiliation(s)
- Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pchelkina IP, Manin TB, Kolosov SN, Starov SK, Andriyasov AV, Chvala IA, Drygin VV, Yu Q, Miller PJ, Suarez DL. Characteristics of pigeon paramyxovirus serotype-1 isolates (PPMV-1) from the Russian Federation from 2001 to 2009. Avian Dis 2013; 57:2-7. [PMID: 23678722 DOI: 10.1637/10246-051112-reg.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Monitoring programs for highly dangerous avian diseases in the Russian Federation from 2001 to 2009 detected 77 samples that were PCR positive for avian paramyxovirus serotype-1 (APMV-1) from sick or dead feral and domestic pigeons. Nucleotide sequences of the fusion (F) gene, including a nucleotide sequence encoding the F protein cleavage site, were determined for these isolates. All of the studied isolates possessed virulent F0 protein cleavage sites (112KRKKRF117, 112RRQKRF117, or 112KRQKRF117). Intracerebral pathogenicity index (ICPI) values determined for seven of the isolates exceeded the value of 0.7 (the range from 0.8 to 1.41). Based on partial genome sequencing and phylogenetic analysis, the isolates were assigned to two individual sublineages within class II genotype VIb. It was determined that most of these Newcastle disease virus isolates (70/77) recovered from the pigeons belonged to a relatively poorly studied sublineage VIb/2. The complete nucleotide sequence of the genome for the Pigeon/Russia/Vladimir/687/05 isolate of sublineage VIb/2 was determined.
Collapse
Affiliation(s)
- I P Pchelkina
- Federal Governmental Institution, Federal Centre for Animal Health, FGI ARRIAH, Vladimir 600901, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Naveen KA, Singh SD, Kataria JM, Barathidasan R, Dhama K. Detection and differentiation of pigeon paramyxovirus serotype-1 (PPMV-1) isolates by RT-PCR and restriction enzyme analysis. Trop Anim Health Prod 2013; 45:1231-6. [DOI: 10.1007/s11250-013-0352-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 11/28/2022]
|
29
|
Phylogenetic analysis and comparison of eight strains of pigeon paramyxovirus type 1 (PPMV-1) isolated in China between 2010 and 2012. Arch Virol 2013; 158:1121-31. [PMID: 23292066 DOI: 10.1007/s00705-012-1572-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/05/2012] [Indexed: 12/29/2022]
Abstract
Eight strains of pigeon paramyxovirus type 1 (PPMV-1) were isolated and identified in this study, from diseased pigeon flocks suspected to be infected with PPMV-1 in China between 2010 and 2012. These PPMV-1 isolates were purified using specific-pathogen-free (SPF) chicken embryo cells before full-length genomic sequencing. The complete genome of these isolates contained 15,192 nucleotides, similar to those of Newcastle disease virus (NDV) strains in genotypes V-XI, with the gene order 3'-NP-P-M-F-HN-L-5'. A six-nucleotide insertion was found to be located in the 5' non-coding region of the nucleoprotein gene in our eight PPMV-1 strains when compared with those of genotypes I, II, III, IV and V. The cleavage site of the fusion protein was (112)RRQKRF(117), a feature generally associated with virulent NDV strains. The structural proteins were in accordance with those of other PPMV-1 strains, with the exception of the W protein of pigeon/CHINA/LJL/100605. The length of the W protein was 227 amino acids, in common with PPMV-1 strains, whereas that of pigeon/CHINA/LJL/100605 was only 181 amino acids. Phylogenetic analysis, based on the genomic sequences and sequences of the fusion gene, revealed that our eight isolates should be classified as class II genotype VIb NDVs. To our knowledge, this is the first report to show that the strain pigeon/CHINA/LLN/110713 is similar to strains isolated abroad, but it was isolated in China, which implies that it may have been introduced to China from overseas. Differences between the Chinese and foreign strains were identified in three regions (nucleotide positions 1632-2229, 3023-3310 and 6103-6439). In addition, the values of ICPI and MDT demonstrated that PPMV-1 isolates were mesogenic or lentogenic, and virulence studies showed that these PPMV-1 strains were non-pathogenic in chickens, but they induced the generation of antibodies in vivo.
Collapse
|
30
|
Hyndman TH, Shilton CM, Doneley RJT, Nicholls PK. Sunshine virus in Australian pythons. Vet Microbiol 2012; 161:77-87. [PMID: 22883310 DOI: 10.1016/j.vetmic.2012.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 01/12/2023]
Abstract
Sunshine virus is a recently discovered novel paramyxovirus that is associated with illness in snakes. It does not phylogenetically cluster within either of the two currently accepted paramyxoviral subfamilies. It is therefore only distantly related to the only other known genus of reptilian paramyxoviruses, Ferlavirus, which clusters within the Paramyxovirinae subfamily. Clinical and diagnostic aspects associated with Sunshine virus are as yet undescribed. The objective of this paper was to report the clinical presentation, virus isolation, PCR testing and pathology associated with Sunshine virus infection. Clinical records and samples from naturally occurring cases were obtained from two captive snake collections and the archives of a veterinary diagnostic laboratory. The clinical signs that are associated with Sunshine virus infection are localised to the neurorespiratory systems or are non-specific (e.g. lethargy, inappetence). Out of 15 snakes that were infected with Sunshine virus (detected in any organ by either virus isolation or PCR), the virus was isolated from four out of ten (4/10) sampled brains, 3/10 sampled lungs and 2/7 pooled samples of kidney and liver. In these same 15 snakes, PCR was able to successfully detect Sunshine virus in fresh-frozen brain (11/11), kidney (7/8), lung (8/11) and liver (5/8); and various formalin-fixed paraffin-embedded tissues (7/8). During a natural outbreak of Sunshine virus in a collection of 32 snakes, the virus could be detected in five out of 39 combined oral-cloacal swabs that were collected from 23 of these snakes over a 105 day period. All snakes that were infected with Sunshine virus were negative for reovirus and ferlavirus by PCR. Snakes infected with Sunshine virus reliably exhibited hindbrain white matter spongiosis and gliosis with extension to the surrounding grey matter and neuronal necrosis evident in severe cases. Five out of eight infected snakes also exhibited mild bronchointerstitial pneumonia. Infection with Sunshine virus should be considered by veterinarians investigating disease outbreaks in snakes, particularly those that are associated with neurorespiratory disease.
Collapse
Affiliation(s)
- Timothy H Hyndman
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | | | | |
Collapse
|
31
|
Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. Virulence of Newcastle disease virus: what is known so far? Vet Res 2011; 42:122. [PMID: 22195547 PMCID: PMC3269386 DOI: 10.1186/1297-9716-42-122] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022] Open
Abstract
In the last decade many studies have been performed on the virulence of Newcastle disease virus (NDV). This is mainly due to the development of reverse genetics systems which made it possible to genetically modify NDV and to investigate the contribution of individual genes and genome regions to its virulence. However, the available information is scattered and a comprehensive overview of the factors and conditions determining NDV virulence is lacking. This review summarises, compares and discusses the available literature and shows that virulence of NDV is a complex trait determined by multiple genetic factors.
Collapse
Affiliation(s)
- Jos C F M Dortmans
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|