1
|
Tillis SB, Holt C, Havens S, Logan TD, Julander JG, Ossiboff RJ. In Vitro Characterization and Antiviral Susceptibility of Ophidian Serpentoviruses. Microorganisms 2023; 11:1371. [PMID: 37374873 PMCID: PMC10305148 DOI: 10.3390/microorganisms11061371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Ophidian serpentoviruses, positive-sense RNA viruses in the order Nidovirales, are important infectious agents of both captive and free-ranging reptiles. Although the clinical significance of these viruses can be variable, some serpentoviruses are pathogenic and potentially fatal in captive snakes. While serpentoviral diversity and disease potential are well documented, little is known about the fundamental properties of these viruses, including their potential host ranges, kinetics of growth, environmental stability, and susceptibility to common disinfectants and viricides. To address this, three serpentoviruses were isolated in culture from three unique PCR-positive python species: Ball python (Python regius), green tree python (Morelia viridis), and Stimson's python (Antaresia stimsoni). A median tissue culture infectious dose (TCID50) was established to characterize viral stability, growth, and susceptibility. All isolates showed an environmental stability of 10-12 days at room temperature (20 °C). While all three viruses produced variable peak titers on three different cell lines when incubated at 32 °C, none of the viruses detectably replicated at 35 °C. All viruses demonstrated a wide susceptibility to sanitizers, with 10% bleach, 2% chlorhexidine, and 70% ethanol inactivating the virus in one minute and 7% peroxide and a quaternary ammonium solution within three minutes. Of seven tested antiviral agents, remdesivir, ribavirin, and NITD-008, showed potent antiviral activity against the three viruses. Finally, the three isolates successfully infected 32 unique tissue culture cell lines representing different diverse reptile taxa and select mammals and birds as detected by epifluorescent immunostaining. This study represents the first characterization of in vitro properties of growth, stability, host range, and inactivation for a serpentovirus. The reported results provide the basis for procedures to mitigate the spread of serpentoviruses in captive snake colonies as well as identify potential non-pharmacologic and pharmacologic treatment options for ophidian serpentoviral infections.
Collapse
Affiliation(s)
- Steven B. Tillis
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (S.B.T.); (T.D.L.)
| | - Camille Holt
- Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (C.H.); (S.H.); (J.G.J.)
| | - Spencer Havens
- Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (C.H.); (S.H.); (J.G.J.)
| | - Tracey D. Logan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (S.B.T.); (T.D.L.)
| | - Justin G. Julander
- Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (C.H.); (S.H.); (J.G.J.)
| | - Robert J. Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (S.B.T.); (T.D.L.)
| |
Collapse
|
2
|
Lee EJ, Han S, Hyun SW, Song GB, Ha SD. Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Res Int 2022; 162:112014. [PMID: 36461303 PMCID: PMC9526873 DOI: 10.1016/j.foodres.2022.112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has had a major impact on human health and the global economy. Various transmission possibilities of SARS-CoV-2 have been proposed, such as the surface of food in the cold chain and food packaging, as well as the fecal-oral route, although person-to-person contact via droplets and aerosols has been confirmed as the main route of transmission. This study evaluated the survivability of HCoV-229E, a SARS-CoV-2 surrogate, in suspension, on food-contact surfaces and on food at various temperatures, and in simulated digestive fluids by TCID50 assay. In suspension, HCoV-229E survived after 5 days at 20 °C with a 3.69 log reduction, after 28 days at 4 °C with a 3.07 log reduction, and after 12 weeks at -20 °C with a 1.18 log reduction. On food-contact surfaces, HCoV-229E was not detected on day 3 on stainless steel (SS), plastic (LDPE), and silicone rubber (SR) at 20 °C with a 3.28, 3.24 and 3.28 log reduction, respectively, and survived after 28 days on SS and LDPE at 4 °C with a 3.13 and 2.88 log reduction, respectively, and survived after 12 weeks on SS, LDPE, and SR at -20 °C with a 1.92, 1.32 and 1.99 log reduction, respectively. On food, HCoV-229E was not detected on day 3 on lettuce and day 4 on chicken breast and salmon at 20 °C with a 3.61, 3.26 and 3.08 log reduction, respectively, and on day 14 on lettuce and day 21 on chicken breast and salmon at 4 °C with a 3.88, 3.44 and 3.56 log reduction, respectively. The virus remained viable for 12 weeks in all foods at -20 °C with 2-2.47 log reduction. In addition, in simulated digestive fluid experiments, HCoV-229E was relatively resistant in simulated salivary fluid (SSF; pH 7, 5), fed state simulated gastric fluid (FeSSGF; pH 3, 5, 7), and fasted state simulated intestinal fluid (FaSSIF; pH 7). However, the virus was less tolerant in fasted state simulated gastric fluid (FaSSGF; pH 1.6) and fed state simulated intestinal fluid (FeSSIF; pH 5). Therefore, this study suggested that HCoV-229E remained infectious on various food-contact surfaces and foods; in particular, it survived longer at lower temperatures and survived depending on the pH of the simulated digestive fluid.
Collapse
|
3
|
Flageul A, Courtillon C, Allée C, Leroux A, Blanchard Y, Deleforterie Y, Grasland B, Brown PA. Extracting Turkey Coronaviruses from the intestinal lumen of infected turkey embryos yields full genome data with good coverage by NGS. Avian Pathol 2022; 51:291-294. [PMID: 35201915 DOI: 10.1080/03079457.2022.2046701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Currently, turkey coronaviruses (TCoV) are isolated from homogenized intestines of experimentally infected embryos to ensure a maximum recovery of viral particles from all components of the intestines. However, the process of homogenization also ensures a release of an important amount of cellular RNAs into the sample that hinders downstream viral genome sequencing. This is especially the case for next generation sequencing (NGS) that sequences molecules at random. This characteristic means that the heavily abundant cellular RNA in the sample drowns out the minority viral RNA during the sequencing process and consequently very little to no viral genome data is obtained.To address this problem, a method was developed, in which ten descendent isolates of the European strain of TCoV were recovered uniquely from the intestinal lumen without homogenization of the tissue. For nine out of ten samples, NGS produced viral RNA reads with good coverage depth over the entire TCoV genomes. This is a much-needed new, simple and cost effective method of isolating TCoV that facilitates downstream NGS of viral RNA and should be considered as an alternative method for isolating other avian enteric coronaviruses in the interest of obtaining full-length genome sequences.
Collapse
Affiliation(s)
- Alexandre Flageul
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Céline Courtillon
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Chantal Allée
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Aurélie Leroux
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, Université de Rennes 1
| | - Yannick Blanchard
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, Université de Rennes 1
| | | | - Béatrice Grasland
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| | - Paul Alun Brown
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) laboratory of Ploufragan-Plouzané-Niort, Virology, immunology and parasitology in poultry and rabbit (VIPAC) Unit, Université de Rennes 1
| |
Collapse
|
4
|
Nichols GL, Gillingham EL, Macintyre HL, Vardoulakis S, Hajat S, Sarran CE, Amankwaah D, Phalkey R. Coronavirus seasonality, respiratory infections and weather. BMC Infect Dis 2021; 21:1101. [PMID: 34702177 PMCID: PMC8547307 DOI: 10.1186/s12879-021-06785-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background The survival of coronaviruses are influenced by weather conditions and seasonal coronaviruses are more common in winter months. We examine the seasonality of respiratory infections in England and Wales and the associations between weather parameters and seasonal coronavirus cases. Methods Respiratory virus disease data for England and Wales between 1989 and 2019 was extracted from the Second-Generation Surveillance System (SGSS) database used for routine surveillance. Seasonal coronaviruses from 2012 to 2019 were compared to daily average weather parameters for the period before the patient’s specimen date with a range of lag periods. Results The seasonal distribution of 985,524 viral infections in England and Wales (1989–2019) showed coronavirus infections had a similar seasonal distribution to influenza A and bocavirus, with a winter peak between weeks 2 to 8. Ninety percent of infections occurred where the daily mean ambient temperatures were below 10 °C; where daily average global radiation exceeded 500 kJ/m2/h; where sunshine was less than 5 h per day; or where relative humidity was above 80%. Coronavirus infections were significantly more common where daily average global radiation was under 300 kJ/m2/h (OR 4.3; CI 3.9–4.6; p < 0.001); where average relative humidity was over 84% (OR 1.9; CI 3.9–4.6; p < 0.001); where average air temperature was below 10 °C (OR 6.7; CI 6.1–7.3; p < 0.001) or where sunshine was below 4 h (OR 2.4; CI 2.2–2.6; p < 0.001) when compared to the distribution of weather values for the same time period. Seasonal coronavirus infections in children under 3 years old were more frequent at the start of an annual epidemic than at the end, suggesting that the size of the susceptible child population may be important in the annual cycle. Conclusions The dynamics of seasonal coronaviruses reflect immunological, weather, social and travel drivers of infection. Evidence from studies on different coronaviruses suggest that low temperature and low radiation/sunlight favour survival. This implies a seasonal increase in SARS-CoV-2 may occur in the UK and countries with a similar climate as a result of an increase in the R0 associated with reduced temperatures and solar radiation. Increased measures to reduce transmission will need to be introduced in winter months for COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06785-2.
Collapse
Affiliation(s)
- G L Nichols
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK. .,European Centre for Environment and Human Health, University of Exeter Medical School, C/O Knowledge Spa RCHT, Truro, Cornwall, TR1 3HD, UK. .,School of Environmental Sciences, UEA, Norwich, NR4 7TJ, UK.
| | - E L Gillingham
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK
| | - H L Macintyre
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK.,School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - S Vardoulakis
- European Centre for Environment and Human Health, University of Exeter Medical School, C/O Knowledge Spa RCHT, Truro, Cornwall, TR1 3HD, UK.,National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT, 2601, Australia
| | - S Hajat
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - C E Sarran
- Met Office, Fitzroy Road, Exeter, EX1 3PB, UK.,Institute of Health Research, University of Exeter, Saint Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - D Amankwaah
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK
| | - R Phalkey
- Climate Change and Health Group, Centre for Radiation Chemicals and Environmental Hazards, UK Health Security Agency (Formerly Public Health England), Chilton, Oxon, OX11 0RQ, UK.,Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany.,Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Courtillon C, Briand FX, Allée C, Contrant M, Beven V, Lucas P, Blanchard Y, Mouchel S, Eterradossi N, Delforterie Y, Grasland B, Brown P. Description of the first isolates of guinea fowl corona and picornaviruses obtained from a case of guinea fowl fulminating enteritis. Avian Pathol 2021; 50:507-521. [PMID: 34545751 DOI: 10.1080/03079457.2021.1976725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Guinea fowl fulminating enteritis has been reported in France since the 1970s. In 2014, a coronavirus was identified and appeared as a possible viral pathogen involved in the disease. In the present study, intestinal content from a guinea fowl involved in a new case of the disease in 2017 was analysed by deep sequencing, revealing the presence of a guinea fowl coronavirus (GfCoV) and a picornavirus (GfPic). Serial passage assays into the intra-amniotic cavity of 13-day-old specific pathogen-free chicken eggs and 20-day-old conventional guinea fowl eggs were attempted. In chicken eggs, isolation assays failed, but in guinea fowl eggs, both viruses were successfully obtained. Furthermore, two GfCoV and two GfPic isolates were obtained from the same bird but from different sections of its intestines. This shows that using eggs of the same species, in which the virus has been detected, can be the key for successful isolation. The consensus sequence of the full-length genomes of both GfCoV isolates was highly similar, and correlated to those previously described in terms of genome organization, ORF length and phylogenetic clustering. According to full-length genome analysis and the structure of the Internal Ribosome Entry Site, both GfPic isolates belong to the Anativirus genus and specifically the species Anativirus B. The availability of the first isolates of GfCoV and GfPic will now provide a means of assessing their pathogenicity in guinea fowl in controlled experimental conditions and to assess whether they are primary viral pathogens of the disease "guinea fowl fulminating enteritis".RESEARCH HIGHLIGHTSFirst isolation of guinea fowl coronaviruses and picornaviruses.Eggs homologous to the infected species are key for isolation.Isolates available to precisely evaluate the virus roles in fulminating enteritis.First full-length genome sequences of guinea fowl picornaviruses.
Collapse
Affiliation(s)
- Céline Courtillon
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - François-Xavier Briand
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Chantal Allée
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Maud Contrant
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Véronique Beven
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Pierrick Lucas
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Yannick Blanchard
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | | | - Nicolas Eterradossi
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | | | - Béatrice Grasland
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Paul Brown
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| |
Collapse
|
6
|
Gamble A, Fischer RJ, Morris DH, Yinda CK, Munster VJ, Lloyd-Smith JO. Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2. Appl Environ Microbiol 2021; 87:e0031421. [PMID: 34288702 PMCID: PMC8432576 DOI: 10.1128/aem.00314-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Decontamination helps limit environmental transmission of infectious agents. It is required for the safe reuse of contaminated medical, laboratory, and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), the virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval [CI] 0.09, 1.77) in closed vials in a heat block to 37.04 min (95% CI 12.64, 869.82) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Given these findings, we reviewed the literature on temperature-dependent coronavirus stability and found that specimen container types, along with whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines. IMPORTANCE Heat is a powerful weapon against most infectious agents. It is widely used for decontamination of medical, laboratory, and personal protective equipment, and for biological samples. There are many methods of heat treatment, and methodological details can affect speed and efficacy of decontamination. We applied four different heat-treatment procedures to liquid specimens containing SARS-CoV-2. Our results show that the container used to store specimens during decontamination can substantially affect inactivation rate; for a given initial level of contamination, decontamination time can vary from a few minutes in closed vials to several hours in uncovered plates. Reviewing the literature, we found that container choices and heat treatment methods are only rarely reported explicitly in methods sections. Our study shows that careful consideration of heat-treatment procedure-in particular the choice of specimen container and whether it is covered-can make results more consistent across studies, improve decontamination practice, and provide insight into the mechanisms of virus inactivation.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Robert J. Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Dylan H. Morris
- Department of Ecology & Evolutionary Biology, Princeton University, New Jersey, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Gamble A, Fischer RJ, Morris DH, Yinda KC, Munster VJ, Lloyd-Smith JO. Heat-treated virus inactivation rate depends strongly on treatment procedure: illustration with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.08.10.242206. [PMID: 32793913 PMCID: PMC7425175 DOI: 10.1101/2020.08.10.242206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Decontamination helps limit environmental transmission of infectious agents. It is required for the safe re-use of contaminated medical, laboratory and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval: [0.09, 1.77]) in closed vials in a heat block to 37.00 min ([12.65, 869.82]) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Given these findings, we reviewed the literature temperature-dependent coronavirus stability and found that specimen containers, and whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert J. Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Dylan H. Morris
- Department of Ecology & Evolutionary Biology, Princeton University, NJ, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Flageul A, Lucas P, Hirchaud E, Touzain F, Blanchard Y, Eterradossi N, Brown P, Grasland B. Viral variant visualizer (VVV): A novel bioinformatic tool for rapid and simple visualization of viral genetic diversity. Virus Res 2020; 291:198201. [PMID: 33080244 DOI: 10.1016/j.virusres.2020.198201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/13/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Here a bioinformatic pipeline VVV has been developed to analyse viral populations in a given sample from Next Generation Sequencing (NGS) data. To date, handling large amounts of data from NGS requires the expertise of bioinformaticians, both for data processing and result analysis. Consequently, VVV was designed to help non-bioinformaticians to perform these tasks. By providing only the NGS data file, the developed pipeline generated consensus sequences and determined the composition of the viral population for an avian Metapneumovirus (AMPV) and three different animal coronaviruses (Porcine Epidemic Diarrhea Virus (PEDV), Turkey Coronavirus (TCoV) and Infectious Bronchitis Virus (IBV)). In all cases, the pipeline produced viral consensus genomes corresponding to known consensus sequence and made it possible to highlight the presence of viral genetic variants through a single graphic representation. The method was validated by comparing the viral populations of an AMPV field sample, and of a copy of this virus produced from a DNA clone. VVV demonstrated that the cloned virus population was homogeneous (as designed) at position 2934 where the wild-type virus demonstrated two variant populations at a ratio of almost 50:50. A total of 18, 10, 3 and 28, viral genetic variants were detected for AMPV, PEDV, TCoV and IBV respectively. The simplicity of this pipeline makes the study of viral genetic variants more accessible to a wide variety of biologists, which should ultimately increase the rate of understanding of the mechanisms of viral genetic evolution.
Collapse
Affiliation(s)
- Alexandre Flageul
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) Laboratory of Ploufragan-Plouzané-Niort, Virology, Immunology and Parasitology in Poultry and Rabbit (VIPAC) Unit, Université Bretagne Loire (UBL), France
| | - Pierrick Lucas
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), Laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, France
| | - Edouard Hirchaud
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), Laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, France
| | - Fabrice Touzain
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), Laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, France
| | - Yannick Blanchard
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES), Laboratory of Ploufragan-Plouzané-Niort, Viral Genetic and Biosafety (GVB) Unit, France
| | - Nicolas Eterradossi
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) Laboratory of Ploufragan-Plouzané-Niort, Virology, Immunology and Parasitology in Poultry and Rabbit (VIPAC) Unit, Université Bretagne Loire (UBL), France
| | - Paul Brown
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) Laboratory of Ploufragan-Plouzané-Niort, Virology, Immunology and Parasitology in Poultry and Rabbit (VIPAC) Unit, Université Bretagne Loire (UBL), France
| | - Béatrice Grasland
- Agence National de Sécurité Sanitaire, de l'environnement et du travail (ANSES) Laboratory of Ploufragan-Plouzané-Niort, Virology, Immunology and Parasitology in Poultry and Rabbit (VIPAC) Unit, Université Bretagne Loire (UBL), France.
| |
Collapse
|
9
|
Ward MP, Xiao S, Zhang Z. Humidity is a consistent climatic factor contributing to SARS-CoV-2 transmission. Transbound Emerg Dis 2020; 67:3069-3074. [PMID: 32750215 PMCID: PMC7436622 DOI: 10.1111/tbed.13766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
Abstract
There is growing evidence that climatic factors could influence the evolution of the current COVID‐19 pandemic. Here, we build on this evidence base, focusing on the southern hemisphere summer and autumn period. The relationship between climatic factors and COVID‐19 cases in New South Wales, Australia was investigated during both the exponential and declining phases of the epidemic in 2020, and in different regions. Increased relative humidity was associated with decreased cases in both epidemic phases, and a consistent negative relationship was found between relative humidity and cases. Overall, a decrease in relative humidity of 1% was associated with an increase in cases of 7–8%. Overall, we found no relationship with between cases and temperature, rainfall or wind speed. Information generated in this study confirms humidity as a driver of SARS‐CoV‐2 transmission.
Collapse
Affiliation(s)
- Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Shuang Xiao
- School of Public Health, Fudan University, Shanghai, China
| | - Zhijie Zhang
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W, Su Q, Wang W, Wang X, Zhang Z. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138778. [PMID: 32335405 PMCID: PMC7167225 DOI: 10.1016/j.scitotenv.2020.138778] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 04/13/2023]
Abstract
COVID-19 has become a pandemic. The influence of meteorological factors on the transmission and spread of COVID-19 is of interest. This study sought to examine the associations of daily average temperature (AT) and relative humidity (ARH) with the daily counts of COVID-19 cases in 30 Chinese provinces (in Hubei from December 1, 2019 to February 11, 2020 and in other provinces from January 20, 2020 to Februarys 11, 2020). A Generalized Additive Model (GAM) was fitted to quantify the province-specific associations between meteorological variables and the daily cases of COVID-19 during the study periods. In the model, the 14-day exponential moving averages (EMAs) of AT and ARH, and their interaction were included with time trend and health-seeking behavior adjusted. Their spatial distributions were visualized. AT and ARH showed significantly negative associations with COVID-19 with a significant interaction between them (0.04, 95% confidence interval: 0.004-0.07) in Hubei. Every 1 °C increase in the AT led to a decrease in the daily confirmed cases by 36% to 57% when ARH was in the range from 67% to 85.5%. Every 1% increase in ARH led to a decrease in the daily confirmed cases by 11% to 22% when AT was in the range from 5.04 °C to 8.2 °C. However, these associations were not consistent throughout Mainland China.
Collapse
Affiliation(s)
- Hongchao Qi
- Department of Epidemiology and Health Statistics, Fudan University, China.; Department of Biostatistics, Erasmus University Medical Center, the Netherlands
| | - Shuang Xiao
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Runye Shi
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Yue Chen
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario, Canada
| | - Wei Tu
- Department of Geology and Geography, Georgia Southern University, Statesboro, GA 30460, USA
| | - Qing Su
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Wenge Wang
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Xinyi Wang
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, Fudan University, China..
| |
Collapse
|
11
|
Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W, Su Q, Wang W, Wang X, Zhang Z. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138778. [PMID: 32335405 DOI: 10.1101/2020.03.30.20044099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 05/28/2023]
Abstract
COVID-19 has become a pandemic. The influence of meteorological factors on the transmission and spread of COVID-19 is of interest. This study sought to examine the associations of daily average temperature (AT) and relative humidity (ARH) with the daily counts of COVID-19 cases in 30 Chinese provinces (in Hubei from December 1, 2019 to February 11, 2020 and in other provinces from January 20, 2020 to Februarys 11, 2020). A Generalized Additive Model (GAM) was fitted to quantify the province-specific associations between meteorological variables and the daily cases of COVID-19 during the study periods. In the model, the 14-day exponential moving averages (EMAs) of AT and ARH, and their interaction were included with time trend and health-seeking behavior adjusted. Their spatial distributions were visualized. AT and ARH showed significantly negative associations with COVID-19 with a significant interaction between them (0.04, 95% confidence interval: 0.004-0.07) in Hubei. Every 1 °C increase in the AT led to a decrease in the daily confirmed cases by 36% to 57% when ARH was in the range from 67% to 85.5%. Every 1% increase in ARH led to a decrease in the daily confirmed cases by 11% to 22% when AT was in the range from 5.04 °C to 8.2 °C. However, these associations were not consistent throughout Mainland China.
Collapse
Affiliation(s)
- Hongchao Qi
- Department of Epidemiology and Health Statistics, Fudan University, China.; Department of Biostatistics, Erasmus University Medical Center, the Netherlands
| | - Shuang Xiao
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Runye Shi
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Yue Chen
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario, Canada
| | - Wei Tu
- Department of Geology and Geography, Georgia Southern University, Statesboro, GA 30460, USA
| | - Qing Su
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Wenge Wang
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Xinyi Wang
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, Fudan University, China..
| |
Collapse
|
12
|
Ward MP, Xiao S, Zhang Z. The role of climate during the COVID-19 epidemic in New South Wales, Australia. Transbound Emerg Dis 2020; 67:2313-2317. [PMID: 32438520 PMCID: PMC7280716 DOI: 10.1111/tbed.13631] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
Previous research has identified a relationship between climate and occurrence of SARS-CoV and MERS-CoV cases, information that can be used to reduce the risk of infection. Using COVID-19 notification and postcode data from New South Wales, Australia during the exponential phase of the epidemic in 2020, we used time series analysis to investigate the relationship between 749 cases of locally acquired COVID-19 and daily rainfall, 9 a.m. and 3 p.m. temperature, and 9 a.m. and 3 p.m. relative humidity. Lower 9 a.m. relative humidity (but not rainfall or temperature) was associated with increased case occurrence; a reduction in relative humidity of 1% was predicted to be associated with an increase of COVID-19 cases by 6.11%. During periods of low relative humidity, the public health system should anticipate an increased number of COVID-19 cases.
Collapse
Affiliation(s)
- Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Shuang Xiao
- School of Public Health, Fudan University, Shanghai, China
| | - Zhijie Zhang
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Brown PA, Courtillon C, Weerts EAWS, Andraud M, Allée C, Vendembeuche A, Amelot M, Rose N, Verheije MH, Eterradossi N. Transmission Kinetics and histopathology induced by European Turkey Coronavirus during experimental infection of specific pathogen free turkeys. Transbound Emerg Dis 2018; 66:234-242. [PMID: 30146717 PMCID: PMC7138094 DOI: 10.1111/tbed.13006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
Abstract
Numerous viruses, mostly in mixed infections, have been associated worldwide with poult enteritis complex (PEC). In 2008 a coronavirus (Fr‐TCoV 080385d) was isolated in France from turkey poults exhibiting clinical signs compatible with this syndrome. In the present study, the median infectious dose (ID50), transmission kinetics and pathogenicity of Fr‐TCoV were investigated in 10‐day‐old SPF turkeys. Results revealed a titre of 104.88ID50/ml with 1 ID50/ml being beyond the limit of genome detection using a well‐characterized qRT‐PCR for avian coronaviruses. Horizontal transmission of the virus via the airborne route was not observed however, via the oro‐faecal route this proved to be extremely rapid (one infectious individual infecting another every 2.5 hr) and infectious virus was excreted for at least 6 weeks in several birds. Histological examination of different zones of the intestinal tract of the Fr‐TCoV‐infected turkeys showed that the virus had a preference for the lower part of the intestinal tract with an abundance of viral antigen being present in epithelial cells of the ileum, caecum and bursa of Fabricius. Viral antigen was also detected in dendritic cells, monocytes and macrophages in these areas, which may indicate a potential for Fr‐TCoV to replicate in antigen‐presenting cells. Together these results highlight the importance of good sanitary practices in turkey farms to avoid introducing minute amounts of virus that could suffice to initiate an outbreak, and the need to consider that infected individuals may still be infectious long after a clinical episode, to avoid virus dissemination through the movements of apparently recovered birds.
Collapse
Affiliation(s)
- Paul A Brown
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France.,EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France
| | - Céline Courtillon
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France.,EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France
| | - Erik A W S Weerts
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, Netherlands
| | - Mathieu Andraud
- EBEP Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France
| | - Chantal Allée
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France.,EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France
| | - Anthony Vendembeuche
- SELEAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France
| | - Michel Amelot
- SELEAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France
| | - Nicolas Rose
- EBEP Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France
| | - Monique H Verheije
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, Netherlands
| | - Nicolas Eterradossi
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France.,EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France
| |
Collapse
|
14
|
Brown PA, Touzain F, Briand FX, Gouilh AM, Courtillon C, Allée C, Lemaitre E, De Boisséson C, Blanchard Y, Eterradossi N. First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses. J Gen Virol 2015; 97:110-120. [PMID: 26585962 PMCID: PMC7081074 DOI: 10.1099/jgv.0.000338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A full-length genome sequence of 27 739 nt was determined for the only known European turkey coronavirus (TCoV) isolate. In general, the order, number and size of ORFs were consistent with other gammacoronaviruses. Three points of recombination were predicted, one towards the end of 1a, a second in 1b just upstream of S and a third in 3b. Phylogenetic analysis of the four regions defined by these three points supported the previous notion that European and American viruses do indeed have different evolutionary pathways. Very close relationships were revealed between the European TCoV and the European guinea fowl coronavirus in all regions except one, and both were shown to be closely related to the European infectious bronchitis virus (IBV) Italy 2005. None of these regions of sequence grouped European and American TCoVs. The region of sequence containing the S gene was unique in grouping all turkey and guinea fowl coronaviruses together, separating them from IBVs. Interestingly the French guinea fowl virus was more closely related to the North American viruses. These data demonstrate that European turkey and guinea fowl coronaviruses share a common genetic backbone (most likely an ancestor of IBV Italy 2005) and suggest that this recombined in two separate events with different, yet related, unknown avian coronaviruses, acquiring their S-3a genes. The data also showed that the North American viruses do not share a common backbone with European turkey and guinea fowl viruses; however, they do share similar S-3a genes with guinea fowl virus.
Collapse
Affiliation(s)
- P A Brown
- EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France.,VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France
| | - F Touzain
- VB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, G, BP 53-22440 Ploufragan, France
| | - F X Briand
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - A M Gouilh
- EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France.,Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, 25-28 rue du Docteur Roux, F-75724 Paris Cedex 15, France.,Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - C Courtillon
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - C Allée
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - E Lemaitre
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| | - C De Boisséson
- VB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, G, BP 53-22440 Ploufragan, France
| | - Y Blanchard
- VB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, G, BP 53-22440 Ploufragan, France
| | - N Eterradossi
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Européenne de Bretagne, BP 53-22440 Ploufragan, France.,EPICOREM Consortium, Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France
| |
Collapse
|
15
|
Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. J Virol 2015; 89:8783-92. [PMID: 26063435 DOI: 10.1128/jvi.00745-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Viruses exploit molecules on the target membrane as receptors for attachment and entry into host cells. Thus, receptor expression patterns can define viral tissue tropism and might to some extent predict the susceptibility of a host to a particular virus. Previously, others and we have shown that respiratory pathogens of the genus Gammacoronavirus, including chicken infectious bronchitis virus (IBV), require specific α2,3-linked sialylated glycans for attachment and entry. Here, we studied determinants of binding of enterotropic avian gammacoronaviruses, including turkey coronavirus (TCoV), guineafowl coronavirus (GfCoV), and quail coronavirus (QCoV), which are evolutionarily distant from respiratory avian coronaviruses based on the viral attachment protein spike (S1). We profiled the binding of recombinantly expressed S1 proteins of TCoV, GfCoV, and QCoV to tissues of their respective hosts. Protein histochemistry showed that the tissue binding specificity of S1 proteins of turkey, quail, and guineafowl CoVs was limited to intestinal tissues of each particular host, in accordance with the reported pathogenicity of these viruses in vivo. Glycan array analyses revealed that, in contrast to the S1 protein of IBV, S1 proteins of enteric gammacoronaviruses recognize a unique set of nonsialylated type 2 poly-N-acetyl-lactosamines. Lectin histochemistry as well as tissue binding patterns of TCoV S1 further indicated that these complex N-glycans are prominently expressed on the intestinal tract of various avian species. In conclusion, our data demonstrate not only that enteric gammacoronaviruses recognize a novel glycan receptor but also that enterotropism may be correlated with the high specificity of spike proteins for such glycans expressed in the intestines of the avian host. IMPORTANCE Avian coronaviruses are economically important viruses for the poultry industry. While infectious bronchitis virus (IBV), a respiratory pathogen of chickens, is rather well known, other viruses of the genus Gammacoronavirus, including those causing enteric disease, are hardly studied. In turkey, guineafowl, and quail, coronaviruses have been reported to be the major causative agent of enteric diseases. Specifically, turkey coronavirus outbreaks have been reported in North America, Europe, and Australia for several decades. Recently, a gammacoronavirus was isolated from guineafowl with fulminating disease. To date, it is not clear why these avian coronaviruses are enteropathogenic, whereas other closely related avian coronaviruses like IBV cause respiratory disease. A comprehensive understanding of the tropism and pathogenicity of these viruses explained by their receptor specificity and receptor expression on tissues was therefore needed. Here, we identify a novel glycan receptor for enteric avian coronaviruses, which will further support the development of vaccines.
Collapse
|
16
|
Borkow G, Assadian O. Survival of Microorganisms on Inanimate Surfaces. USE OF BIOCIDAL SURFACES FOR REDUCTION OF HEALTHCARE ACQUIRED INFECTIONS 2014. [PMCID: PMC7123372 DOI: 10.1007/978-3-319-08057-4_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In healthcare settings microbial contaminated surfaces play an important role in indirect transmission of infection. Especially surfaces close to the patients’ environment may be touched at high frequencies, allowing transmission from animated sources to others via contaminated inanimate surfaces. Therefore, the knowledge on the survival of bacteria, fungi, viruses and protozoa on surfaces, and hence, in a broader sense, in the human environment, is important for implementing tactics for prevention of Healthcare-acquired Infections (HAI). This chapter will elaborate the role of surfaces in the transmission of pathogens. Particular emphasis is laid on the current knowledge of the survival time and conditions favouring survival of the pathogens. Finally, mechanisms of transmission from inanimate surfaces to patients are highlighted. Within the multi-barrier strategy of the prevention of HAI, environmental disinfection policies should be based on risk assessments for surfaces with different risks for cross contamination such as high- and low-touched surfaces with appropriate standards for adequate disinfection measures under consideration of the persistence and infectious dose of the pathogens. As a result, surface disinfection is indicated in the following situations:Frequently touched surfaces adjacent to patients Surfaces with assumed or visible contamination Terminal disinfection in rooms or areas where infected or colonized patients with easily transferable nosocomial pathogens are cared for, and in outbreak situations.
Furthermore, the knowledge of the persistence of pathogens will also support ensuring the biosafety in microbiological and biomedical laboratories, food-handling settings, and for hygienic behaviour in the everyday life to prevent transmission of infectious diseases.
Collapse
|