1
|
Liu L, Wang J, Li R, Wu J, Zhao Y, Yan F, Wang T, Gao Y, Zhao Z, Feng N, Xia X. A Bacterium-like Particle Vaccine Displaying Envelope Proteins of Canine Distemper Virus Can Induce Immune Responses in Mice and Dogs. Viruses 2024; 16:549. [PMID: 38675892 PMCID: PMC11055036 DOI: 10.3390/v16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Canine distemper virus (CDV) can cause fatal infections in giant pandas. Vaccination is crucial to prevent CDV infection in giant pandas. In this study, two bacterium-like particle vaccines F3-GEM and H4-GEM displaying the trimeric F protein or tetrameric H protein of CDV were constructed based on the Gram-positive enhanced-matrix protein anchor (GEM-PA) surface display system. Electron microscopy and Western blot results revealed that the F or H protein was successfully anchored on the surface of GEM particles. Furthermore, one more bacterium-like particle vaccine F3 and H4-GEM was also designed, a mixture consisting of F3-GEM and H4-GEM at a ratio of 1:1. To evaluate the effect of the three vaccines, mice were immunized with F3-GEM, H4-GEM or F3 and H4-GEM. It was found that the level of IgG-specific antibodies and neutralizing antibodies in the F3 and H4-GEM group was higher than the other two groups. Additionally, F3 and H4-GEM also increased the secretion of Th1-related and Th2-related cytokines. Moreover, F3 and H4-GEM induce IgG and neutralizing antibodies' response in dogs. Conclusions: In summary, F3 and H4-GEM can provoke better immune responses to CDV in mice and dogs. The bacterium-like particle vaccine F3 and H4-GEM might be a potential vaccine candidate for giant pandas against CDV infection.
Collapse
Affiliation(s)
- Lina Liu
- College of Veterinary Medicine, Jilin University, Changchun 130000, China;
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Ranran Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Jianzhao Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (R.L.); (J.W.); (Y.Z.); (F.Y.); (T.W.); (Y.G.); (Z.Z.)
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, China;
| |
Collapse
|
2
|
Zhang P, Yang T, Sun Y, Qiao H, Hu N, Li X, Wang W, Zhang L, Cong Y. Development and Immunoprotection of Bacterium-like Particle Vaccine against Infectious Bronchitis in Chickens. Vaccines (Basel) 2023; 11:1292. [PMID: 37631859 PMCID: PMC10457988 DOI: 10.3390/vaccines11081292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Infectious bronchitis (IB) is a major threat to the global poultry industry. Despite the availability of commercial vaccines, the IB epidemic has not been effectively controlled. The exploration of novel IBV vaccines may provide a new way to prevent and control IB. In this study, BLP-S1, a bacterium-like particle displaying the S1 subunit of infectious bronchitis virus (IBV), was constructed using the GEM-PA surface display system. The immunoprotective efficacy results showed that BLP-S1 can effectively induce specific IgG and sIgA immune responses, providing a protection rate of 90% against IBV infection in 14-day-old commercial chickens. These results suggest that BLP-S1 has potential for the development of novel vaccines with good immunogenicity and immunoprotection.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Tiantian Yang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yixue Sun
- Department of Policies and Regulations, Changchun University, Changchun 130022, China
| | - Haiying Qiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Nianzhi Hu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Xintao Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Weixia Wang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Immune Responses in the Eye-Associated Lymphoid Tissues of Chickens after Ocular Inoculation with Vaccine and Virulent Strains of the Respiratory Infectious Laryngotracheitis Virus (ILTV). Viruses 2019; 11:v11070635. [PMID: 31295877 PMCID: PMC6669519 DOI: 10.3390/v11070635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
Infectious laryngotracheitis (ILT) is an acute respiratory disease of poultry caused by infectious laryngotracheitis virus (ILTV). Control of the disease with live attenuated vaccines administered via eye drop build upon immune responses generated by the eye-associated lymphoid tissues. The aim of this study was to assess cytokine and lymphocyte changes in the conjunctiva-associated lymphoid tissues (CALT) and Harderian gland (HG) stimulated by the ocular inoculation of the ILTV chicken embryo origin (CEO) vaccine strain and virulent strain 63140. This study offers strong evidence to support the roles that the CALT and HG play in the development of protective ILTV immune responses. It supports the premise that ILTV-mediated immunomodulation favors the B cell response over those of T cells. Further, it provides evidence that expansions of CD8α+ cells, with the concomitant expression of the Granzyme A gene, are key to reducing viral genomes in the CALT and halting ILTV cytolytic replication in the conjunctiva. Ultimately, this study revealed that the early upregulation of interleukin (IL)-12p40 and Interferon (IFN)-γ cytokine genes, which shape the antigen-specific cell-mediated immune responses, retarded the decline of virus replication, and enhanced the development of lesions in the conjunctiva epithelium.
Collapse
|
4
|
Alkie TN, Yitbarek A, Taha-Abdelaziz K, Astill J, Sharif S. Characterization of immunogenicity of avian influenza antigens encapsulated in PLGA nanoparticles following mucosal and subcutaneous delivery in chickens. PLoS One 2018; 13:e0206324. [PMID: 30383798 PMCID: PMC6211703 DOI: 10.1371/journal.pone.0206324] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Mucosal vaccine delivery systems have paramount importance for the induction of mucosal antibody responses. Two studies were conducted to evaluate immunogenicity of inactivated AIV antigens encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). In the first study, seven groups of specific pathogen free (SPF) layer-type chickens were immunized subcutaneously at 7-days of age with different vaccine formulations followed by booster vaccinations two weeks later. Immune responses were profiled by measuring antibody (Ab) responses in sera and lachrymal secretions of vaccinated chickens. The results indicated that inactivated AIV and CpG ODN co-encapsulated in PLGA NPs (2x NanoAI+CpG) produced higher amounts of hemagglutination inhibiting antibodies compared to a group vaccinated with non-adjuvanted AIV encapsulated in PLGA NPs (NanoAI). The tested adjuvanted NPs-based vaccine (2x NanoAI+CpG) resulted in higher IgG responses in the sera and lachrymal secretions at weeks 3, 4 and 5 post-vaccination when immunized subcutaneously. The incorporation of CpG ODN led to an increase in Ab-mediated responses and was found useful to be included both in the prime and booster vaccinations. In the second study, the ability of chitosan and mannan coated PLGA NPs that encapsulated AIV and CpG ODN was evaluated for inducing antibody responses when delivered via nasal and ocular routes in one-week-old SPF layer-type chickens. These PLGA NPs-based and surface modified formulations induced robust AIV-specific antibody responses in sera and lachrymal secretions. Chitosan coated PLGA NPs resulted in the production of large quantities of lachrymal IgA and IgG compared to mannan coated NPs, which also induced detectable amounts of IgA in addition to the induction of IgG in lachrymal secretions. In both mucosal and subcutaneous vaccination approaches, although NPs delivery enhanced Ab-mediated immunity, one booster vaccination was required to generate significant amount of Abs. These results highlight the potential of NPs-based AIV antigens for promoting the induction of both systemic and mucosal immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- Tamiru Negash Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, Beni-Suef, Egypt
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- * E-mail:
| |
Collapse
|
5
|
Krunkosky M, García M, Beltran Garza LG, Karpuzoglu-Belgin E, Levin J, Williams RJ, Gogal RM. Seeding of the mucosal leukocytes in the HALT and trachea of White Leghorn chickens. J Immunoassay Immunochem 2018; 39:43-57. [DOI: 10.1080/15321819.2017.1393435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Madelyn Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Maricarmen García
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, USA
| | | | - Ebru Karpuzoglu-Belgin
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Jaclyn Levin
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Robert J. Williams
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Robert M. Gogal
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| |
Collapse
|
6
|
Castellanos-Huerta I, Bañuelos-Hernández B, Téllez G, Rosales-Mendoza S, Brieba LG, Esquivel-Ramos E, Beltrán-López JI, Velazquez G, Fernandez-Siurob I. Recombinant Hemagglutinin of Avian Influenza Virus H5 Expressed in the Chloroplast of Chlamydomonas reinhardtii and Evaluation of Its Immunogenicity in Chickens. Avian Dis 2017; 60:784-791. [PMID: 27902910 DOI: 10.1637/11427-042816-reg] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Globally, avian influenza (AI) is a serious problem in poultry farming. Despite vaccination, the prevalence of AI in México highlights the need for new approaches to control AI and to reduce the economic losses associated with its occurrence in susceptible birds. Recombinant proteins from avian influenza virus (AIV) have been expressed in different organisms, such as plants. The present study investigated the feasibility of designing and expressing the HA protein of AIV in the transplastomic microalga Chlamydomonas reinhardtii as a novel approach for AIV control and taking advantage of culture conditions, its reproductive range, and safe use in consideration of the generally regarded as safe food ingredient regulatory classification. The results showed that the HA protein of AIV in C. reinhardtii presents antigenic activity by western blot test and through its application in chickens, demonstrating its feasibility as a recombinant antigen against AIV.
Collapse
Affiliation(s)
- Inkar Castellanos-Huerta
- A Viren SA de CV, Presidente Benito Juárez 110B, José María Arteaga, Querétaro, Querétaro. 76135, México
| | | | - Guillermo Téllez
- B Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701
| | - Sergio Rosales-Mendoza
- C Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, México
| | - Luis G Brieba
- D Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500 Irapuato, Guanajuato, México
| | - Elizabeth Esquivel-Ramos
- A Viren SA de CV, Presidente Benito Juárez 110B, José María Arteaga, Querétaro, Querétaro. 76135, México
| | - Josué I Beltrán-López
- A Viren SA de CV, Presidente Benito Juárez 110B, José María Arteaga, Querétaro, Querétaro. 76135, México
| | - Gilberto Velazquez
- E Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Química, Blvd. Marcelino García Barragán #1421, CP 44430, Guadalajara, Jalisco, México
| | - Isidro Fernandez-Siurob
- A Viren SA de CV, Presidente Benito Juárez 110B, José María Arteaga, Querétaro, Querétaro. 76135, México
| |
Collapse
|
7
|
Beltrán G, Williams SM, Zavala G, Guy JS, García M. The route of inoculation dictates the replication patterns of the infectious laryngotracheitis virus (ILTV) pathogenic strain and chicken embryo origin (CEO) vaccine. Avian Pathol 2017; 46:585-593. [PMID: 28532159 DOI: 10.1080/03079457.2017.1331029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) has a high proclivity to replicate in the larynx and trachea of chickens causing severe lesions. There is a lack of knowledge on the ability of ILTV to replicate in other respiratory associated tissues apart from in the trachea. The objective of this study was to investigate how tissues that first encounter the virus dictate further sites of viral replication during the lytic stage of infection. Replication patterns of the pathogenic strain 63140 and the chicken embryo origin (CEO) vaccine in the conjunctiva, the Harderian gland, nasal cavity and trachea were evaluated after ocular, oral, intranasal or intratracheal inoculation of specific pathogen-free chickens. Viral replication was assessed by detection of microscopic cytolytic lesions, detection of viral antigen and viral genome load. The route of viral entry greatly influenced virus replication of both strain 63140 and CEO vaccine in the conjunctiva and trachea, while replication in the nasal cavity was not affected. In the Harderian gland, independently of the route of viral entry, microscopic lesions characteristic of lytic replication were absent, whereas viral antigen and viral genomes for either virus were detected, suggesting that the Harderian gland may be a key site of antigen uptake. Findings from this study suggest that interactions of the virus with the epithelial-lymphoid tissues of the nasal cavity, conjunctiva and the Harderian gland dictate patterns of ILTV lytic replication.
Collapse
Affiliation(s)
- Gabriela Beltrán
- a Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - Susan M Williams
- a Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | | | - James S Guy
- c College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Maricarmen García
- a Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| |
Collapse
|