1
|
Jbenyeni A, Croville G, Cazaban C, Guérin JL. Predominance of low pathogenic avian influenza virus H9N2 in the respiratory co-infections in broilers in Tunisia: a longitudinal field study, 2018-2020. Vet Res 2023; 54:88. [PMID: 37789451 PMCID: PMC10548753 DOI: 10.1186/s13567-023-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The primary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poultry and their epidemiology. Between 2018 and 2020, broilers farms in northeastern Tunisia were monitored, and 39 clinically diseased flocks were sampled. Samples were screened for five viral and three bacterial respiratory pathogens using a panel of real-time PCR assays. The reemergence of H9N2 low pathogenic avian influenza virus (LPAIV) in commercial poultry was reported, and the Northern and Western African GI lineage strain was typed. The infectious bronchitis virus (IBV) GI-23 lineage and the avian metapneumovirus (aMPV) subtype B also were detected for the first time in broilers in Tunisia. H9N2 LPAIV was the most detected pathogen in the flocks tested, but rarely alone, as 15 of the 16 H9N2 positive flocks were co-infected. Except for infectious laryngotracheitis virus (ILTV), all of the targeted pathogens were detected, and in 61% of the respiratory disease cases, a combination of pathogens was identified. The major combinations were H9N2 + aMPV (8/39) and H9N2 + IBV (6/39), showing the high contribution of H9N2 LPAIV to the multifactorial respiratory diseases. This field survey provided evidence of the emergence of new respiratory viruses and the complexity of respiratory disease in Tunisia. A comprehensive and continuous surveillance strategy therefore is needed to better control respiratory pathogens in Tunisia.
Collapse
Affiliation(s)
- Adam Jbenyeni
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Ceva Santé Animale S.A., Libourne, France
| | | | | | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
2
|
Panzarin V, Marciano S, Fortin A, Brian I, D’Amico V, Gobbo F, Bonfante F, Palumbo E, Sakoda Y, Le KT, Chu DH, Shittu I, Meseko C, Haido AM, Odoom T, Diouf MN, Djegui F, Steensels M, Terregino C, Monne I. Redesign and Validation of a Real-Time RT-PCR to Improve Surveillance for Avian Influenza Viruses of the H9 Subtype. Viruses 2022; 14:v14061263. [PMID: 35746734 PMCID: PMC9227555 DOI: 10.3390/v14061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.
Collapse
Affiliation(s)
- Valentina Panzarin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
- Correspondence:
| | - Sabrina Marciano
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Andrea Fortin
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Irene Brian
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Valeria D’Amico
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Federica Gobbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Francesco Bonfante
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Elisa Palumbo
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Yoshihiro Sakoda
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Kien Trung Le
- OIE Reference Laboratory for Avian Influenza, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (Y.S.); (K.T.L.)
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development (MARD), Hanoi 115-19, Vietnam;
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Clement Meseko
- Regional Laboratory for Animal Influenzas and Other Transboundary Animal Diseases, National Veterinary Research Institute (NVRI), Vom 930010, Nigeria; (I.S.); (C.M.)
| | - Abdoul Malick Haido
- Laboratoire Central de l’Élevage (LABOCEL), Ministère de l’Agriculture et de l’Elevage, Niamey 485, Niger;
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Ministry of Food & Agriculture, Accra M161, Ghana;
| | - Mame Nahé Diouf
- Laboratoire National de l’Élevage et de Recherches Vétérinaires (LNERV) de l’Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann 2057, Senegal;
| | - Fidélia Djegui
- Laboratoire de Diagnostic Vétérinaire et de Sérosurveillance (LADISERO), Parakou 23, Benin;
| | - Mieke Steensels
- AI/ND National Reference Laboratory, Sciensano, 1050 Brussels, Belgium;
| | - Calogero Terregino
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| | - Isabella Monne
- EU/OIE/National Reference Laboratory for Avian Influenza and Newcastle Disease, FAO Reference Centre for Animal Influenza and Newcastle Disease, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (S.M.); (A.F.); (I.B.); (V.D.); (F.G.); (F.B.); (E.P.); (C.T.); (I.M.)
| |
Collapse
|
3
|
Amin F, Mukhtar N, Aslam A, Sheikh AA, Sultan B, Hussain M, Shehzad R, Ali M, Shahid MF, Aziz MW, Azeem S, Aslam HB, Yaqub T. Rate of Multiple Viral and Bacterial CoInfection(s) in Influenza A/H9N2–Infected Broiler Flocks. Avian Dis 2022; 66:1-8. [DOI: 10.1637/aviandiseases-d-21-00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Faisal Amin
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Asim Aslam
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ali Ahmed Sheikh
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Bakht Sultan
- GP Laboratory, Grand Parent Poultry (Pvt) Ltd., Lahore, Pakistan
| | | | - Rehman Shehzad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Muzaffar Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Furqan Shahid
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Shahan Azeem
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hassaan Bin Aslam
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
4
|
Kovesdi I, Bakacs T. Therapeutic Exploitation of Viral Interference. Infect Disord Drug Targets 2021; 20:423-432. [PMID: 30950360 DOI: 10.2174/1871526519666190405140858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Viral interference, originally, referred to a state of temporary immunity, is a state whereby infection with a virus limits replication or production of a second infecting virus. However, replication of a second virus could also be dominant over the first virus. In fact, dominance can alternate between the two viruses. Expression of type I interferon genes is many times upregulated in infected epithelial cells. Since the interferon system can control most, if not all, virus infections in the absence of adaptive immunity, it was proposed that viral induction of a nonspecific localized temporary state of immunity may provide a strategy to control viral infections. Clinical observations also support such a theory, which gave credence to the development of superinfection therapy (SIT). SIT is an innovative therapeutic approach where a non-pathogenic virus is used to infect patients harboring a pathogenic virus. For the functional cure of persistent viral infections and for the development of broad- spectrum antivirals against emerging viruses a paradigm shift was recently proposed. Instead of the virus, the therapy should be directed at the host. Such a host-directed-therapy (HDT) strategy could be the activation of endogenous innate immune response via toll-like receptors (TLRs). Superinfection therapy is such a host-directed-therapy, which has been validated in patients infected with two completely different viruses, the hepatitis B (DNA), and hepatitis C (RNA) viruses. SIT exerts post-infection interference via the constant presence of an attenuated non-pathogenic avian double- stranded (ds) RNA viral vector which boosts the endogenous innate (IFN) response. SIT could, therefore, be developed into a biological platform for a new "one drug, multiple bugs" broad-spectrum antiviral treatment approach.
Collapse
Affiliation(s)
- Imre Kovesdi
- ImiGene, Inc., Rockville, MD, USA,HepC, Inc., Budapest, Hungary
| | | |
Collapse
|
5
|
Talat S, Abouelmaatti RR, Almeer R, Abdel-Daim MM, Elfeil WK. Comparison of the Effectiveness of Two Different Vaccination Regimes for Avian Influenza H9N2 in Broiler Chicken. Animals (Basel) 2020; 10:E1875. [PMID: 33066560 PMCID: PMC7602138 DOI: 10.3390/ani10101875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Low pathogenic avian influenza virus is one of the major threats that has been affecting the poultry industry in the Middle East region for decades. Attempts to eradicate this disease have failed. Currently, there are commercial vaccines that are either imported or produced locally from recently circulating isolates of H9N2 in Egypt and Middle Eastern countries. This present work focused on comparing the effectiveness of two vaccines belonging to these categories in Egypt. Two commercial broiler flocks (Cobb-500 Broiler) with maternally derived immunity (MDA) against H9N2 virus were employed and placed under normal commercial field conditions or laboratory conditions. Immunity was evaluated on the basis of detectable humoral antibodies against influenza H9N2 virus, and challenge was conducted at 28 days of life using a recent wild H9N2 virus. The results showed that vaccination on the 7th day of life provided significantly higher immune response in both vaccine types, with significantly lower virus shedding compared to vaccination at day 1 of life, regardless of field or laboratory conditions. In addition, the vaccine produced from a recent local H9N2 isolate (MEFLUVAC-H9-16) provided a significantly higher humoral immune response under both field and laboratory conditions, as measured by serology and virus shedding (number of shedders and amount of shedding virus), being significantly lower following challenge on the 28th day of life, contrary to the imported H9 vaccine. In conclusion, use of H9N2 vaccine at 7 days of life provided a significantly higher protection than vaccination at day 1 of life in birds with MDA, suggesting vaccination regimes between 5-8-days of life for broiler chicks with MDA. Moreover, use of a vaccine prepared from a recently circulating H9N2 virus showed significantly higher protection and was more suitable for birds in the Middle East.
Collapse
Affiliation(s)
- Shaimaa Talat
- Department of Birds and Rabbits Medicine, Faculty of Veterinary Medicine, Sadat City University, Menoufiya 32958, Egypt;
| | - Reham R. Abouelmaatti
- Department of Animal Epidemiology and Zoonosis, Sharkia Veterinary Directorate, General Organization of Veterinary Services (GOVS), Ministry of Agriculture, Sharkia 44511, Egypt;
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (M.M.A.-D.)
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Wael K. Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
6
|
Dellweg D, Lepper PM, Nowak D, Köhnlein T, Olgemöller U, Pfeifer M. [Position Paper of the German Respiratory Society (DGP) on the Impact of Community Masks on Self-Protection and Protection of Others in Regard to Aerogen Transmitted Diseases]. Pneumologie 2020; 74:331-336. [PMID: 32434252 PMCID: PMC7362397 DOI: 10.1055/a-1175-8578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D Dellweg
- Fachkrankenhaus Kloster Grafschaft GmbH, Akademisches Lehrkrankenhaus der Philipps-Universität Marburg, Schmallenberg Grafschaft
| | - P M Lepper
- Innere Medizin V - Pneumologie, Allergologie, Beatmungs- und Umweltmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - D Nowak
- Klinikum der Universität München, Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU München, Mitglied des Deutschen Zentrums für Lungenforschung (DZL), München
| | | | - U Olgemöller
- Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen
| | - M Pfeifer
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinik Regensburg, Regensburg
- Abteilung für Pneumologie, Fachklinik für Lungenerkrankungen Donaustauf, Donaustauf
- Krankenhaus Barmherzige Brüder, Klinik für Pneumologie und konservative Intensivmedizin, Regensburg
| |
Collapse
|
7
|
Amanollahi R, Asasi K, Abdi-Hachesoo B. Effect of Newcastle disease and infectious bronchitis live vaccines on the immune system and production parameters of experimentally infected broiler chickens with H9N2 avian influenza. Comp Immunol Microbiol Infect Dis 2020; 71:101492. [PMID: 32417570 DOI: 10.1016/j.cimid.2020.101492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
H9N2 Avian influenza (AI) is an infectious disease which considered to have low pathogenic virulence, but in the case of coinfection with other pathogens it has the potential to become a major threat to the poultry industry. Infectious bronchitis (IB) and Newcastle diseases (ND) are other common problems to the poultry industry, which there are an extensive vaccination program against these viral pathogens. To investigate the effects of administration of infectious bronchitis and Newcastle disease live vaccines (IBLVs and NDLVs) in the presence of H9N2 AI infection on the immune system and some production parameters, 180 one-day-old broiler chicks were randomly allocated into six groups with different vaccination programs including H120 IBLV, 4/91 IBLV, B1 NDLV and LaSota NDLV. At the age of 20 days, all birds of the experimental groups except the negative control group, were inoculated intra-nasally (at dose of 106 EID50) with H9N2 AIV. After the inoculation, gross and microscopic lesions of the immune organs, serological changes and some production parameters were examined. The findings of this study showed that coinfection of H9N2 AI with NDLVs exacerbated the gross and microscopic injuries in the immune organs; especially the bursa of Fabricius. LaSota + AIV group had the most severe lesion in the bursa of Fabricius, spleen and thymus. Furthermore, the birds of LaSota + AIV group consumed the least amount of feed and water and their final body weight were significantly (P ≤ 0.05) lower in comparison with the other groups. Interestingly, in the context of this experiment both 4/91 and H120 IB live vaccines enhanced the HI antibody titers against H9N2 AIV, but the 4/91 showed the most significant (P ≤ 0.05) increase compared to the other experimental groups.
Collapse
Affiliation(s)
- Reza Amanollahi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Keramat Asasi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Bahman Abdi-Hachesoo
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Soliman MA, Nour AA, Erfan AM. Quantitative evaluation of viral interference among Egyptian isolates of highly pathogenic avian influenza viruses (H5N1 and H5N8) with the lentogenic and velogenic Newcastle disease virus genotype VII in specific pathogen-free embryonated chicken eggs model. Vet World 2019; 12:1833-1839. [PMID: 32009763 PMCID: PMC6925047 DOI: 10.14202/vetworld.2019.1833-1839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Background and Aim Mixed infections of the highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are considered the most distressing problem of the poultry industry. The problem arises due to the influence of a hidden virus on the replication of another suspected virus. Consequently, misdiagnosis of the real cause of disease may become a source of infection for other healthy stock by transmission and dissemination of the hidden virus. This study aimed to determine the impact of HPAIV and NDV on each other in a specific pathogen-free embryonated chicken egg (SPF-ECE) model. Materials and Methods HPAIVs (H5N1 and H5N8) and NDVs [avirulent NDV [avNDV] and velogenic NDV [vNDV]) were inoculated into the allantois cavity of SPF-ECE with graded titers (2, 3, and 4 log10 EID50) at 24 and 48 h of incubation, followed by the collection of allantoic fluid. A quantitative reverse transcription real-time polymerase chain reaction was used to determine the viral RNA copies of both viruses. Results Obvious interference was reported on the growth of NDVs when co-inoculated with AIVs. NDV RNA titers reduction ranged from <3 to 5 log10 to complete suppression, but slight interference with the growth of AIVs occurred. H5N1 RNA titers showed <1-2 log10 reduction when co-inoculated with vNDV compared with the H5N1 control. The interference impact of H5N8 was more powerful than that of H5N1, while vNDV showed more resistance for interference than the avNDV strain. On the other hand, interference of AIVs was not observed except when vNDV was inoculated before H5N1. The interfering impact was increased after 48 h of inoculation, whereas no titer of avNDV was detectable. Conclusion AIV strains had a powerful effect on NDV growth, regardless of which infection occurred first.
Collapse
Affiliation(s)
- Mohamed A Soliman
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| | - Ahmed A Nour
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| | - Ahmed M Erfan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza 12618, Egypt
| |
Collapse
|
9
|
Nguyen GT, Rauw F, Steensels M, Ingrao F, Bonfante F, Davidson I, Lambrecht B. Study of the underlying mechanisms and consequences of pathogenicity differences between two in vitro selected G1-H9N2 clones originating from a single isolate. Vet Res 2019; 50:18. [PMID: 30823888 PMCID: PMC6397504 DOI: 10.1186/s13567-019-0635-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 01/10/2023] Open
Abstract
The G1-H9N2 avian influenza virus (AIV) has caused significant economic losses in the commercial poultry industry due to reduced egg production and increased mortality. The field observations have shown that H9N2 viruses circulate and naturally mix with other pathogens and these simultaneous infections can exacerbate disease. To avoid an incorrect virus characterization, due to co-infection, isolates were purified by in vitro plaque assays. Two plaque purified G1-H9N2 clones, selected on different cell types, named MDCK-and CEF-clone in regards to the cell culture used, were studied in vivo, revealing two different virulence phenotypes. Subsequently, the underlying mechanisms were studied. Specifically, the phenotypical outcome of SPF bird infection by the two clones resulted in completely different clinical outcomes. These differences in clinical outcome were used to study the factors behind this output in more detail. Further studies demonstrated that the more severe disease outcome associated with the MDCK-clone involves a strong induction of pro-inflammatory cytokines and a lack of type I interferon production, whereas the mild disease outcome associated with the CEF-clone is related to a greater antiviral cytokine response. The immunosuppressive effect of the MDCK-clone on splenocytes was further demonstrated via ChIFN-γ lack production after ex vivo mitogenic stimulation. Genome sequencing of the two clones identified only four amino acid differences including three in the HA sequence (HA-E198A, HA-R234L, HA-E502D-H9 numbering) and one in the NA sequence (NA-V33M). In the present study, valuable insights on the mechanisms responsible for AI pathogenicity and molecular mechanisms of H9N2 infections in chicken were obtained while highlighting the impact of the cells viruses are grown on their virulence.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Fabienne Rauw
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Mieke Steensels
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | - Fiona Ingrao
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| | | | - Irit Davidson
- Division of Avian and Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Bénédicte Lambrecht
- Avian Virology and Immunology Service, National Reference Laboratory for Avian Influenza and Newcastle Disease Virus, Sciensano, Uccle, Brussels Belgium
| |
Collapse
|
10
|
Ellakany HF, Gado AR, Elbestawy AR, Abd El-Hamid HS, Hafez HM, Abd El-Hack ME, Swelum AA, Al-Owaimer A, Saadeldin IM. Interaction between avian influenza subtype H9N2 and Newcastle disease virus vaccine strain (LaSota) in chickens. BMC Vet Res 2018; 14:358. [PMID: 30458777 PMCID: PMC6245631 DOI: 10.1186/s12917-018-1689-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND H9N2 avian influenza virus is endemic in Egyptian poultry flocks. The role of the live viral vaccines such as LaSota in exaggeration of the clinical picture of H9N2 infection under field conditions is significantly important leading to severe economic losses due to higher mortality and lower growth performance. This experiment was designed to identify the possible interaction between experimental infection with H9N2 virus and NDV live vaccine (LaSota strain) in broiler chickens. Six groups each of 20 broiler chicks were used. Three groups (G1-3) were infected with H9N2 and vaccinated with LaSota, 3 days before, at the same day or 3 days post vaccination (dpv), while the remaining groups (G4-6) were non-vaccinated infected, vaccinated non-infected and non-vaccinated non-infected. RESULTS The highest mortality rate (37.5%) was noticed in chickens of G1 (H9N2 infected 3 days prior LaSota vaccination). Also, this bird group had the most severe clinical signs, histopathological lesions and the longest viral shedding for 9 days post infection (dpi). In the 2nd and 3rd groups, the mortality rate was the similar (31.2%) with less pronounced clinical signs, histopathological lesions and H9N2 shedding was for only 6 dpi with the least shedding quantity in chickens of G3. The control non-vaccinated infected chickens (G4) had 18.7% mortality with the least degree of clinical signs, lesions and the highest viral shedding quantity but only for 6 dpi. At 35 days of age, there was a statistical significant decrease (P < 0.05) in chicken's body weight of all H9N2 infected groups from G1 to G4 compared to non-infected control groups, G5 and G6 respectively. CONCLUSION It was clear that laSota vaccination significantly affect H9N2 infection in broiler chickens regarding clinical signs, mortality rate, lesions, performance and viral shedding.
Collapse
Affiliation(s)
- Hany F Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt
| | - Ahmed R Gado
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt.
| | - Hatem S Abd El-Hamid
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Königsweg, 63, 14163, Berlin, Germany
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdullah Al-Owaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
11
|
Bonfante F, Mazzetto E, Zanardello C, Fortin A, Gobbo F, Maniero S, Bigolaro M, Davidson I, Haddas R, Cattoli G, Terregino C. A G1-lineage H9N2 virus with oviduct tropism causes chronic pathological changes in the infundibulum and a long-lasting drop in egg production. Vet Res 2018; 49:83. [PMID: 30157967 PMCID: PMC6116506 DOI: 10.1186/s13567-018-0575-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Since 1997, G1-lineage H9N2 avian influenza viruses have been circulating in Asia and later on in the Middle East, and they have been associated to mild respiratory disease, drops in egg production and moderate mortality in chickens, in particular in the presence of concurrent infections. In this study, we investigated the importance of the G1-lineage H9N2 A/chicken/Israel/1163/2011 virus as a primary pathogen in layers, analyzing its tropism and binding affinity for the oviduct tissues, and investigating the long-term impact on egg production. Besides causing a mild respiratory infection, the virus replicated in the oviduct of 60% of the hens causing different degrees of salpingitis throughout the organ, in particular at the level of the infundibulum, where the detection of the virus was associated with severe heterophilic infiltrate, and necrosis of the epithelium. Binding affinity assays confirmed that the infundibulum was the most receptive region of the oviduct. The drop in egg production was at its peek at 2 weeks post-infection (pi) (60% decrease) and continued up to 80 days pi (35% decrease). On day 80 pi, non-laying birds showed egg yolk peritonitis, and histopathological analyses described profound alteration of the infundibulum architecture, duct ectasia and thinning of the epithelium, while the rest of the oviduct and ovary appeared normal. Our results show that this H9N2 virus is a primary pathogen in layer hens, and that its replication in the infundibulum is responsible for acute and chronic lesions that limits the effective functionality of the oviduct, compromising the commercial life of birds.
Collapse
Affiliation(s)
- Francesco Bonfante
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy.
| | - Eva Mazzetto
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Claudia Zanardello
- Histopathology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Andrea Fortin
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Federica Gobbo
- Avian Medicine Laboratory and Mycoplasmas Unit, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Silvia Maniero
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Michela Bigolaro
- Histopathology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, 12, 50250, Bet Dagan, Israel
| | - Ruth Haddas
- Division of Avian Diseases, Kimron Veterinary Institute, 12, 50250, Bet Dagan, Israel
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division for Nuclear Applications in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, 100, 1400, Vienna, Austria
| | - Calogero Terregino
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Italy
| |
Collapse
|