1
|
Wu-Chuang A, Hartmann D, Maitre A, Mateos-Hernández L, Frantová H, Urbanová V, Obregon D, Cabezas-Cruz A, Perner J. Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae. MICROBIAL ECOLOGY 2023; 86:2400-2413. [PMID: 37249591 DOI: 10.1007/s00248-023-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - David Hartmann
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Helena Frantová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France.
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Sparagano O, Song B, Aziz U, Hussain S, Yang G, George D, Zeb J. Poultry Mites: Ubiquitous, Spreading, and Still a Growing Threat. Avian Dis 2022; 66:1-7. [PMID: 36198007 DOI: 10.1637/aviandiseases-d-22-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
Poultry mites continue to be a major threat to poultry meat and egg production all over the world, with some species being blood-feeding arthropods that spend most of their time off-host and others burrowing under the bird's skin. Regardless of feeding strategy, these mites create welfare issues and production losses in poultry production systems in terms of bird growth, egg quality, and egg quantity. Furthermore, some species are able to transmit pathogens, introducing secondary infections that affect the birds' development and survival. Because of national restrictions on acaricide use and the development of mite resistance to available control products, the eradication of poultry mites is far from being achieved. However, new drugs and a better understanding of mite genetic and transcriptomic factors should aid the development of new control and treatment strategies. This review focuses on the main poultry mite species, their significance, and their current and future control.
Collapse
Affiliation(s)
- Olivier Sparagano
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China,
| | - Baolin Song
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Umair Aziz
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Sabir Hussain
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Guan Yang
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, United Kingdom
| | - Jehan Zeb
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Pesapane R, Chaves A, Foley J, Javeed N, Barnum S, Greenwald K, Dodd E, Fontaine C, Duignan P, Murray M, Miller M. Nasopulmonary mites (Acari: Halarachnidae) as potential vectors of bacterial pathogens, including Streptococcus phocae, in marine mammals. PLoS One 2022; 17:e0270009. [PMID: 35709209 PMCID: PMC9202935 DOI: 10.1371/journal.pone.0270009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2022] [Accepted: 06/01/2022] [Indexed: 01/16/2023] Open
Abstract
Nasopulmonary mites (NPMs) of the family Halarachnidae are obligate endoparasites that colonize the respiratory tracts of mammals. NPMs damage surface epithelium resulting in mucosal irritation, respiratory illness, and secondary infection, yet the role of NPMs in facilitating pathogen invasion or dissemination between hosts remains unclear. Using 16S rRNA massively parallel amplicon sequencing of six hypervariable regions (or "16S profiling"), we characterized the bacterial community of NPMs from 4 southern sea otters (Enhydra lutris nereis). This data was paired with detection of a priority pathogen, Streptococcus phocae, from NPMs infesting 16 southern sea otters and 9 California sea lions (Zalophus californianus) using nested conventional polymerase chain reaction (nPCR). The bacteriome of assessed NPMs was dominated by Mycoplasmataceae and Vibrionaceae, but at least 16 organisms with pathogenic potential were detected as well. Importantly, S. phocae was detected in 37% of NPM by nPCR and was also detected by 16S profiling. Detection of multiple organisms with pathogenic potential in or on NPMs suggests they may act as mechanical vectors of bacterial infection for marine mammals.
Collapse
Affiliation(s)
- Risa Pesapane
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrea Chaves
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Nadia Javeed
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Katherine Greenwald
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| | - Erin Dodd
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| | - Christine Fontaine
- The Marine Mammal Center, Sausalito, California, United States of America
| | - Padraig Duignan
- The Marine Mammal Center, Sausalito, California, United States of America
| | - Michael Murray
- Monterey Bay Aquarium, Monterey, California, United States of America
| | - Melissa Miller
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| |
Collapse
|
4
|
Schiavone A, Pugliese N, Otranto D, Samarelli R, Circella E, De Virgilio C, Camarda A. Dermanyssus gallinae: the long journey of the poultry red mite to become a vector. Parasit Vectors 2022; 15:29. [PMID: 35057849 PMCID: PMC8772161 DOI: 10.1186/s13071-021-05142-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
The possibility that Dermanyssus gallinae, the poultry red mite, could act as a vector of infectious disease-causing pathogens has always intrigued researchers and worried commercial chicken farmers, as has its ubiquitous distribution. For decades, studies have been carried out which suggest that there is an association between a wide range of pathogens and D. gallinae, with the transmission of some of these pathogens mediated by D. gallinae as vector. The latter include the avian pathogenic Escherichia coli (APEC), Salmonella enterica serovars Enteritidis and Gallinarum and influenza virus. Several approaches have been adopted to investigate the relationship between D. gallinae and pathogens. In this comprehensive review, we critically describe available strategies and methods currently available for conducting trials, as well as outcomes, analyzing their possible strengths and weaknesses, with the aim to provide researchers with useful tools for correctly approach the study of the vectorial role of D. gallinae.
Collapse
|
5
|
Sparagano O. A nonexhaustive overview on potential impacts of the poultry red mite (Dermanyssus gallinae) on poultry production systems. J Anim Sci 2020; 98:S58-S62. [PMID: 32810241 DOI: 10.1093/jas/skaa136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2019] [Accepted: 04/24/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Impact of Poultry Red Mite (Dermanyssus gallinae) Infestation on Blood Parameters of Laying Hens. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
|
7
|
Lima-Barbero JF, Contreras M, Mateos-Hernández L, Mata-Lorenzo FM, Triguero-Ocaña R, Sparagano O, Finn RD, Strube C, Price DR, Nunn F, Bartley K, Höfle U, Boadella M, Nisbet AJ, de la Fuente J, Villar M. A vaccinology Approach to the Identification and Characterization of Dermanyssus Gallinae Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. Vaccines (Basel) 2019; 7:vaccines7040190. [PMID: 31756972 PMCID: PMC6963798 DOI: 10.3390/vaccines7040190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite considered as the major pest in the egg-laying industry. Its pesticide-based control is only partially successful and requires the development of new control interventions such as vaccines. In this study, we follow a vaccinology approach to identify PRM candidate protective antigens. Based on proteomic data from fed and unfed nymph and adult mites, we selected a novel PRM protein, calumenin (Deg-CALU), which is tested as a vaccine candidate on an on-hen trial. Rhipicephalus microplus Subolesin (Rhm-SUB) was chosen as a positive control. Deg-CALU and Rhm-SUB reduced the mite oviposition by 35 and 44%, respectively. These results support Deg-CALU and Rhm-SUB as candidate protective antigens for the PRM control.
Collapse
Affiliation(s)
- José Francisco Lima-Barbero
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Sabiotec, S.A. Ed., Polivalente UCLM, Camino de Moledores, 13005 Ciudad Real, Spain;
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d´Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - Francisco Manuel Mata-Lorenzo
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Roxana Triguero-Ocaña
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Robert D. Finn
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- St George’s International School of Medicine, Keith B. Taylor Global Scholars Program, Northumbria University, Newcastle NE1 8ST, UK
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Daniel R.G. Price
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Francesca Nunn
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - Ursula Höfle
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
| | - Mariana Boadella
- Sabiotec, S.A. Ed., Polivalente UCLM, Camino de Moledores, 13005 Ciudad Real, Spain;
| | - Alasdair J. Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK (F.N.); (K.B.); (A.J.N.)
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007 USA
- Correspondence: (J.F.); (M.V.)
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (J.F.L.-B.); (M.C.); (F.M.M.-L.); (R.T.-O.); (U.H.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research [CRIB], University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (J.F.); (M.V.)
| |
Collapse
|