1
|
More D, Khan N, Tekade RK, Sengupta P. An Update on Current Trend in Sample Preparation Automation in Bioanalysis: strategies, Challenges and Future Direction. Crit Rev Anal Chem 2024:1-25. [PMID: 38949910 DOI: 10.1080/10408347.2024.2362707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Automation in sample preparation improves accuracy, productivity, and precision in bioanalysis. Moreover, it reduces resource consumption for repetitive procedures. Automated sample analysis allows uninterrupted handling of large volumes of biological samples originating from preclinical and clinical studies. Automation significantly helps in management of complex testing methods where generation of large volumes of data is required for process monitoring. Compared to traditional sample preparation processes, automated procedures reduce associated expenses and manual error, facilitate laboratory transfers, enhance data quality, and better protect the health of analysts. Automated sample preparation techniques based on robotics potentially increase the throughput of bioanalytical laboratories. Robotic liquid handler, an automated sample preparation system built on a robotic technique ensures optimal laboratory output while saving expensive solvents, manpower, and time. Nowadays, most of the traditional extraction processes are being automated using several formats of online techniques. This review covered most of the automated sample preparation techniques reported till date, which accelerated and simplified the sample preparation procedure for bioanalytical sample analysis. This article critically analyzed different developmental aspects of automated sample preparation techniques based on robotics as well as conventional sample preparation methods that are accelerated using automated technologies.
Collapse
Affiliation(s)
- Dnyaneshwar More
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
2
|
Majd M, Gholami M, Fathi A, Sedghi R, Nojavan S. Thin-film solid-phase microextraction of pesticides from cereal samples using electrospun polyvinyl alcohol/modified chitosan/porous organic framework nanofibers. Food Chem 2024; 444:138647. [PMID: 38325082 DOI: 10.1016/j.foodchem.2024.138647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
In this study, a coating of electrospun polyvinyl alcohol/modified chitosan/hydroxy-containing porous organic framework (PVA/MCS/HC-POF) was fabricated and applied as a novel sorbent for thin-film solid-phase microextraction of pesticides from cereal samples, followed by HPLC-UV. The successful fabrication of PVA/MCS/HC-POF was confirmed through characterization tests. The functional group of MCS and a large number of hydroxyl groups on the HC-POF structure contributed to the co-extraction of pesticides. Under the optimum conditions, the calibration plots were linear within the range of 5.0-800 ng mL-1 (r2 ≥ 0.978), and the limits of detection were obtained below 4.0 ng mL-1. The method's precision was investigated through intra-day, inter-day, and film-to-film RSD (%) measurements, all of which were less than 6.5 %, 8.2 %, and 10.0 %, respectively. Furthermore, satisfactory recoveries ranging from 63.3 % to 79.0 % were obtained. Accordingly, the proposed method can be considered a suitable alternative for measuring trace amounts of pesticides in cereal samples.
Collapse
Affiliation(s)
- Mahshid Majd
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran
| | - Marziye Gholami
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Anna Fathi
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer & Materials Chemistry, Shahid Beheshti University, Evin, Tehran, Iran.
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
3
|
Borsatto JVB, Maciel EVS, Cifuentes A, Lanças FM. Applicability and Limitations of a Capillary-LC Column-Switching System Using Hybrid Graphene-Based Stationary Phases. Molecules 2023; 28:4999. [PMID: 37446660 DOI: 10.3390/molecules28134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Graphene oxide sheets fixed over silica particles (SiGO) and their modification functionalized with C18 and endcapped (SiGO-C18ec) have been reported as sorbents for extraction and analytical columns in LC. In this study, a SiGO column was selected as the extraction column and a SiGO-C18ec as the analytical column to study the applicability and limitations of a column-switching system composed exclusively of columns packed with graphene-based sorbents. Pyriproxyfen and abamectin B1a were selected as the analytes, and orange-flavored carbonated soft drinks as the matrix. The proposed system could be successfully applied to the pyriproxyfen analysis in a concentration range between 0.5 to 25 µg/mL presenting a linearity of R2 = 0.9931 and an intra-day and inter-day accuracy of 82.2-111.4% (RSD < 13.3%) and 95.5-99.8% (RSD < 12.7%), respectively. Furthermore, the matrix composition affected the area observed for the pyriproxyfen: the higher the concentration of orange juice in the soft drink, the higher the pyriproxyfen the signal observed. Additionally, the SiGO extraction column presented a life use of 120 injections for this matrix. In contrast, the proposed system could not apply to the analysis of abamectin B1a, and the SiGO-C18ec analytical column presented significant tailing compared to a similar approach with a C18 analytical column.
Collapse
Affiliation(s)
- João Victor Basolli Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Edvaldo Vasconcelos Soares Maciel
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Fernando Mauro Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
| |
Collapse
|
4
|
López-Ruiz I, Lasarte-Aragonés G, Lucena R, Cárdenas S. Deep eutectic solvent coated paper: Sustainable sorptive phase for sample preparation. J Chromatogr A 2023; 1698:464003. [PMID: 37094540 DOI: 10.1016/j.chroma.2023.464003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Paper-based sorptive phases have gained attention recently due to the low-cost and sustainable character of the cellulosic substrate. However, the sustainability of the resulting phase can be limited by type of coating used for analytes isolation. In this article, this limitation is overcome by using deep eutectic solvents (DES) as coating. To this aim, a Thymol-Vanillin DES is synthesized and deposited on pre-cut cellulose paper strips. The paper-supported DES is employed as sorptive phase for the isolation of selected triazine herbicides for environmental waters analysis. The isolated analytes are finally determined by gas chromatography-mass spectrometry using selected ion monitoring. The method is optimized according to the critical variables that potentially affect its analytical performance such as sample volume, extractant amount, extraction time and sample ionic strength. The method was characterized in terms of sensitivity, accuracy and precision and its applicability was evaluated for the analysis of real environmental water samples. Good linearity values (R2>0.995) were obtained for all the analytes. Limits of detection (LODs) ranged from 0.4 to 0.6 µg L-1 and the precision, expressed as relative standard deviation (RSD) was better than 14.7%. The relative recoveries, calculated in spiked well and river samples, were in the range 90-106%.
Collapse
Affiliation(s)
- Inmaculada López-Ruiz
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Guillermo Lasarte-Aragonés
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain.
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) research group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Campus de Rabanales, Universidad de Córdoba, Edificio Marie Curie, Córdoba E-14071, Spain.
| |
Collapse
|
5
|
Borsatto JVB, Maciel EVS, Cifuentes A, Lanças FM. Online Extraction Followed by LC-MS/MS Analysis of Lipids in Natural Samples: A Proof-of-Concept Profiling Lecithin in Seeds. Foods 2023; 12:foods12020281. [PMID: 36673373 PMCID: PMC9858076 DOI: 10.3390/foods12020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Sample preparation is usually a complex and time-consuming procedure, which can directly affect the quality of the analysis. Recent efforts have been made to establish analytical methods involving minimal sample preparation, automatized and performed online with the analytical techniques. Online Extraction coupled with Liquid Chromatography-Mass Spectrometry (OLE-LC-MS) allows a fully connected extraction, separation, and analysis system. In this work, the lecithin profile was investigated in commercial sunflower, almonds, peanuts, and pistachio seeds to demonstrate that the concept of extraction, followed by the online analysis of the extract, could be applied to analyze this class of analytes in such complex solid matrices without a prior off-line solvent extraction step. The extraction phase gradient method was optimized. Two different analytical columns were explored, one being a conventional C18 (50 × 2.1 mm, 1.7 µm SPP) and the other a novel self-packed SIGO-C18ec (100 × 0.5, 5 µm FPP), which resulted in better separation. The analysis repeatability was investigated, and suggestions to improve it were pointed out. A characteristic ion with a m/z of 184, related to lysophosphatidylcholine structure, was used to identify the lecithin compounds. The temperature effect on the chromatograms was also explored. In short, it was found that the OLE-LC-MS approach is suitable for the analysis of lecithin compounds in seeds, being a promising alternative for lipidomics approaches in the near future.
Collapse
Affiliation(s)
- João V. B. Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Edvaldo V. S. Maciel
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence:
| | - Fernando M. Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, Sao Carlos 13566590, Brazil
| |
Collapse
|
6
|
Investigation of the applicability of silica-graphene hybrid materials as stationary phases for capillary liquid chromatography. J Chromatogr A 2022; 1685:463618. [DOI: 10.1016/j.chroma.2022.463618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Manousi N, Kabir A, Zachariadis GA. Recent advances in the extraction of triazine herbicides from water samples. J Sep Sci 2021; 45:113-133. [PMID: 34047458 DOI: 10.1002/jssc.202100313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022]
Abstract
Pesticides are excessively used in agriculture to improve the quality of crops by eliminating the negative effects of pests. Among the different groups of pesticides, triazine pesticides are a group of compounds that contain a substituted C3 H3 N3 heterocyclic ring, and they are widely used. Triazine pesticides can be dangerous for humans as well as for the aquatic environment because of their high toxicity and endocrine disrupting effect. However, the concentration of these chemical compounds in water samples is low. Moreover, other compounds that may exist in the water samples can interfere with the determination of triazine pesticides. As a result, it is important to develop sample preparation methods that provide preconcentration of the target analyte and sufficient clean-up of the samples. Recently, a wide variety of novel microextraction and miniaturized extraction techniques (e.g., solid-phase microextraction and liquid-phase microextraction, stir bar sorptive extraction, fabric phase sorptive extraction, dispersive solid-phase extraction, and magnetic solid-phase extraction) have been developed. In this review, we aim to discuss the recent advances regarding the extraction of triazine pesticides from environmental water samples. Emphasis will be given to novel sample preparation methods and novel sorbents developed for sorbent-based extraction techniques.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
9
|
Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Mikrochim Acta 2020; 187:541. [DOI: 10.1007/s00604-020-04527-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
|
10
|
Maciel EVS, Mejía-Carmona K, Jordan-Sinisterra M, da Silva LF, Vargas Medina DA, Lanças FM. The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Front Chem 2020; 8:664. [PMID: 32850673 PMCID: PMC7431689 DOI: 10.3389/fchem.2020.00664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 2004 by Novoselov et al., graphene has attracted increasing attention in the scientific community due to its excellent physical and chemical properties, such as thermal/mechanical resistance, electronic stability, high Young's modulus, and fast mobility of charged atoms. In addition, other remarkable characteristics support its use in analytical chemistry, especially as sorbent. For these reasons, graphene-based materials (GBMs) have been used as a promising material in sample preparation. Graphene and graphene oxide, owing to their excellent physical and chemical properties as a large surface area, good mechanical strength, thermal stability, and delocalized π-electrons, are ideal sorbents, especially for molecules containing aromatic rings. They have been used in several sample preparation techniques such as solid-phase extraction (SPE), stir bar sorptive extraction (SBSE), magnetic solid-phase extraction (MSPE), as well as in miniaturized modes as solid-phase microextraction (SPME) in their different configurations. However, the reduced size and weight of graphene sheets can limit their use since they commonly aggregate to each other, causing clogging in high-pressure extractive devices. One way to overcome it and other drawbacks consists of covalently attaching the graphene sheets to support materials (e.g., silica, polymers, and magnetically modified supports). Also, graphene-based materials can be further chemically modified to favor some interactions with specific analytes, resulting in more efficient hybrid sorbents with higher selectivity for specific chemical classes. As a result of this wide variety of graphene-based sorbents, several studies have shown the current potential of applying GBMs in different fields such as food, biological, pharmaceutical, and environmental applications. Within such a context, this review will focus on the last five years of achievements in graphene-based materials for sample preparation techniques highlighting their synthesis, chemical structure, and potential application for the extraction of target analytes in different complex matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Mauro Lanças
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry (IQSC), University of São Paulo, São Carlos, Brazil
| |
Collapse
|
11
|
Beceiro-González E, González-Castro MJ, Muniategui-Lorenzo S. A Simple Method for the Determination of Triazines from Seawater in Accordance with the Directive 2013/39/EU. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:332-336. [PMID: 32556692 DOI: 10.1007/s00128-020-02897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Since the Directive 2013/39/EU included terbutryn to the list of priority substances of all water bodies, a previous method based on dispersive liquid-liquid micro-extraction (DLLME) for the determination of triazines in seawater has been modified. The main change consisted on the use of tandem mass spectrometry instead of diode array as detection technique. Due to the higher sensitivity of mass detector, sample volume was reduced and extraction solvent volume was optimized. The optimum extraction conditions were 5 mL of sample, 50 µL of 1-octanol and an agitation step instead of disperser solvent. The obtained analytical recoveries (73%-101% with relative standard deviations below 4%) meeting the requirements. The limits of quantification (between 0.016 and 0.021 µg L-1) were more than 10 times lower than the limit set by the European Directive 2013/39/EU for terbutryn (0.34 µg L-1). The proposed method was applied to the determination of the target compounds in seawater samples from A Coruña (Galicia, NW of Spain).
Collapse
Affiliation(s)
- Elisa Beceiro-González
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María José González-Castro
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
12
|
Mejía-Carmona K, Lanças FM. Modified graphene-silica as a sorbent for in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Determination of xanthines in coffee beverages. J Chromatogr A 2020; 1621:461089. [PMID: 32362360 DOI: 10.1016/j.chroma.2020.461089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 02/03/2023]
Abstract
Given the increasing need for analyzing natural or contaminating compounds in complex food matrices in a simple and automated way, coupling miniaturized sample preparation techniques with chromatographic systems have become a growing field of research. In this regard, given the low extraction efficiency of conventional sorbent phases, the development of materials with enhanced extraction capabilities is of particular interest. Here we present several synthesized graphene-based materials supported on aminopropyl silica as sorbents for the extraction of xanthines. The synthesized materials were characterized by infrared spectroscopy and scanning electron microscopy. Aminopropyl silica coated with graphene oxide and functionalized with octadecylsilane/end-capped (SiGOC18ecap) showed the best performance for xanthines extraction. Hence, this material was employed as an in-tube solid phase microextraction (in-tube SPME) device coupled online with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and applied for the analysis of xanthines in roasted coffee samples. Extraction parameters and detection conditions were optimized. The method showed low limits of quantification (0.3-1.0 µg L-1), precision as relative standard deviation (RSD) values lower than 10%, recoveries between 73 and 109%, and pre-concentration factors from 5.6 to 7.2. Caffeine was determined in all ground roasted and instant coffee samples, in a wide range (0.9 to 36.8 mg g-1), and small amounts of theobromine and theophylline were also detected in some samples. This work demonstrated that functionalized graphene-based materials represent a promising new sorbent class for in-tube SPME, showing improved extraction capacity. The method was efficient, simple, and fast for the analysis of xanthines, demonstrating an excellent potential to be applied in other matrices.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos SP, Brazil
| | - Fernando M Lanças
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos SP, Brazil.
| |
Collapse
|
13
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Magnetic Graphene Oxide Composite for the Microextraction and Determination of Benzophenones in Water Samples. NANOMATERIALS 2020; 10:nano10010168. [PMID: 31963652 PMCID: PMC7022302 DOI: 10.3390/nano10010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
Magnetite nanoparticles (Fe3O4) functionalized with graphene oxide (GO) have been synthesized through a silanization process of the magnetic nanoparticles with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane and further coupling of GO. The synthesized nanomaterials have been characterized by several techniques, such as transmission electron microscopy (TEM), and infrared and Raman spectroscopy, which enabled the evaluation of the different steps of the functionalization process. The hybrid nanomaterial has been employed for the extraction of five benzophenones (benzophenone-1, benzophenone-3, 4-hydroxybenzophenone, benzophenone-6 and benzophenone-8) in aqueous samples by dispersive micro-solid phase extraction, combining the magnetic properties of magnetite nanoparticles with the excellent sorption capacity of graphene oxide via hydrophobic interactions with the analytes. The subsequent separation and quantification of the analytes was performed by liquid chromatography with tandem mass spectrometric detection, achieving limits of detection (LODs) in the range 2.5 to 8.2 μg·L-1, with relative standard deviations ranging from 1.3-9.8% and relative recovering in the range 86 to 105%. Positive swimming pool water samples analysed following the developed method revealed the presence of benzophenones in from 14.3 to 39 μg·L-1.
Collapse
|
15
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
16
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Elpa DP, Prabhu GRD, Wu SP, Tay KS, Urban PL. Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta 2019; 208:120304. [PMID: 31816721 DOI: 10.1016/j.talanta.2019.120304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
The developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past. In this article, the available MS automation strategies are critically evaluated. Automation of analytical workflows culminating with MS detection encompasses involvement of automated operations in any of the steps related to sample handling/treatment before MS detection, sample introduction, MS data acquisition, and MS data processing. Automated MS workflows help to overcome the intrinsic limitations of MS methodology regarding reproducibility, throughput, and the expertise required to operate MS instruments. Such workflows often comprise automated off-line and on-line steps such as sampling, extraction, derivatization, and separation. The most common instrumental tools include autosamplers, multi-axis robots, flow injection systems, and lab-on-a-chip. Prototyping customized automated MS systems is a way to introduce non-standard automated features to MS workflows. The review highlights the enabling role of automated MS procedures in various sectors of academic research and industry. Examples include applications of automated MS workflows in bioscience, environmental studies, and exploration of the outer space.
Collapse
Affiliation(s)
- Decibel P Elpa
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan.
| | - Kheng Soo Tay
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| |
Collapse
|
19
|
de Toffoli AL, Maciel EVS, Lanças FM. Evaluation of the tubing material and physical dimensions on the performance of extraction columns for on-line sample preparation-LC-MS/MS. J Chromatogr A 2019; 1597:18-27. [PMID: 30905375 DOI: 10.1016/j.chroma.2019.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 01/06/2023]
Abstract
Nowadays, high analytical throughputs are required considering an increasing demand for faster, simple and improved methods to analyze contaminants in a considerable number of samples. Generally, these compounds are present in complex matrices in contact with a high number of interferents becoming their determination difficult at low concentration. In this context, on-line extraction techniques arose to improve the extraction as well as separation power, while minimizing errors related to human sample manipulation. This paper describes a study regarding the development and optimization of columns used as an extraction device in multidimensional liquid chromatography. The main goals were the evaluation of the material used as column body as well as the investigation of the tube dimensions (internal diameter and length) in the extraction performance. Firstly, several tube materials were tested (steel, fused silica, PEEK, among others) being steel whose reported the best performance and was consequently chose for further studies. The investigation about the effects of the columns physical dimensions revealed a linear relationship between performance and the amount of sorbent utilized as extractive phase. However, when different columns with same amount of sorbent were tested results suggests that both i.d. and lengths play an important role in extraction efficiency. The longest columns with lower internal diameter showed the best results favoring the radial as well as axial analytes diffusion into the extraction column. After evaluation of these column variables, applications were carried out employing several different analytes belonging to various chemical classes and practical utilization, in order to reinforce the versatility as well as the robustness of this proposed study.
Collapse
Affiliation(s)
- Ana Lúcia de Toffoli
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | | | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Costa Queiroz ME, Donizeti de Souza I, Marchioni C. Current advances and applications of in-tube solid-phase microextraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis. BEVERAGES 2019. [DOI: 10.3390/beverages5010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The determination of target analytes in complex matrices such as beverages requires a series of analytical steps to obtain a reliable analysis. This critical review presents the current trends in sample preparation techniques based on solid phase extraction miniaturization, automation and on-line coupling. Techniques discussed include solid-phase extraction (SPE), solid-phase microextraction (SPME), in-tube solid-phase microextraction (in-tube SPME) and turbulent-flow chromatography (TFC). Advantages and limitations, as well as several of their main applications in beverage samples are discussed. Finally, fully automated on-line systems that involve extraction, chromatographic separation, and tandem mass spectrometry in one-step are introduced and critically reviewed.
Collapse
|