1
|
Zhao H, Yan Y, Gao Y, Wang J, Li S. Tris (2-chloroisopropyl) phosphate and Tris (nonylphenyl) phosphite Promote Human Renal Cell Apoptosis through the ERK/CEPBA/Long Non-Coding RNA Cytoskeleton Regulator Axis. TOXICS 2024; 12:452. [PMID: 39058104 PMCID: PMC11281261 DOI: 10.3390/toxics12070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Organophosphorus compounds (OPs) are widely used and have the potential to be harmful environmental toxicants to humans. Long non-coding RNA (lncRNA) plays a crucial regulatory role in cytotoxicity. This study aimed to investigate the effects of OPs on the expression of lncRNAs in cells. The effects of the industrial OPs TNPP and TCPP on both CYTOR and cellular viability were examined in the following human renal cell lines: HEK293T and HK-2. Both TCPP and TNPP downregulated CYTOR expression, increased reactive oxygen species levels, and induced apoptosis; the upregulated expression of CYTOR resulted in a reduction in apoptosis. The results of the luciferase reporter assay and the knock-down assay indicate that CEBPA binds to the upstream promoter region of CYTOR and regulates its transcription. Furthermore, TCPP and TNPP were found to downregulate the phosphorylation of ERK in the signaling pathway that is upstream of CEBPA. These results indicate that TCPP and TNPP can decrease the level of CEBPA by reducing ERK phosphorylation; this leads to a decrease in CYTOR expression, which further promotes cellular reactive oxygen species and apoptosis. Therefore, the ERK/CEBPA/CYTOR axis is one of the pathways by which organophosphates produce cytotoxicity, leading to renal cell injury. This study presents evidence for both the abnormal expression of lncRNA that is caused by organophosphates and the regulatory function of lncRNA regarding downstream cellular viability.
Collapse
Affiliation(s)
| | | | | | | | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (H.Z.); (Y.Y.); (Y.G.); (J.W.)
| |
Collapse
|
2
|
Khater SI, El-Emam MMA, Abdellatif H, Mostafa M, Khamis T, Soliman RHM, Ahmed HS, Ali SK, Selim HMRM, Alqahtani LS, Habib D, Metwally MMM, Alnakhli AM, Saleh A, Abdelfattah AM, Abdelnour HM, Dowidar MF. Lipid nanoparticles of quercetin (QU-Lip) alleviated pancreatic microenvironment in diabetic male rats: The interplay between oxidative stress - unfolded protein response (UPR) - autophagy, and their regulatory miRNA. Life Sci 2024; 344:122546. [PMID: 38462227 DOI: 10.1016/j.lfs.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Autophagy is a well-preserved mechanism essential in minimizing endoplasmic reticulum stress (ER)-related cell death. Defects in β-cell autophagy have been linked to type 1 diabetes, particularly deficits in the secretion of insulin, boosting ER stress sensitivity and possibly promoting pancreatic β-cell death. Quercetin (QU) is a potent antioxidant and anti-diabetic flavonoid with low bioavailability, and the precise mechanism of its anti-diabetic activity is still unknown. Aim This study aimed to design an improved bioavailable form of QU (liposomes) and examine the impact of its treatment on the alleviation of type 1 diabetes induced by STZ in rats. METHODS Seventy SD rats were allocated into seven equal groups 10 rats of each: control, STZ, STZ + 3-MA, STZ + QU-Lip, and STZ + 3-MA + QU-Lip. Fasting blood glucose, insulin, c-peptide, serum IL-6, TNF-α, pancreatic oxidative stress, TRAF-6, autophagy, endoplasmic reticulum stress (ER stress) markers expression and their regulatory microRNA (miRNA) were performed. As well as, docking analysis for the quercetin, ER stress, and autophagy were done. Finally, the histopathological and immunohistochemical analysis were conducted. SIGNIFICANCE QU-Lip significantly decreased glucose levels, oxidative, and inflammatory markers in the pancreas. It also significantly downregulated the expression of ER stress and upregulated autophagic-related markers. Furthermore, QU-Lip significantly ameliorated the expression of several MicroRNAs, which both control autophagy and ER stress signaling pathways. However, the improvement of STZ-diabetic rats was abolished upon combination with an autophagy inhibitor (3-MA). The findings suggest that QU-Lip has therapeutic promise in treating type 1 diabetes by modulating ER stress and autophagy via an epigenetic mechanism.
Collapse
Affiliation(s)
- Safaa I Khater
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig 44511, Egypt.
| | | | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman; Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | | | - Heba S Ahmed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sahar K Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 35527, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Doaa Habib
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Department of pathology and clinical pathology, faculty of veterinary medicine, King Salman international University, Ras sidr, Egypt
| | - Anwar M Alnakhli
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | | | - Hanim M Abdelnour
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F Dowidar
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
3
|
Takashima M, Yamamura S, Tamiya C, Inami M, Takamura Y, Inatani M, Oki M. Glutamate is effective in decreasing opacity formed in galactose-induced cataract model. Sci Rep 2024; 14:4123. [PMID: 38374148 PMCID: PMC10876653 DOI: 10.1038/s41598-024-54559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Although cataract is the leading cause of blindness worldwide, the detailed pathogenesis of cataract remains unclear, and clinically useful drug treatments are still lacking. In this study, we examined the effects of glutamate using an ex vivo model in which rat lens is cultured in a galactose-containing medium to induce opacity formation. After inducing lens opacity formation in galactose medium, glutamate was added, and the opacity decreased when the culture was continued. Next, microarray analysis was performed using samples in which the opacity was reduced by glutamate, and genes whose expression increased with galactose culture and decreased with the addition of glutamate were extracted. Subsequently, STRING analysis was performed on a group of genes that showed variation as a result of quantitative measurement of gene expression by RT-qPCR. The results suggest that apoptosis, oxidative stress, endoplasmic reticulum (ER) stress, cell proliferation, epithelial-mesenchymal transition (EMT), cytoskeleton, and histones are involved in the formation and reduction of opacity. Therefore, glutamate may reduce opacity by inhibiting oxidative stress and its downstream functions, and by regulating the cytoskeleton and cell proliferation.
Collapse
Affiliation(s)
- Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shunki Yamamura
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Chie Tamiya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Mayumi Inami
- Technical Division, School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
4
|
Li W, Xie L, Wang L, Lin F. CircRIMS promotes cerebral ischemia-reperfusion injury through increasing apoptosis and targeting the miR-96-5p/JAK/STAT1 axis. Brain Inj 2023; 37:1235-1244. [PMID: 37515578 DOI: 10.1080/02699052.2023.2237890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE This study aims to explore the function of circRIMS in cerebral ischemia/reperfusion (CIR) and its regulatory mechanism. METHOD The expression of the circRIMS was examined in GEO chip data and validated by qRT-PCR analysis. A middle cerebral artery occlusion/repression (MCAO/R) model was developed using C57BL/6J mice. Starbase and circinteractome were employed to identify the target miRNA and mRNA. The result was confirmed by dual-luciferase reporter assay, and biotinylated RNA-pulldown assay. The cell viability and apoptosis were confirmed through CCK-8 and flow cytometry assay. RESULTS This study revealed that circRIMS expression was upregulated in MCAO mice model and OGD/RX-simulated cell model. Knockdown circRIMS demonstrated the functional of circRIMS in increasing cell viability, reducing apoptosis, LDH activity and inflammatory factors secretion in OGD/RX-simulated CIR injury in vitro. Additionally, miR-96-5p was identified as a target of circRIMS, while the STAT1 gene is a downstream gene of miR-96-5p, and JAK was also considered to be a downstream gene of the JAK-STAT pathway. Furthermore, inhibition of miR-96-5p or overexpression of STAT1 promoted the progression of CIR injury by elevating apoptosis, reducing cell viability, and increasing the secretion of inflammatory cytokines. CONCLUSION CircRIMS contributes to the progression of CIR injury via regulating miR-96-5p/JAK/STAT1 axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lisha Wang
- Department of Neurology Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Faliang Lin
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
5
|
Dehghan H, Farkhondeh T, Darroudi M, Yousefizadeh S, Samarghandian S. Role of miRNAs in mediating organophosphate compounds induced toxicity. Toxicol Rep 2023; 10:216-222. [PMID: 36845257 PMCID: PMC9945638 DOI: 10.1016/j.toxrep.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Organophosphate compounds (OPCs) are a diverse class of chemicals utilized in both industrial and agricultural settings. The exact molecular pathways that OPCs-induced toxicity is caused by are still being investigated, despite the fact that studies on this topic have been ongoing for a long time. As a result, it's important to identify innovative strategies to uncover these processes and further the understanding of the pathways involved in OPCs-induced toxicity. In this context, determining the role of microRNAs (miRs) in the toxicity caused by OPCs should be taken into consideration. Recent research on the regulation function of miRs presents key discoveries to identify any gaps in the toxicity mechanisms of OPCs. As diagnostic indicators for toxicity in people exposed to OPCs, various expression miRs can also be used. The results of experimental and human studies into the expression profiles of miRs in OPCs-induced toxicity have been compiled in this article.
Collapse
Affiliation(s)
- Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Paraveterinary, Ilam University, Ilam, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Valencia-Quintana R, Bahena-Ocampo IU, González-Castañeda G, Bonilla E, Milić M, Bonassi S, Sánchez-Alarcón J. miRNAs: A potentially valuable tool in pesticide toxicology assessment-current experimental and epidemiological data review. CHEMOSPHERE 2022; 295:133792. [PMID: 35104543 DOI: 10.1016/j.chemosphere.2022.133792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
miRNAs are responsible for the regulation of many cellular processes such as development, cell differentiation, proliferation, apoptosis, and tumor growth. Several studies showed that they can also serve as specific, stable, and sensitive markers of chemical exposure. In this review, current experimental and epidemiological data evidencing deregulation in miRNA expression in response to fungicides, insecticides or herbicides were analyzed. As shown by Venn's diagrams, miR-363 and miR-9 deregulation is associated with fungicide exposure in vitro and in vivo, while let-7, miR-155, miR-181 and miR-21 were found to be commonly deregulated by at least three different insecticides. Furthermore, let-7, miR-30, miR-126, miR-181 and miR-320 were commonly deregulated by 3 different herbicides. Notably, these 5 miRNAs were also found to be deregulated by one or more insecticides, suggesting their participation in the cellular response to pesticides, regardless of their chemical structure. All these miRNAs have been proposed as potential biomarkers for fungicide, insecticide, or herbicide exposure. These results allow us to improve our understanding of the molecular mechanisms of toxicity upon pesticide exposure, although further studies are needed to confirm these miRNAs as definitive (not potential) biomarkers of pesticide exposure.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Ambiente y Genética UATLX-CA-223 Red Temática de Toxicología de Plaguicidas, Tlaxcala, 90000, Mexico.
| | | | | | - Edmundo Bonilla
- Departamento de Ciencias de La Salud, UAM-Iztapalapa, Mexico.
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, 10000, Croatia.
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, 00166, Italy; Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, Rome, 00166, Italy.
| | - Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Ambiente y Genética UATLX-CA-223 Red Temática de Toxicología de Plaguicidas, Tlaxcala, 90000, Mexico.
| |
Collapse
|
7
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
8
|
Bharti S, Rasool F. Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol Rep 2021; 8:443-455. [PMID: 33717997 PMCID: PMC7933801 DOI: 10.1016/j.toxrep.2021.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023] Open
Abstract
The intensive application of pesticides without proper disposal management has led their excess residues to reach the neighbouring aquatic ecosystem and its inhabitants mainly fish. In natural water body pesticides get diluted, and therefore to study the silent toxic effect, a low dose of malathion (0.4 mg/L; 1/20th of 96-h LC50 value) for the different duration (1, 4, 8, 12 days) was evaluated through biochemical and histopathological biomarkers of the blood and hepatorenal tissues of Channa punctatus. With the increase in pesticide exposure periods, the biometric indices: Condition Factor (K), HSI and KSI and hepatorenal tissues weight decreased. Among the biochemical alterations in malathion exposed fish, serum glucose levels reduced by 72.23 % while protein amounts increased by 29.03 % in 12 days malathion exposed fish. Other parameters, viz., cholesterol, albumin, and phosphorous, remained the same as control fish after malathion exposure. Though serum bilirubin (total and direct) followed a biphasic response, it reduced by 60 % after 12 days of malathion exposure compared to control. Biochemical changes are reflecting the induction of compensatory energy mechanism to cope up with the malathion stress. The transaminases and ALP biomarker enzymes used for liver functionality test declined in the order of AST > ALP > ALT in a time-dependent manner in malathion exposed fish serum, indicating liver injuries in fish due to malathion. The elevated levels of urea, BUN, creatinine, and Ca2+ in the serum of 12 days of malathion exposed fish revealed renal dysfunction. In the treated fish, antioxidative (SOD and CAT) and LPO activities were significantly higher in the liver followed by the kidney than their controls. Further, histological examination registered progressive damages in the hepatorenal tissues of malathion exposed fish with the increased exposure periods compared to control. Thus, even a small dose of malathion in water could severely deteriorate the structure and function of tissue on its prolonged exposure, and therefore utmost care should be taken to prevent their seepage into the water bodies.
Collapse
Affiliation(s)
- Sandhya Bharti
- Department of Zoology, Fish Physiology and Ecotoxicology Laboratory, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India
| | - Fazle Rasool
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India
| |
Collapse
|