1
|
Villani S, Imperio D, Panza L, Confalonieri L, Fallarini S, Aprile S, Del Grosso E. Exploring the pharmaceutical potential of ammonium organotrifluoroborate functional group: Comprehensive chemical, metabolic, and plasma stability evaluation. Eur J Med Chem 2024; 279:116844. [PMID: 39260320 DOI: 10.1016/j.ejmech.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Boronated carbohydrate derivatives have good potential for targeting malignant cells in Boron Neutron Capture Therapy (BNCT) due to their preferential glucose uptake. In particular, with the introduction of the ammonium trifluoroborate moiety, boronated sugars can function as both BNCT agents and Positron Emission Tomography (PET) tracers. Their 18F radiolabeling allows real-time tracking of biodistribution. This study evaluates the chemical, metabolic, and plasma stability of ammonium trifluoroborates for pharmaceutical purposes using LC-HRMS, presenting stability data under various conditions -acidic, basic, pseudophysiological, and oxidative- and highlighting degradation products and mechanisms. The data are supported by 1H NMR and 19F NMR. Metabolic and plasma stabilities, along with preliminary toxicological data (MTT assays), are also provided to better predict the clinical applicability of these compounds.
Collapse
Affiliation(s)
- Salvatore Villani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Daniela Imperio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Luigi Panza
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Laura Confalonieri
- Carbon Bionanotechnology Group - CICbiomaGUNE, Parque Científico y Tecnológico de Gipuzkoa, Paseo Miramón 194, 20014 Donostia - San Sebastián Gipuzkoa, Spain
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
2
|
Yadav S, Vashisth C, Chaudhri V, Singh K, Raghav N, Pundeer R. Development of potential cathepsin B inhibitors: Synthesis of new bithiazole derivatives, in vitro studies supported with theoretical docking studies. Int J Biol Macromol 2024; 281:136290. [PMID: 39383913 DOI: 10.1016/j.ijbiomac.2024.136290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Cysteine cathepsins play a crucial role in cancer, inflammation, and the regulation of degenerative processes such as apoptosis, making them significant targets in drug development. In this study, we designed, synthesized, and characterized sixteen novel bi-thiazole derivatives, confirmed by 1H NMR, 13C NMR, HRMS, and X-ray analysis, which demonstrated significant therapeutic potential as inhibitors of cathepsin B. The synthesized thiazoles showed % inhibition in the range of 59.11-77.32, out of which bis-methoxyphenyl derivative 8k showed the highest inhibition of 77.32 % with IC50 and ki values of 1.04 nM and 0.52 nM, respectively. Methoxy-containing derivatives 8c, 8g, 8i, 8j, 8l, and 8o showed improved inhibition over methyl and chloro. In silico studies of the new bis-thiazole compounds at cathepsin B active sites supported the in vitro findings, indicating that the synthesized bis-thiazole esters are promising therapeutic candidates for conditions involving elevated cathepsin B levels.
Collapse
Affiliation(s)
- Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Vishwas Chaudhri
- Department of Chemistry, JC Bose University of Science & Technology YMCA, Faridabad, India
| | - Karan Singh
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Rewari, Haryana 122502, India.
| |
Collapse
|
3
|
Fang J, Tang Y, Gong C, Huang Z, Feng Y, Liu G, Tang Y, Li W. Prediction of Cytochrome P450 Substrates Using the Explainable Multitask Deep Learning Models. Chem Res Toxicol 2024; 37:1535-1548. [PMID: 39196814 DOI: 10.1021/acs.chemrestox.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Cytochromes P450 (P450s or CYPs) are the most important phase I metabolic enzymes in the human body and are responsible for metabolizing ∼75% of the clinically used drugs. P450-mediated metabolism is also closely associated with the formation of toxic metabolites and drug-drug interactions. Therefore, it is of high importance to predict if a compound is the substrate of a given P450 in the early stage of drug development. In this study, we built the multitask learning models to simultaneously predict the substrates of five major drug-metabolizing P450 enzymes, namely, CYP3A4, 2C9, 2C19, 2D6, and 1A2, based on the collected substrate data sets. Compared to the single-task model and conventional machine learning models, the multitask fingerprints and graph neural networks model achieved superior performance with the average AUC values of 90.8% on the test set. Notably, the multitask model demonstrated its good performance on the small amount of substrate data sets such as CYP1A2, 2C9, and 2C19. In addition, the Shapley additive explanation and the attention mechanism were used to reveal specific substructures associated with P450 substrates, which were further confirmed and complemented by the substructure mining tool and the literature.
Collapse
Affiliation(s)
- Jiaojiao Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changda Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zejun Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Vashisth C, Kaushik T, Vashisth N, Raghav N. Cinnamaldehyde hydrazone derivatives as potential cathepsin B inhibitors: parallel in-vitro investigation in liver and cerebrospinal fluid. Int J Biol Macromol 2024; 272:132684. [PMID: 38810845 DOI: 10.1016/j.ijbiomac.2024.132684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cathepsins as a potential target for anticancer drugs has led to extensive research in the development of their inhibitors. In the present study, we designed, synthesized, and characterized several cinnamaldehyde schiff bases employing diverse hydrazines, as potential cathepsin B inhibitors. The parallel studies on cathepsin B isolated from liver and cerebrospinal fluid unveiled the significance of the synthesized compounds as cathepsin B inhibitors at nanomolar concentrations. The compound, 7 exhibited the highest inhibition of 83.48 % and 82.96 % with an IC50 value of 0.06 nM and 0.09 nM for liver and cerebrospinal fluid respectively. The inhibitory potential of synthesized compounds has been extremely effective in comparison to previous reports. With the help of molecular docking studies using iGEMDOCK software, we found that the active site -CH2SH group is involved in the case of α-N-benzoyl-D, l-arginine-b-naphthylamide (BANA), curcumin 2, 3, 6, and 7. For toxicity prediction, ADMET studies were conducted and the synthesized compounds emerged to be non-toxic. The results obtained from the in vitro studies were supported with in silico studies. The synthesized cinnamaldehyde schiff bases can be considered promising drug candidates in conditions with elevated cathepsin B levels.
Collapse
Affiliation(s)
- Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Tushar Kaushik
- Lala Lajpat Rai Memorial Medical College (LLRM), Meerut, Uttar Pradesh 250004, India
| | - Naman Vashisth
- Mahatma Gandhi Memorial Medical College, Indore, Madhya Pradesh 452001, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
5
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
6
|
Zhu H, Zhang Y, Duan Y, Pei K, Tu S, Chen Y, Cai H. Pharmacokinetic evaluation of Sinisan containing vinegar-processed products in depressive rats, a comprehensive perspective of 'individual herb, herb-pair, and herbal formula'. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116817. [PMID: 37343654 DOI: 10.1016/j.jep.2023.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical formula for the treatment of depression, the clinical application of vinegar-processed products of Bupleuri Radix (Bupleurum chinense DC., BR) and Paeoniae Radix Alba (Paeonia lactiflora Pall., PRA) contained in Sinisan (SNS) is still controversial. AIM OF THE STUDY Three levels of 'individual herb, herb-pair, and herbal formula' were employed to investigate whether and how the processing of main drugs affected the active constituents of pharmacokinetics in SNS, as well as their impacts on the hepatic CYP450 enzyme. MATERIALS AND METHODS Rats were subjected to construct a chronic unpredictable mild stimulation (CUMS) model. A rapid and sensitive ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analytical method was developed and validated for simultaneously quantitative evaluation of thirteen potential active compounds of SNS in depressive rat plasma, and successfully applied to a holistic comparison of pharmacokinetics. The differences in pharmacokinetic parameters based on three different forms of drug composition from BR and PRA before and after vinegar-processing were compared. Meanwhile, qRT-PCR and Western Blot were utilized to explore the metabolic activity of three isoforms of CYP450 enzyme scattered in the livers of depressive rats. RESULTS The characteristic pharmacokinetics profiles of thirteen representative constituents in CUMS rats were influenced by vinegar-processing of BR and PRA and/or the compatibility. In detail, there were significant differences in the Cmax, AUC0-24, AUC0-∞, t1/2, and MRT0-24 of most constituents among the three different forms of drug composition from BR and PRA before and after vinegar-processing, with the most obvious changes in six constituents from the adjuvant and mediating guide drugs. And also, the pharmacokinetic parameters of seven constituents from BR and PRA in SNS containing vinegar-processed products obviously changed after compatibility. Additionally, the mRNA and protein levels of CYP1A2, CYP2E1, and CYP3A1 were observed to increase significantly with the processing of BR and PRA and the combination/formulation. CONCLUSIONS In conclusion, SNS containing vinegar-processed products was more conducive to the absorption of most activated constituents compared to the original formula in vivo. The vinegar-processing of BR and PRA and the compatibility co-contribute to the pharmacokinetic variability of active compounds of SNS in CUMS rats, and the extent of contribution varies among drugs, which might be related to the regulation of the hepatic drug metabolizing enzymes. The finding of the investigation could help to better understand how active compounds metabolized in vivo, which might be helpful for guiding the clinical application of SNS containing vinegar-processed products.
Collapse
Affiliation(s)
- Hui Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yating Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Ke Pei
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.
| | - Sicong Tu
- Brain & Mind Centre, Faculty of Medicine & Health, The University of Sydney, NSW, 2050, Australia.
| | - Yijing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
7
|
Hlavica P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J Inorg Biochem 2023; 241:112150. [PMID: 36731371 DOI: 10.1016/j.jinorgbio.2023.112150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing oxifunctionalization of a vast array of endogenous and exogenous compounds. The present review focuses on assessment of the topology of prospective determinants in substrate entry and product release channels of mammalian P450s, steering the conformational dynamics of substrate accessibility and productive ligand orientation toward the iron-oxene core. Based on a generalized, CYP3A4-related construct, the sum of critical elements from diverse target enzymes was found to cluster within the known substrate recognition sites. The majority of prevalent substrate access/egress tunnels revealed to be of fairly balanced functional importance. The hydrophobicity profile of the candidates revealed to be the most salient feature in functional interaction throughout the conduits, while bulkiness of the residues imposes steric restrictions on substrate traveling. Thus, small amino acids such as prolines and glycines serve as hinges, driving conformational flexibility in ligand passage. Similarly, bottlenecks in the tunnel architecture, being narrowest encounter points within the CYP3A4 model, have a vital function in substrate selectivity along with clusters of aromatic amino acids acting as gatekeepers. In addition, peripheral patches in conduits may house determinants modulating allosteric cooperativity between remote and central domains in the P450 structure. Remarkably, the bulk critical residues lining tunnels in the various isozymes reside in helices B'/C and F/G inclusive of their interhelical turns as well as in helix I. This suggests these regions to represent hotspots for targeted genetic engineering to tailor more sophisticated mammalian P450s exploitable in industrial, biotechnological and medicinal areas.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub Institut fuer Pharmakologie und Toxikologie, Goethestrasse 33, D80336 Muenchen, Germany.
| |
Collapse
|
8
|
Yehya AH, Asif M, Abdul Majid AM, Oon CE. Polymolecular botanical drug of Orthosiphon stamineus extract (C5OSEW5050ESA) as a complementary therapy to overcome gemcitabine resistance in pancreatic cancer cells. J Tradit Complement Med 2022; 13:39-50. [PMID: 36685076 PMCID: PMC9845648 DOI: 10.1016/j.jtcme.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Background and aim Gemcitabine remains the cornerstone of pancreatic cancer treatment, despite exhibiting a modest effect on patient survival due to the development of drug resistance. Nuvastatic™ polymolecular botanical drug Orthosiphon stamineus (O. stamineus) is a folklore Asian herbal medicine that is used for the treatment of a variety of ailments. However, little is known about the mechanism of actions of the Nuvastatic™ polymolecular botanical drug of O. stamineus as a complementary therapy in resistant pancreatic cancer. It is postulated that the proprietary O. stamineus extract formulation (ID: C5EOSEW5050ESA) in Nuvastatic™ may sensitise resistant pancreatic cancer cells to gemcitabine. This study was conducted to assess the cytotoxic activity and synergistic effects of C5EOSEW5050ESA in gemcitabine-resistant pancreatic cancer cells. Experimental procedure The effects of C5EOSEW5050ESA treatment on cell viability, multidrug-resistant genes, epithelial-mesenchymal transition, cellular senescence, cell death, and Notch signalling pathway were evaluated in gemcitabine-resistant Panc-1 cells. Results and conclusion C5EOSEW5050ESA sensitised gemcitabine resistant cells towards C5EOSEW5050ESA-gemcitabine combination treatment by reducing the expression of multidrug-resistant genes and epithelial-mesenchymal transition markers in gemcitabine-resistant cells compared to the control group, possibly through the inhibition of Notch signalling. This study provides valuable insight into using C5EOSEW5050ESA as a potential complementary treatment for resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ashwaq H.S. Yehya
- Vatche and Tamar Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA,Institute for Research in Molecular Medicine (INFORMM), Unversiti Sains Malaysia, Penang, 11800, Malaysia
| | - Muhammad Asif
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Amin M.S. Abdul Majid
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, 0200, Australia
| | - Chern E. Oon
- Institute for Research in Molecular Medicine (INFORMM), Unversiti Sains Malaysia, Penang, 11800, Malaysia,Corresponding author.
| |
Collapse
|
9
|
Feng JY, Xie YQ, Zhang P, Zhou Q, Khan A, Zhou ZH, Xia XS, Liu L. Hepatoprotective Polysaccharides from Geranium wilfordii: Purification, Structural Characterization, and Their Mechanism. Molecules 2022; 27:molecules27113602. [PMID: 35684541 PMCID: PMC9182495 DOI: 10.3390/molecules27113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional Chinese Medicine is generally used as a decoction to guard health. Many active ingredients in the decoction are chemical ingredients that are not usually paid attention to in phytochemical research, such as polysaccharides, etc. Based on research interest in Chinese herbal decoction, crude polysaccharides from G. wilfordii (GCP) were purified to obtain two relatively homogeneous polysaccharides, a neutral polysaccharide (GNP), and an acid polysaccharide (GAP) by various chromatographic separation methods, which were initially characterized by GC-MS, NMR, IR, and methylation analysis. Studies on the hepatoprotective activity of GCP in vivo showed that GCP might be a potential agent for the prevention and treatment of acute liver injury by inhibiting the secretion levels of ALT, AST, IL-6, IL-1β, TNF-α, and MDA expression levels, increasing SOD, and the GSH-Px activity value. Further, in vitro assays, GNP and GAP, decrease the inflammatory response by inhibiting the secretion of IL-6 and TNF-α, involved in the STAT1/T-bet signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Feng
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Yan-Qing Xie
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Peng Zhang
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Qian Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Afsar Khan
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Zhi-Hong Zhou
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
| | - Xian-Song Xia
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| | - Lu Liu
- Yunnan Yunzhong Research Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.-Y.F.); (Y.-Q.X.); (P.Z.); (Q.Z.); (Z.-H.Z.)
- Correspondence: (L.L.); (X.-S.X.)
| |
Collapse
|
10
|
Adetutu A, Owoade AO, Adegbola PI. Inhibitory effects of ethyl acetate and butanol fractions from Morinda lucida benth on benzene-induced leukemia in mice. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
12
|
Takamura N, Yamazaki A, Sakuma N, Hirose S, Sakai M, Takani Y, Yamashita S, Oshima M, Kuroki M, Tozawa Y. Catalytic promiscuity of rice 2-oxoglutarate/Fe(II)-dependent dioxygenases supports xenobiotic metabolism. PLANT PHYSIOLOGY 2021; 187:816-828. [PMID: 34608958 PMCID: PMC8491036 DOI: 10.1093/plphys/kiab293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The rice (Oryza sativa) 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenase HIS1 mediates the catalytic inactivation of five distinct β-triketone herbicides (bTHs). By assessing the effects of plant growth regulators on HIS1 enzyme function, we found that HIS1 mediates the hydroxylation of trinexapac-ethyl (TE) in the presence of Fe2+ and 2OG. TE blocks gibberellin biosynthesis, and we observed that its addition to culture medium induced growth retardation of rice seedlings in a concentration-dependent manner. Similar treatment with hydroxylated TE revealed that hydroxylation greatly attenuated the inhibitory effect of TE on plant growth. Forced expression of HIS1 in a rice his1 mutant also reduced its sensitivity to TE compared with that of the nontransformant. These results indicate that HIS1 metabolizes TE and thereby markedly reduces its ability to slow plant growth. Furthermore, analysis of five rice HIS1-like (HSL) proteins revealed that OsHSL2 and OsHSL4 also metabolize TE in vitro. HSLs from wheat (Triticum aestivum) and barley (Hordeum vulgare) also showed such activity. In contrast, OsHSL1, which shares the highest amino acid sequence identity with HIS1 and metabolizes the bTH tefuryltrione, did not manifest TE-metabolizing activity. Site-directed mutagenesis of OsHSL1 informed by structural models showed that substitution of three amino acids with the corresponding residues of HIS1 conferred TE-metabolizing activity similar to that of HIS1. Our results thus reveal a catalytic promiscuity of HIS1 and its related enzymes that support xenobiotic metabolism in plants.
Collapse
Affiliation(s)
- Natsuki Takamura
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Akihiko Yamazaki
- Tsukuba Research & Technology Center, SDS Biotech K.K., Tsukuba, 300-2646, Japan
| | - Nozomi Sakuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634, Japan
| | - Motonari Sakai
- Tsukuba Research & Technology Center, SDS Biotech K.K., Tsukuba, 300-2646, Japan
| | - Yukie Takani
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Satoshi Yamashita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, 920-1192, Japan
| | - Masahiro Oshima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634, Japan
| | - Makoto Kuroki
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, 305-8518, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| |
Collapse
|
13
|
Thomas L, Birangal SR, Ray R, Sekhar Miraj S, Munisamy M, Varma M, S V CS, Banerjee M, Shenoy GG, Rao M. Prediction of potential drug interactions between repurposed COVID-19 and antitubercular drugs: an integrational approach of drug information software and computational techniques data. Ther Adv Drug Saf 2021; 12:20420986211041277. [PMID: 34471515 PMCID: PMC8404633 DOI: 10.1177/20420986211041277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/24/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: Tuberculosis is a major respiratory disease globally with a higher prevalence in Asian and African countries than rest of the world. With a larger population of tuberculosis patients anticipated to be co-infected with COVID-19 infection, an ongoing pandemic, identifying, preventing and managing drug–drug interactions is inevitable for maximizing patient benefits for the current repurposed COVID-19 and antitubercular drugs. Methods: We assessed the potential drug–drug interactions between repurposed COVID-19 drugs and antitubercular drugs using the drug interaction checker of IBM Micromedex®. Extensive computational studies were performed at a molecular level to validate and understand the drug–drug interactions found from the Micromedex drug interaction checker database at a molecular level. The integrated knowledge derived from Micromedex and computational data was collated and curated for predicting potential drug–drug interactions between repurposed COVID-19 and antitubercular drugs. Results: A total of 91 potential drug–drug interactions along with their severity and level of documentation were identified from Micromedex between repurposed COVID-19 drugs and antitubercular drugs. We identified 47 pharmacodynamic, 42 pharmacokinetic and 2 unknown DDIs. The majority of our molecular modelling results were in line with drug–drug interaction data obtained from the drug information software. QT prolongation was identified as the most common type of pharmacodynamic drug–drug interaction, whereas drug–drug interactions associated with cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) inhibition and induction were identified as the frequent pharmacokinetic drug–drug interactions. The results suggest antitubercular drugs, particularly rifampin and second-line agents, warrant high alert and monitoring while prescribing with the repurposed COVID-19 drugs. Conclusion: Predicting these potential drug–drug interactions, particularly related to CYP3A4, P-gp and the human Ether-à-go-go-Related Gene proteins, could be used in clinical settings for screening and management of drug–drug interactions for delivering safer chemotherapeutic tuberculosis and COVID-19 care. The current study provides an initial propulsion for further well-designed pharmacokinetic-pharmacodynamic-based drug–drug interaction studies. Plain Language Summary
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | | | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Gautham G Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Professor and Head, Department of Pharmacy Practice, Coordinator, Centre for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
14
|
Thevis M, Piper T, Thomas A. Recent advances in identifying and utilizing metabolites of selected doping agents in human sports drug testing. J Pharm Biomed Anal 2021; 205:114312. [PMID: 34391136 DOI: 10.1016/j.jpba.2021.114312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
Probing for evidence of the administration of prohibited therapeutics, drugs and/or drug candidates as well as the use of methods of doping in doping control samples is a central assignment of anti-doping laboratories. In order to accomplish the desired analytical sensitivity, retrospectivity, and comprehensiveness, a considerable portion of anti-doping research has been invested into studying metabolic biotransformation and elimination profiles of doping agents. As these doping agents include lower molecular mass drugs such as e.g. stimulants and anabolic androgenic steroids, some of which further necessitate the differentiation of their natural/endogenous or xenobiotic origin, but also higher molecular mass substances such as e.g. insulins, growth hormone, or siRNA/anti-sense oligonucleotides, a variety of different strategies towards the identification of employable and informative metabolites have been developed. In this review, approaches supporting the identification, characterization, and implementation of metabolites exemplified by means of selected doping agents into routine doping controls are presented, and challenges as well as solutions reported and published between 2010 and 2020 are discussed.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Bonn, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
15
|
Holmer M, de Bruyn Kops C, Stork C, Kirchmair J. CYPstrate: A Set of Machine Learning Models for the Accurate Classification of Cytochrome P450 Enzyme Substrates and Non-Substrates. Molecules 2021; 26:molecules26154678. [PMID: 34361831 PMCID: PMC8347321 DOI: 10.3390/molecules26154678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The interaction of small organic molecules such as drugs, agrochemicals, and cosmetics with cytochrome P450 enzymes (CYPs) can lead to substantial changes in the bioavailability of active substances and hence consequences with respect to pharmacological efficacy and toxicity. Therefore, efficient means of predicting the interactions of small organic molecules with CYPs are of high importance to a host of different industries. In this work, we present a new set of machine learning models for the classification of xenobiotics into substrates and non-substrates of nine human CYP isozymes: CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. The models are trained on an extended, high-quality collection of known substrates and non-substrates and have been subjected to thorough validation. Our results show that the models yield competitive performance and are favorable for the detection of CYP substrates. In particular, a new consensus model reached high performance, with Matthews correlation coefficients (MCCs) between 0.45 (CYP2C8) and 0.85 (CYP3A4), although at the cost of coverage. The best models presented in this work are accessible free of charge via the "CYPstrate" module of the New E-Resource for Drug Discovery (NERDD).
Collapse
Affiliation(s)
- Malte Holmer
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (M.H.); (C.d.B.K.); (C.S.)
| | - Christina de Bruyn Kops
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (M.H.); (C.d.B.K.); (C.S.)
| | - Conrad Stork
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (M.H.); (C.d.B.K.); (C.S.)
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Informatics, Universität Hamburg, 20146 Hamburg, Germany; (M.H.); (C.d.B.K.); (C.S.)
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
16
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Adegbola AE, Fadahunsi OS, Alausa A, Abijo AZ, Balogun TA, Aderibigbe TS, Semire B, Adegbola PI. Computational prediction of nimbanal as potential antagonist of respiratory syndrome coronavirus. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100617. [PMID: 34075339 PMCID: PMC8161736 DOI: 10.1016/j.imu.2021.100617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022] Open
Abstract
The high pathogenic nature of the Middle East Respiratory coronavirus (MER) and the associated high fatality rate demands an urgent attention from researchers. Because there is currently no approved drug for the management of the disease, research efforts have been intensified towards the discovery of a potent drug for the treatment of the disease. Papain Like protease (PLpro) is one of the key proteins involved in the viral replication. We therefore docked forty-six compounds already characterized from Azadirachta indica, Xylopia aethipica and Allium cepa against MERS-CoV-PLpro. The molecular docking analysis was performed with AutoDock 1.5.6 and compounds which exhibit more negative free energy of binding, and low inhibition constant (Ki) with the protein (MERS-CoV-PLpro) were considered potent. The physicochemical and pharmacokinetic properties of the compounds were predicted using the Swissadme web server. Twenty-two of the compounds showed inhibition potential similar to dexamethasone and remdesvir, which had binding affinity of -6.8 and -6.3 kcal/mol respectively. The binding affinity of the compounds ranged between -3.4 kcal/mol and -7.7 kcal/mol whereas; hydroxychloroquine had a binding affinity of -4.5 kcal/mol. Among all the compounds, nimbanal and verbenone showed drug likeliness, they did not violate the Lipinski rule neither were they inhibitors of drug-metabolizing enzymes. Both nimbanal and verbenone were further post-scored with MM/GBSA and the binding free energy of nimbanal (-25.51 kcal/mol) was comparable to that of dexamethasone (-25.46 kcal/mol). The RMSD, RMSF, torsional angle, and other analysis following simulation further substantiate the efficacy of nimbanal as an effective drug candidate. In conclusion, our study showed that nimbanal is a more promising therapeutic agent and could be a lead for the discovery of a new drug that may be useful in the management of severe respiratory coronavirus syndrome.
Collapse
Affiliation(s)
- Aanuoluwa Eunice Adegbola
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Olumide Samuel Fadahunsi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Abdulahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Ayodeji Zabdiel Abijo
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| | | | - Taiwo Sarah Aderibigbe
- Department of Science Laboratory Technology, Biological Sciences, Microbiology Unit, the Oke Ogun Polytechnic Saki, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| |
Collapse
|
18
|
Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Methyl-hydroxylation and subsequent oxidation to produce carboxylic acid is the major metabolic pathway of tolbutamide in chimeric TK-NOG mice transplanted with human hepatocytes. Xenobiotica 2021; 51:582-589. [PMID: 33455497 DOI: 10.1080/00498254.2021.1875515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tolbutamide is an oral anti-hyperglycaemic agent used to treat non-insulin-dependent diabetes mellitus with species-dependent metabolic profiles. In this study, we investigated tolbutamide metabolism in chimeric TK-NOG mice transplanted with human hepatocytes (humanised-liver mice).Substantial 4-hydroxytolbutamide and 4-carboxytolbutamide production was observed in hepatocytes from humanised-liver mice (Hu-Liver cells) and humans, whereas 4-carboxytolbutamide production was not detected in mouse hepatocytes. In Hu-Liver cells, 4-hydroxytolbutamide formation was inhibited by sulfaphenazole (CYP2C9 inhibitor), whereas 4-carboxytolbutamide formation was inhibited by raloxifene/ethinyloestradiol (aldehyde oxidase inhibitor) and disulfiram (aldehyde dehydrogenase inhibitor).After a single oral dose of tolbutamide (10 mg/kg), the plasma levels of 4-carboxytolbutamide and p-tolylsulfonylurea were higher in humanised-liver mice than in TK-NOG mice. Urinary excretion was the predominant route (>99% of unchanged drug and metabolites detected in excreta) of elimination in both groups. 4-Carboxytolbutamide was the most abundant metabolite in humanised-liver mouse urine, as similarly reported for humans, whereas 4-hydroxytolbutamide was predominantly excreted in TK-NOG mouse urine.These results suggest that humanised-liver mice might represent a suitable animal model for studying the successive oxidative metabolism of tolbutamide by multiple drug-metabolising enzymes. Future work is warranted to study the general nature of primary alcohol metabolism using humanised-liver mice.
Collapse
Affiliation(s)
- Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | |
Collapse
|
19
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
20
|
Chen C, Liu X, Qi S, C P Dias A, Yan J, Zhang X. Hepatoprotective effect of Phellinus linteus mycelia polysaccharide (PL-N1) against acetaminophen-induced liver injury in mouse. Int J Biol Macromol 2020; 154:1276-1284. [PMID: 31758991 DOI: 10.1016/j.ijbiomac.2019.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
Edible and medicinal fungi are one of the major sources for extraction and identification of polysaccharides, which are important biological response modifiers with notable antitumor, hepatoprotective effect and other pharmacological activities. This study aimed to evaluate the hepatoprotective effect of isolated Phellinus linteus polysaccharide (PL-N1) against acetaminophen (APAP) induced liver injury in mice. Mice were treated intragastrical with PL-N1 (10, 50 and 100 mg/kg) and APAP (300 mg/kg) injection. APAP alone caused increased serum aminotransferase levels and changes in hepatic histopathology, promoted oxidative stress by increasing lipid peroxidation and decreasing anti-oxidant enzyme activities, leading to hepatocellular necrosis and reduced liver function. PL-N1 decreased cytochrome P450 2E1 (CYP2E1) expression and hepatic release of cytokines to enhance the level of phase II enzymes. Also, PL-N1 obviously accelerates the metabolism of APAP in the rat model. Molecular docking analysis revealed the α-d-glucopyranosyl exhibit maximum interaction (-8.099) against CYP2E1 as comparably less than standard drug silibinin (-13.767). PL-N1 could be a promising natural substance for ameliorating acute APAP-induced oxidative stress and hepatic injury.
Collapse
Affiliation(s)
- Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, Shaanxi Province 723000, China
| | - Xiang Liu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, Shaanxi Province 723000, China
| | - Shanshan Qi
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, Shaanxi Province 723000, China
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Department of Biology, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jingkun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, Shaanxi Province 723000, China; Centre of Molecular and Environmental Biology (CBMA), University of Minho, Department of Biology, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
21
|
Lokwani DK, Sarkate AP, Karnik KS, Nikalje APG, Seijas JA. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD). Molecules 2020; 25:molecules25071622. [PMID: 32244772 PMCID: PMC7181161 DOI: 10.3390/molecules25071622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is one of the prime reasons where most of drugs fail to accomplish their clinical trials. The enzyme CYP3A4, which belongs to the superfamily of cytochrome P450 enzymes (CYP), helps in the metabolism of a large number of drugs in the body. The enzyme CYP3A4 catalyzes oxidative chemical processes and shows a very broad range of ligand specificity. The understanding of the compound’s structure where oxidation would take place is crucial for the successful modification of molecules to avoid unwanted metabolism and to increase its bioavailability. For this reason, it is required to know the site of metabolism (SOM) of the compounds, where compounds undergo enzymatic oxidation. It can be identified by predicting the accessibility of the substrate’s atom toward oxygenated Fe atom of heme in a CYP protein. The CYP3A4 enzyme is highly flexible and can take significantly different conformations depending on the ligand with which it is being bound. To predict the accessibility of substrate atoms to the heme iron, conventional protein-rigid docking methods failed due to the high flexibility of the CYP3A4 protein. Herein, we demonstrated and compared the ability of the Glide extra precision (XP) and Induced Fit docking (IFD) tool of Schrodinger software suite to reproduce the binding mode of co-crystallized ligands into six X-ray crystallographic structures. We extend our studies toward the prediction of SOM for compounds whose experimental SOM is reported but the ligand-enzyme complex crystal structure is not available in the Protein Data Bank (PDB). The quality and accuracy of Glide XP and IFD was determined by calculating RMSD of docked ligands over the corresponding co-crystallized bound ligand and by measuring the distance between the SOM of the ligand and Fe atom of heme. It was observed that IFD reproduces the exact binding mode of available co-crystallized structures and correctly predicted the SOM of experimentally reported compounds. Our approach using IFD with multiple conformer structures of CYP3A4 will be one of the effective methods for SOM prediction.
Collapse
Affiliation(s)
- Deepak K. Lokwani
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist-Dhule 425405, Maharashtra, India
- Correspondence:
| | - Aniket P. Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharashtra, India; (A.P.S.); (K.S.K.)
| | - Kshipra S. Karnik
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharashtra, India; (A.P.S.); (K.S.K.)
| | | | - Julio A. Seijas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad of Santiago De Compostela, Alfonso X el Sabio, Lugo 27002, Spain;
| |
Collapse
|
22
|
Bruno A, Costantino G, Sartori L, Radi M. The In Silico Drug Discovery Toolbox: Applications in Lead Discovery and Optimization. Curr Med Chem 2019; 26:3838-3873. [PMID: 29110597 DOI: 10.2174/0929867324666171107101035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Discovery and development of a new drug is a long lasting and expensive journey that takes around 20 years from starting idea to approval and marketing of new medication. Despite R&D expenditures have been constantly increasing in the last few years, the number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. To cope with this issue, a number of in silico techniques are currently being used for an early stage evaluation/prediction of potential safety issues, allowing to increase the drug-discovery success rate and reduce costs associated with the development of a new drug. METHODS In the present review, we will analyse the early steps of the drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. RESULTS A comprehensive list of widely used in silico tools, databases, and public initiatives that can be effectively implemented and used in the drug discovery pipeline has been provided. A few examples of how these tools can be problem-solving and how they may increase the success rate of a drug discovery and development program have been also provided. Finally, selected examples where the application of in silico tools had effectively contributed to the development of marketed drugs or clinical candidates will be given. CONCLUSION The in silico toolbox finds great application in every step of early drug discovery: (i) target identification and validation; (ii) hit identification; (iii) hit-to-lead; and (iv) lead optimization. Each of these steps has been described in details, providing a useful overview on the role played by in silico tools in the decision-making process to speed-up the discovery of new drugs.
Collapse
Affiliation(s)
- Agostino Bruno
- Experimental Therapeutics Unit, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16 - 20139 Milano, Italy
| | - Gabriele Costantino
- Dipartimento di Scienze degli Alimenti e del Farmaco, Universita degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Luca Sartori
- Experimental Therapeutics Unit, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16 - 20139 Milano, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Universita degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
23
|
Hill T, Conolly RB. Development of a Novel AOP for Cyp2F2-Mediated Lung Cancer in Mice. Toxicol Sci 2019; 172:1-10. [PMID: 31407013 DOI: 10.1093/toxsci/kfz185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/26/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
Traditional methods for carcinogenicity testing rely heavily on the rodent bioassay as the standard for identification of tumorigenic risk. As such, identification of species-specific outcomes and/or metabolism are a frequent argument for regulatory exemption. One example is the association of tumor formation in the mouse lung after exposure to Cyp2F2 ligands. The adverse outcome pathway (AOP) framework offers a theoretical platform to address issues of species specificity that is consistent, transparent, and capable of integrating data from new approach methodologies as well as traditional data streams. A central premise of the AOP concept is that pathway progression from the molecular initiating event (MIE) implies a definable “response-response” (R-R) relationship between each key event (KE) that drives the pathway towards a specific adverse outcome (AO). This article describes an AOP for lung cancer in the mouse from an MIE of Cyp2F2-specific reactive metabolite formation, advancing through KE that include protein and/or nucleic acid adducts, diminished Club Cell 10 kDa (CC10) protein expression, hyperplasia of CC10 deficient Club cells, and culminating in the AO of mixed-cell tumor formation in the distal airways. This tumor formation is independent of route of exposure and our AOP construct is based on overlapping mechanistic events for naphthalene, styrene, ethyl benzene, isoniazid, and fluensulfone in the mouse. This AOP is intended to accelerate the explication of an apparent mouse-specific outcome and serve as a starting point for a quantitative analysis of mouse-human differences in susceptibility to the tumorigenic effects of Cyp2F2 ligands.
Collapse
Affiliation(s)
- Thomas Hill
- Oak Ridge Institute for Science and Education Fellow at the National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
24
|
Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int J Mol Sci 2019; 20:ijms20040987. [PMID: 30823507 PMCID: PMC6412807 DOI: 10.3390/ijms20040987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
We computed the network of channels of the 3A4 isoform of the cytochrome P450 (CYP) on the basis of 16 crystal structures extracted from the Protein Data Bank (PDB). The calculations were performed with version 2 of the CCCPP software that we developed for this research project. We identified the minimal cost paths (MCPs) output by CCCPP as probable ways to access to the buried active site. The algorithm of calculation of the MCPs is presented in this paper, with its original method of visualization of the channels. We found that these MCPs constitute four major channels in CYP3A4. Among the many channels proposed by Cojocaru et al. in 2007, we found that only four of them open in 3A4. We provide a refined description of these channels together with associated quantitative data.
Collapse
|
25
|
Lu N, Meng F, Xu W, Tang L, Xu Y. Molecular simulation study of CYP2B6 polymorphism with and without psoralen. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nan Lu
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, People’s Republic of China
| | - Weiren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, People’s Republic of China
| | - Lida Tang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, People’s Republic of China
| | - Youjun Xu
- School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| |
Collapse
|
26
|
Zeng X, Luo T, Li J, Li G, Zhou D, Liu T, Zou X, Pandey A, Luo Z. Transcriptomics-based identification and characterization of 11 CYP450 genes of Panax ginseng responsive to MeJA. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1094-1103. [PMID: 30321253 DOI: 10.1093/abbs/gmy120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 11/14/2022] Open
Abstract
Cytochromes P450 (CYP450s), a superfamily of mono-oxygenases, are essential to generate highly functionalized secondary metabolites in plants and contribute to the diversification of specialized triterpenoid biosynthesis in eudicots. However, screening and identifying the exact CYP450 genes in ginsenoside biosynthesis is extremely challenging due to existence of large quantities of members in CYP450 superfamily. Therefore, to screen the CYP450 genes involved in ginsenoside biosynthesis, transcriptome dataset of Panax ginseng was created in our previous work using the technique of the next-generation sequencing. On the basis of bioinformatics analysis, 16 putative CYP450 genes with significant differential expression were screened from the dataset and submitted to GenBank, in which 11 of them have been cloned. Methyl jasmonate (MeJA) was used as an elicitor to analyze the expression profiles of candidate CYP450 genes by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The results of qRT-PCR analysis revealed that the expression of some CYP450 genes were strongly induced by MeJA and showed different transcription levels at different treatment time points. Homology analysis indicated that each putative CYP450 protein of P. ginseng has a conserved domain consisting of E-E-R-F-P-R-G. The CYP450 genes were screened and cloned here to enrich the resources of CYP450 genes, and the results of bioinformatics analysis provided a foundation to further identify the function of CYP450s involved in ginsenoside biosynthesis. Furthermore, this study facilitated the construction of microbial cell factories for increasing the production of ginsenosides by means of metabolic engineering.
Collapse
Affiliation(s)
- Xu Zeng
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Tiao Luo
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Jijia Li
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Gui Li
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Donghua Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Tuo Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Xian Zou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Aparna Pandey
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Zhiyong Luo
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
27
|
Shi Y, Xu J, Qiao Y, Zhang W, Liu D, Qin M, Liu G, Dong M. Effects of shuanghuanglian injection on the activities of CYP1A2, 2C11, 2D1 and 3A1/2 in rats in vivo and in vitro. Xenobiotica 2018; 49:905-911. [PMID: 30231664 DOI: 10.1080/00498254.2018.1523487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shuanghuanglian Injection (SHLI), one of the most popular herbal prescription in China, has been commonly used to treat pneumonia, tonsillitis, and other respiratory diseases caused by bacterium and virus. This study is to investigate the effects of SHLI on the activities of Cytochrome P450 (CYP) 1A2, 2C11, 2D1 and 3A1/2 in rats. Sixteen rats were randomly divided into two groups (SHLI-treated and blank control). They were administered SHLI or physiological saline for consecutive seven days. On day eight, 16 animals were administrated cocktail drugs as probe substrates of the four CYP in vivo. In addition, other four probe drugs were added, respectively, into incubation systems of rat liver microsomes (RLM) to assess the effects of SHLI on the four CYP isoforms in vitro. SHLI exhibited an inductive effect on CYP2C11 in vivo by decreasing Cmax, t1/2 and AUC0-∞ of tolbutamide, while the main pharmacokinetic parameters of caffeine, metoprolol and dapsone have no significant changes. In vitro study, SHLI showed no significant effects on the activities of CYP1A2, 2D1 and 3A1/2, but increasing the metabolism of tolbutamide in RLM. SHLI induced the activities of CYP2C11, but had no significant effects on the activities of CYP1A2, CYP2D1 and CYP3A1/2 in rats.
Collapse
Affiliation(s)
- Yuan Shi
- a Department of Pharmacy , The Second Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Juan Xu
- a Department of Pharmacy , The Second Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Yan Qiao
- a Department of Pharmacy , The Second Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Wenlong Zhang
- a Department of Pharmacy , The Second Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Duo Liu
- b Department of Pharmacy , The Third Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Mengnan Qin
- a Department of Pharmacy , The Second Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Gaofeng Liu
- a Department of Pharmacy , The Second Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Mei Dong
- b Department of Pharmacy , The Third Affiliated Hospital, Harbin Medical University , Harbin , China
| |
Collapse
|
28
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
29
|
Abstract
Pharmacogenetics is the study of how genetics influences drug treatment outcomes. Much research has been conducted to identify and characterize gene variants that impact the pharmacokinetic and pharmacodynamic aspects of medications used to treat neurologic and psychiatric disorders. This chapter reviews the current state of pharmacogenetic aspects of these treatments. Medications with supporting pharmacogenetic information in product labeling, clinical guidelines, or important mechanistic implications are discussed. At this time, clinically relevant genetic variation in drug metabolizing enzymes may inform drug dosing for a number of medications metabolized in the liver. Additionally, genetic variation in immunological genes may be tested to assess risk for severe hypersensitivity reactions to some anticonvulsant drugs. Finally, a growing body of research highlights that genetic polymorphisms in drug targets may influence symptom response or tolerability to some treatments.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
30
|
Schyman P, Liu R, Desai V, Wallqvist A. vNN Web Server for ADMET Predictions. Front Pharmacol 2017; 8:889. [PMID: 29255418 PMCID: PMC5722789 DOI: 10.3389/fphar.2017.00889] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 11/23/2022] Open
Abstract
In drug development, early assessments of pharmacokinetic and toxic properties are important stepping stones to avoid costly and unnecessary failures. Considerable progress has recently been made in the development of computer-based (in silico) models to estimate such properties. Nonetheless, such models can be further improved in terms of their ability to make predictions more rapidly, easily, and with greater reliability. To address this issue, we have used our vNN method to develop 15 absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction models. These models quickly assess some of the most important properties of potential drug candidates, including their cytotoxicity, mutagenicity, cardiotoxicity, drug-drug interactions, microsomal stability, and likelihood of causing drug-induced liver injury. Here we summarize the ability of each of these models to predict such properties and discuss their overall performance. All of these ADMET models are publically available on our website (https://vnnadmet.bhsai.org/), which also offers the capability of using the vNN method to customize and build new models.
Collapse
Affiliation(s)
- Patric Schyman
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Ruifeng Liu
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Valmik Desai
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, United States
| |
Collapse
|
31
|
Escobedo-González R, Vargas-Requena CL, Moyers-Montoya E, Aceves-Hernández JM, Nicolás-Vázquez MI, Miranda-Ruvalcaba R. In silico Study of the Pharmacologic Properties and Cytotoxicity Pathways in Cancer Cells of Various Indolylquinone Analogues of Perezone. Molecules 2017; 22:E1060. [PMID: 28672837 PMCID: PMC6152338 DOI: 10.3390/molecules22071060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
Several indolylquinone analogues of perezone, a natural sesquiterpene quinone, were characterized in this work by theoretical methods. In addition, some physicochemical, toxicological and metabolic properties were predicted using bioinformatics software. The predicted physicochemical properties are in agreement with the solubility and cLogP values, the penetration across the cell membrane, and absorption values, as well as with a possible apoptosis-activated mechanism of cytotoxic action. The toxicological predictions suggest no mutagenic, tumorigenic or reproductive effects of the four target molecules. Complementarily, the results of a performed docking study show high scoring values and hydrogen bonding values in agreement with the cytotoxicity IC50 value ranking, i.e: indolylmenadione > indolylperezone > indolylplumbagine > indolylisoperezone. Consequently, it is possible to suggest an appropriate apoptotic pathway for each compound. Finally, potential metabolic pathways of the molecules were proposed.
Collapse
Affiliation(s)
- René Escobedo-González
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, C.P. 54740, México.
| | - Claudia Lucia Vargas-Requena
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Henry Dunant #4600, Ciudad Juárez 32310, México.
| | - Edgar Moyers-Montoya
- Instituto de Ingeniería y tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, México.
| | - Juan Manuel Aceves-Hernández
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, C.P. 54740, México.
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, C.P. 54740, México.
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, C.P. 54740, México.
| |
Collapse
|
32
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
33
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
34
|
Gul T, Bischoff R, Permentier HP. Mechanism of aromatic hydroxylation of lidocaine at a Pt electrode under acidic conditions. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Cheng Y, Liang X, Feng L, Liu D, Qin M, Liu S, Liu G, Dong M. Effects of phillyrin and forsythoside A on rat cytochrome P450 activitiesin vivoandin vitro. Xenobiotica 2016; 47:297-303. [PMID: 27310729 DOI: 10.1080/00498254.2016.1193262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yanwen Cheng
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Xiaoling Liang
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Liying Feng
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Duo Liu
- Department of Pharmacy, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mengnan Qin
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Shuang Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Gaofeng Liu
- Department of Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, and
| | - Mei Dong
- Department of Pharmacy, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Effect of [Cu(4,7-dimethyl-1,10-phenanthroline)(acetylacetonato)]NO3, Casiopeína III-Ea, on the activity of cytochrome P450. Toxicol In Vitro 2016; 33:16-22. [DOI: 10.1016/j.tiv.2016.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/27/2016] [Accepted: 02/15/2016] [Indexed: 11/19/2022]
|
37
|
Saad M, Cavanaugh K, Verbueken E, Pype C, Casteleyn C, Van Ginneken C, Van Cruchten S. Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. J Toxicol Sci 2016; 41:1-11. [DOI: 10.2131/jts.41.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Moayad Saad
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Kate Cavanaugh
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Evy Verbueken
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Casper Pype
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Christophe Casteleyn
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Chris Van Ginneken
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| |
Collapse
|
38
|
Séïde M, Marion M, Mateescu MA, Averill-Bates DA. The fungicide thiabendazole causes apoptosis in rat hepatocytes. Toxicol In Vitro 2015; 32:232-9. [PMID: 26748015 DOI: 10.1016/j.tiv.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 02/04/2023]
Abstract
Many pharmaceutical drugs cause hepatotoxicity in humans leading to severe liver diseases, representing a serious public health issue. This study investigates the ability of the anthelmintic and antifungal drug thiabendazole to cause cell death by apoptosis and metabolic changes in primary cultures of rat hepatocytes. Thiabendazole (200-500 μM) induced apoptosis in hepatocytes after 1 to 24h, causing loss of mitochondrial membrane potential, cytochrome c release from mitochondria, Fas-associated death domain (FADD) translocation from the cytosol to membranes, and activation of caspases-3, -8 and -9. Thus, thiabendazole activated both the mitochondrial and death receptor pathways of apoptosis. Under these conditions, cell death by necrosis was not detected following exposure to thiabendazole (100-500 μM) for 24-48 h, measured by lactate dehydrogenase release and propidium iodide uptake. Furthermore, thiabendazole increased activities of cytochrome P450 (CYP) isoenzymes CYP1A and CYP2B after 24 and 48 h, determined by 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) activities, respectively. An important finding is that thiabendazole can eliminate hepatocytes by apoptosis, which could be a sensitive marker for hepatic damage and cell death. This study improves understanding of the mode of cell death induced by thiabendazole, which is important given that humans and animals are exposed to this compound as a pharmaceutical agent and in an environmental context.
Collapse
Affiliation(s)
- Marilyne Séïde
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Michel Marion
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada
| | - Diana A Averill-Bates
- Department of Chemistry, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Department of Biological sciences, Université du Québec à Montréal (University of Quebec at Montreal), Canada; Research Centre for Environmental Toxicology (TOXEN), Université du Québec à Montréal (University of Quebec at Montreal), Canada; BioMedical Research Centre, Université du Québec à Montréal (University of Quebec at Montreal), Canada.
| |
Collapse
|
39
|
Vliegenthart ADB, Tucker CS, Del Pozo J, Dear JW. Zebrafish as model organisms for studying drug-induced liver injury. Br J Clin Pharmacol 2015; 78:1217-27. [PMID: 24773296 DOI: 10.1111/bcp.12408] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review highlights the strengths and weaknesses of using zebrafish as a high-throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different from that of the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways to those in humans; they possess a wide range of cytochrome P450 enzymes that enable metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of hepatotoxic drugs, the zebrafish liver develops histological patterns of injury comparable to those of mammalian liver, and biomarkers for liver injury can be quantified in the zebrafish circulation. The zebrafish immune system is similar to that of mammals, but the zebrafish inflammatory response to DILI is not yet defined. In order to quantify DILI in zebrafish, a wide variety of methods can be used, including visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring of histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers.
Collapse
Affiliation(s)
- A D Bastiaan Vliegenthart
- Pharmacology, Toxicology and Therapeutics, British Heart Foundation, Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | | | |
Collapse
|
40
|
Hirota T, Ieiri I. Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 2015; 11:1435-47. [PMID: 26058399 DOI: 10.1517/17425255.2015.1056149] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lipid-lowering drugs, especially hydroxymethylglutaryl-CoA reductase inhibitors (statins), are widely used in the treatment and prevention of atherosclerotic diseases. The benefits of statins are well documented. However, myotoxic side effects, which can sometimes be severe, including myopathy or rhabdomyolysis, have been associated with the use of statins. In some cases, this toxicity is associated with pharmacokinetic alterations. Potent inhibitors of CYP 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin is metabolized by CYP2C9, while pravastatin, rosuvastatin and pitavastatin are not susceptible to inhibition by any CYP. AREAS COVERED This review discusses the pharmacokinetic aspects of the drug-drug interaction with statins and genetic polymorphisms in CYPs, which are involved in the metabolism of statins, and highlights the importance of establishing a system utilizing electronic medical information practically to avoid adverse drug reactions. EXPERT OPINION An understanding of the mechanisms underlying statin interactions will help to minimize drug interactions and develop statins that are less prone to adverse interactions. Quantitatively analyzed information for the low-density lipoprotein cholesterol lowering effects of statin based on electronic medical records may be useful for avoiding the adverse effect of statins.
Collapse
Affiliation(s)
- Takeshi Hirota
- a Kyushu University, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Department of Clinical Pharmacokinetics , Fukuoka 8128582, Japan +81 92 642 6657 ; +81 92 642 6660 ;
| | | |
Collapse
|
41
|
Meyer AH, Dybala-Defratyka A, Alaimo PJ, Geronimo I, Sanchez AD, Cramer CJ, Elsner M. Cytochrome P450-catalyzed dealkylation of atrazine by Rhodococcus sp. strain NI86/21 involves hydrogen atom transfer rather than single electron transfer. Dalton Trans 2015; 43:12175-86. [PMID: 24851834 DOI: 10.1039/c4dt00891j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 enzymes are responsible for a multitude of natural transformation reactions. For oxidative N-dealkylation, single electron (SET) and hydrogen atom abstraction (HAT) have been debated as underlying mechanisms. Combined evidence from (i) product distribution and (ii) isotope effects indicate that HAT, rather than SET, initiates N-dealkylation of atrazine to desethyl- and desisopropylatrazine by the microorganism Rhodococcus sp. strain NI86/21. (i) Product analysis revealed a non-selective oxidation at both the αC and βC-atom of the alkyl chain, which is expected for a radical reaction, but not SET. (ii) Normal (13)C and (15)N as well as pronounced (2)H isotope effects (εcarbon: -4.0‰ ± 0.2‰; εnitrogen: -1.4‰ ± 0.3‰, KIEH: 3.6 ± 0.8) agree qualitatively with calculated values for HAT, whereas inverse (13)C and (15)N isotope effects are predicted for SET. Analogous results are observed with the Fe(iv)[double bond, length as m-dash]O model system [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-iron(iii)-chloride + NaIO4], but not with permanganate. These results emphasize the relevance of the HAT mechanism for N-dealkylation by P450.
Collapse
Affiliation(s)
- Armin H Meyer
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Scharkoi O, Becker R, Esslinger S, Weber M, Nehls I. Predicting sites of cytochrome P450-mediated hydroxylation applied to CYP3A4 and hexabromocyclododecane. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.898845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem J 2015; 466:37-44. [PMID: 25406993 DOI: 10.1042/bj20141296] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of how drugs are metabolized and excreted is an essential component of understanding their fate within and among target and non-target organisms. Thiabendazole (TBZ) was the first benzimidazole (BZ) to be commercially available and remains one of the most important anthelmintic drugs for medical and veterinary use. We have characterized how Caenorhabditis elegans metabolizes and excretes TBZ. We have shown that TBZ directly binds to the nuclear hormone receptor (NHR)-176 and that this receptor is required for the induction by TBZ of the cytochrome P450 (CYP) encoded by cyp-35d1. Further, RNAi inhibition of cyp-35d1 in animals exposed to TBZ causes a reduction in the quantity of a hydroxylated TBZ metabolite and its glucose conjugate that is detected in C. elegans tissue by HPLC. This final metabolite is unique to nematodes and we also identify two P-glycoproteins (PGPs) necessary for its excretion. Finally, we have shown that inhibiting the metabolism we describe increases the susceptibility of C. elegans to TBZ in wild-type and in resistant genetic backgrounds.
Collapse
|
44
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
45
|
HIĽOVSKÁ LUCIA, JENDŽELOVSKÝ RASTISLAV, FEDOROČKO PETER. Potency of non-steroidal anti-inflammatory drugs in chemotherapy. Mol Clin Oncol 2015; 3:3-12. [PMID: 25469262 PMCID: PMC4251142 DOI: 10.3892/mco.2014.446] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer cell resistance, particularly multidrug resistance (MDR), is the leading cause of chemotherapy failure. A number of mechanisms involved in the development of MDR have been described, including the overexpression of ATP-dependent membrane-bound transport proteins. The enhanced expression of these proteins, referred to as ATP-binding cassette (ABC) transporters, results in an increased cellular efflux of the cytotoxic drug, thereby reducing its intracellular concentration to an ineffective level. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently consumed drugs worldwide. NSAIDs are mainly used to treat pain, fever and inflammation. Numerous studies suggest that NSAIDs also show promise as anticancer drugs. NSAIDs have been shown to reduce cancer cell proliferation, motility, angiogenesis and invasiveness. In addition to these effects, NSAIDs have been shown to induce apoptosis in a wide variety of cancer types. Moreover, several studies have indicated that NSAIDs may sensitise cancer cells to the antiproliferative effects of cytotoxic drugs by modulating ABC transporter activity. Therefore, combining specific NSAIDs with chemotherapeutic drugs may have clinical applications. Such treatments may allow for the use of a lower dose of cytotoxic drugs and may also enhance the effectiveness of therapy. The objective of this review was to discuss the possible role of NSAIDs in the modulation of antitumour drug cytotoxicity. We particularly emphasised on the use of COX-2 inhibitors in combination with chemotherapy and the molecular and cellular mechanisms underlying the alterations in outcome that occur in response to this combination therapy.
Collapse
Affiliation(s)
- LUCIA HIĽOVSKÁ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - RASTISLAV JENDŽELOVSKÝ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| | - PETER FEDOROČKO
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 040 01 Košice, Slovakia
| |
Collapse
|
46
|
Markov GV, Baskaran P, Sommer RJ. The Same or Not the Same: Lineage-Specific Gene Expansions and Homology Relationships in Multigene Families in Nematodes. J Mol Evol 2014; 80:18-36. [DOI: 10.1007/s00239-014-9651-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/06/2014] [Indexed: 11/30/2022]
|
47
|
Lee JE, Kwon TH, Gu SJ, Lee DH, Kim BM, Lee JY, Lee JK, Seo SH, Pae AN, Keum G, Cho YS, Min SJ. Efficient synthesis of mibefradil analogues: an insight into in vitro stability. Org Biomol Chem 2014; 12:5669-81. [PMID: 24964394 DOI: 10.1039/c4ob00504j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article describes the synthesis and biological evaluation of a chemical library of mibefradil analogues to investigate the effect of structural modification on in vitro stability. The construction of the dihydrobenzopyran structure in mibefradil derivatives 2 was achieved through two efficient approaches based on a diastereoselective intermolecular Reformatsky reaction and an intramolecular carbonyl-ene cyclization. In particular, the second strategy through the intramolecular carbonyl-ene reaction led to the formation of a key intermediate 3 in a short and highly stereoselective way, which has allowed for practical and convenient preparation of analogues 2. Using this protocol, we could obtain 22 new mibefradil analogues 2, which were biologically tested for in vitro efficacies against T-type calcium channels and metabolic stabilities. Among the synthesized compounds, we found that analogue 2aa containing a dihydrobenzopyran ring and a secondary amine linker showed high % remaining activities of the tested CYP enzymes retaining the excellent T-type calcium channel blocking activity. These findings indicated that the structural modification of 1 was effective for improving in vitro stability, i.e., reducing CYP inhibition and metabolic degradation.
Collapse
Affiliation(s)
- Ji Eun Lee
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rudik AV, Dmitriev AV, Lagunin AA, Filimonov DA, Poroikov VV. Metabolism site prediction based on xenobiotic structural formulas and PASS prediction algorithm. J Chem Inf Model 2014; 54:498-507. [PMID: 24417355 DOI: 10.1021/ci400472j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new ligand-based method for the prediction of sites of metabolism (SOMs) for xenobiotics has been developed on the basis of the LMNA (labeled multilevel neighborhoods of atom) descriptors and the PASS (prediction of activity spectra for substances) algorithm and applied to predict the SOMs of the 1A2, 2C9, 2C19, 2D6, and 3A4 isoforms of cytochrome P450. An average IAP (invariant accuracy of prediction) of SOMs calculated by the leave-one-out cross-validation procedure was 0.89 for the developed method. The external validation was made with evaluation sets containing data on biotransformations for 57 cardiovascular drugs. An average IAP of regioselectivity for evaluation sets was 0.83. It was shown that the proposed method exceeds accuracy of SOM prediction by RS-Predictor for CYP 1A2, 2D6, 2C9, 2C19, and 3A4 and is comparable to or better than SMARTCyp for CYP 2C9 and 2D6.
Collapse
Affiliation(s)
- Anastasia V Rudik
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences , Building 10/8, Pogodinskaya Str., Moscow, 119121, Russia
| | | | | | | | | |
Collapse
|
49
|
Fuhrhop JH. Porphyrin assemblies and their scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1-12. [PMID: 24138176 DOI: 10.1021/la402228g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The chlorophyll and heme molecules of chloroplasts and mitochondria are brought to life by "the global fold of the protein scaffolds". Proteins in hydrophobic cell regions touch the dye platelets from both sides, pushing and orienting them according to their life-spending activities in light and electron transfers. The conjugated π-electron systems or planarity of the porphyrin macrocycles are never disturbed. Most artificial porphyrin assemblies contain meso-tetraphenylporphyrins (TPPs), because the four phenyl groups rotate freely and carry their substituents above or below the macrocycle. A single porphyrin molecule can, for example, be attached to an anionic surface with ammonium groups on its 2,3-carbons, be located within a hydrophobic membrane with its alkyl chains on the 4-position, and then fixate a cationic polymer with 4,5-sulphonates. Charged TPPs also show unique spectroscopic changes at different pH values and a reversible loss of the macrocycle's planarity. On smooth silicate, graphite, or gold scaffolds TPPs have been attached irreversibly as single molecules, as extended non-covalent H or J aggregates as well as acetylene or thiophene-linked polymers. Soft, mobile porphyrin ladders conduct excited electrons ("excitons") better than rigid porphyrin wires ("polarons").
Collapse
Affiliation(s)
- J-H Fuhrhop
- Institut für Organische Chemie der Freien Universität Berlin , Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
50
|
Zharkova MS, Sobolev BN, Yu Oparina N, Veselovsky AV, Archakov AI. Prediction of amino acid residues participated in substrate recognition by cytochrome P450 subfamilies with broad substrate specificity. J Mol Recognit 2013; 26:86-91. [PMID: 23334916 DOI: 10.1002/jmr.2251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/12/2012] [Accepted: 10/26/2012] [Indexed: 12/12/2022]
Abstract
Cytochromes P450 comprise a large superfamily and several of their isoforms play a crucial role in metabolism of xenobiotics, including drugs. Although these enzymes demonstrate broad and cross-substrate specificity, different cytochrome P450 subfamilies exhibit certain selectivity for some types of substrates. Analysis of amino acid residues of the active sites of six cytochrome subfamilies (CYP1А, CYP2А, CYP2С, CYP2D, CYP2E and CYP3А) enables to define subfamily-specific patterns that consist of four residues. These residues are located on the periphery of the active sites of these cytochromes. We suggest that they can form a primary binding site at the entrance to the active site, defining cytochrome substrate recognition.
Collapse
Affiliation(s)
- Maria S Zharkova
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences, Pogodinskaya str 10, Moscow 119121, Russia
| | | | | | | | | |
Collapse
|