1
|
Hang S, Wu W, Wang Y, Sheng R, Fang Y, Guo R. Daphnetin, a Coumarin in Genus Stellera Chamaejasme Linn: Chemistry, Bioactivity and Therapeutic Potential. Chem Biodivers 2022; 19:e202200261. [PMID: 35880614 DOI: 10.1002/cbdv.202200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Coumarins is a huge family of phenolic compounds containing a common structure of 2 H -1-benzopyran-2-one. Nowadays, more than 1,300 natural-based coumarins have been identified in a variety of plants, bacteria and fungi, many of them exhibited promising biomedical performance. Daphnetin (7,8-dihydroxycoumarin) is a typical coumarin associated with a couple of bioactivities such as anti-cancer, antibacterial, anti-inflammatory and anti-arthritis. In the treatment of diseases, it has been verified that daphnetin has outstanding therapeutic effects on diabetes, arthritis, transplant rejection, cancer and even on central nervous system diseases. Herein, we summarized the chemical synthetic methodologies, bioactivities, therapeutic potentials and structure-activity relationships of daphnetin and its derivatives. Hopefully, this review would be beneficial for the discovery of new coumarin-based biomedicine in the near future.
Collapse
Affiliation(s)
- Sijin Hang
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Wenhui Wu
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Yinan Wang
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Ruilong Sheng
- Shanghai Ocean University, College of food science and technology, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, Shanghai, CHINA
| | - Yiwen Fang
- Shantou University, Chemistry, College of Science, Department of Chemistry, College of Science, Shantou University, Shantou 515063,, Shanghai, CHINA
| | - Ruihua Guo
- Shanghai Ocean University, College of fisheries and life science, Shanghai Ocean University,No.999,Huchenghuan Road,Shanghai,P.R.China, 201306, Shanghai, CHINA
| |
Collapse
|
2
|
Zhao FK, Shi RB, Sun YB, Yang SY, Chen LZ, Fang BH. A Comprehensive Study to Identify Major Metabolites of an Amoxicillin-Sulbactam Hybrid Molecule in Rats and Its Metabolic Pathway Using UPLC-Q-TOF-MS/MS. Metabolites 2022; 12:662. [PMID: 35888786 PMCID: PMC9319383 DOI: 10.3390/metabo12070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Amoxicillin and sulbactam are widely used compound drugs in animal food. The amoxicillin-sulbactam hybrid molecule can achieve better curative effects through the combination of the two drugs. However, its pharmacokinetic behavior needs to be explored. In this study, a randomized crossover experiment was performed to investigate the metabolism of the novel amoxicillin-sulbactam hybrid molecule in rats after gastric administration. Ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) was used to isolate and to identify the metabolites in rats. Amoxicillin, amoxicilloic acid, amoxicillin diketopiperazine, and sulbactam were eventually detected in the plasma, liver, urine, and kidneys; no hybrid molecules and their metabolites were detected in feces. The in vivo metabolism results showed that the hybrid molecule was absorbed into the body in the intestine, producing amoxicillin and sulbactam, then amoxicillin was partially metabolized to amoxicilloic acid and amoxicillin diketopiperazine, which are eventually excreted in the urine by the kidneys. In this study, four major metabolites of the amoxicillin-sulbactam hybrid molecule were identified and their metabolic pathways were speculated, which provided scientific data for understanding the metabolism of the hybrid molecule and for its clinical rational use.
Collapse
Affiliation(s)
- Fei-Ke Zhao
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; (F.-K.Z.); (R.-B.S.); (S.-Y.Y.)
| | - Ren-Bin Shi
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; (F.-K.Z.); (R.-B.S.); (S.-Y.Y.)
| | - Yu-Bin Sun
- Shenzhen Institute for Drug Control, Shenzhen 518057, China;
| | - Shuang-Yun Yang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; (F.-K.Z.); (R.-B.S.); (S.-Y.Y.)
| | - Liang-Zhu Chen
- Guangdong Dahuanong Animal Health Products Co., Ltd., Yunfu 527400, China;
| | - Bing-Hu Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510630, China
| |
Collapse
|