1
|
Kutz DF, Fröhlich S, Rudisch J, Müller K, Voelcker-Rehage C. Sex-dependent performance differences in curvilinear aiming arm movements in octogenarians. Sci Rep 2023; 13:9777. [PMID: 37328601 PMCID: PMC10276047 DOI: 10.1038/s41598-023-36889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
In an aging society, it is necessary to detect the cognitive decline of individuals at an early stage using simple measurement methods. This makes early health care possible for those affected. The aim of the study was to develop a classifier for cognitive state in older adults with and without mild cognitive impairment (MCI) based on kinematic parameters of linear and curvilinear aiming arm movements. In a group of 224 older adults over 80 years of age (cognitively healthy and MCI), the movement duration and intersegment intervals of linear and curvilinear arm movements of 20 cm were recorded. Movement duration was significantly longer in the curvilinear condition than in the straight movement, and MCI participants required significantly more time than cognitively healthy participants. Post-hoc analysis on the fluidity of movement in the curvilinear condition showed that MCI men had significantly longer inter-segmental intervals than non-MCI men. No difference was found in women. Based on the inter-segmental intervals, a simple classifier could be developed that correctly classified 63% of the men. In summary, aiming arm movements are only conditionally suitable as a classifier for cognitive states. For the construction of an ideal classifier, age-related degeneration of cortical and subcortical motor areas should be considered.
Collapse
Affiliation(s)
- Dieter F Kutz
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany.
| | - Stephanie Fröhlich
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| | - Julian Rudisch
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| | - Katrin Müller
- Faculty of Behavioural and Social Sciences, Institute of Human Movement Science and Health, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Muenster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| |
Collapse
|
2
|
Finger Tapping as a Biomarker to Classify Cognitive Status in 80+-Year-Olds. J Pers Med 2022; 12:jpm12020286. [PMID: 35207773 PMCID: PMC8878665 DOI: 10.3390/jpm12020286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
This study examined the association between finger tapping and cognitive function in a group of 225 elderly participants (116 males; age 79–92 years; M = 82.5; SD = 2.4). Finger tapping was assessed in two conditions: self-selected pace and fast pace. Based on cognitive assessments, including the MoCA and CERA-NP test battery, participants were classified as cognitively healthy individuals (CHI), participants with mild cognitive impairments (MCI), and those with possible MCI (pMCI). Results of the analyses show significant differences between groups, sex and the group × sex interaction in four parameters for the self-selected pace condition and eight parameters for the fast pace condition. These parameters were used for classification by means of linear discriminant analysis (LDA). The first LDA component showed significant differences between CHI and pMCI and between CHI and MCI. Furthermore, the second LDA component showed significant differences between CHI and pMCI as well as between pMCI and MCI. Nevertheless, the algorithm correctly classified only 50% of participants, regardless of group, suggesting that tapping parameters are only partially useful for classification in early stages of dementia. We discuss these findings in terms of the diadochokinetic nature of finger tapping as associated with the age-related degeneration of cortical and subcortical motor areas.
Collapse
|
3
|
Logue RN, Goldenkoff ER, Vesia M, Brown SH. Measuring hand sensory function and force control in older adults: Are current hand assessment tools enough? J Gerontol A Biol Sci Med Sci 2021; 77:1405-1412. [PMID: 34908115 DOI: 10.1093/gerona/glab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ability to grasp and manipulate objects is essential for performing activities of daily living. However, there is limited information regarding age-related behavioral differences in hand sensorimotor function due, in part, to the lack of assessment tools capable of measuring subtle but important differences in hand function. The purpose of this study was to demonstrate performance differences in submaximal force control and tactile pattern recognition in healthy older adults using two custom-designed sensorimotor assessment tools. METHODS Sensorimotor function was assessed in 13 healthy older adults (mean age 72.2 ±5.5y, range: 65-84y) and 13 young adults (mean age 20 ±1.4y, range: 19-23y). Clinical assessments included the Montreal Cognitive Assessment (MoCA), monofilament testing, maximum voluntary contraction (MVC), and Grooved Pegboard Test. Sensorimotor assessments included submaximal (5, 20% MVC) grip force step-tracking and tactile pattern recognition tasks. RESULTS Clinical assessments revealed no or minimal group differences in MVC, monofilament thresholds, and MoCA. However, sensorimotor assessments showed that older adults took longer to discriminate tactile patterns and had poorer accuracy than young adults. Older adults also produced submaximal forces less smoothly than young adults at the 20% force level while greater variability in force maintenance was seen at 5% but not 20% MVC. CONCLUSIONS These results demonstrate the ability to integrate higher-order tactile information and control low grip forces is impaired in older adults despite no differences in grip strength or cognition. These findings underscore the need for more sensitive evaluation methods that focus on sensorimotor ability reflective of daily activities.
Collapse
Affiliation(s)
- Rachel N Logue
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elana R Goldenkoff
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan H Brown
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Connectivity modulations induced by reach&grasp movements: a multidimensional approach. Sci Rep 2021; 11:23097. [PMID: 34845265 PMCID: PMC8630117 DOI: 10.1038/s41598-021-02458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Reach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements performed with each upper limb. Simultaneously, we obtained a 64-channel EEG, synchronized with the reach&grasp movement time points. We elaborated EEG signals with EEGLAB 12 in order to obtain event related synchronization/desynchronization (ERS/ERD) and lagged linear coherence between Brodmann areas. Finally, we evaluated network topology via sLORETA software, measuring network local and global efficiency (clustering and path length) and the overall balance (small-worldness). We observed a widespread ERD in α and β bands during reach&grasp, especially in the centro-parietal regions of the hemisphere contralateral to the movement. Regarding functional connectivity, we observed an α lagged linear coherence reduction among Brodmann areas contralateral to the arm involved in the reach&grasp movement. Interestingly, left arm movement determined widespread changes of α lagged linear coherence, specifically among right occipital regions, insular cortex and somatosensory cortex, while the right arm movement exerted a restricted contralateral sensory-motor cortex modulation. Finally, no change between rest and movement was found for clustering, path length and small-worldness. Through a synchronized acquisition, we explored the cortical correlates of the reach&grasp movement. Despite EEG perturbations, suggesting that the non-dominant reach&grasp network has a complex architecture probably linked to the necessity of a higher visual control, the pivotal topological measures of network local and global efficiency remained unaffected.
Collapse
|
5
|
Mantilla J, Wang D, Bargiotas I, Wang J, Cao J, Oudre L, Vidal PP. Motor style at rest and during locomotion in human. J Neurophysiol 2020; 123:2269-2284. [PMID: 32319842 DOI: 10.1152/jn.00019.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Humans exhibit various motor styles that reflect their intra- and interindividual variability when implementing sensorimotor transformations. This opens important questions, such as, At what point should they be readjusted to maintain optimal motor control? Do changes in motor style reveal the onset of a pathological process and can these changes help rehabilitation and recovery? To further investigate the concept of motor style, tests were carried out to quantify posture at rest and motor control in 18 healthy subjects under four conditions: walking at three velocities (comfortable walking, walking at 4 km/h, and race walking) and running at maximum velocity. The results suggest that motor control can be conveniently decomposed into a static component (a stable configuration of the head and column with respect to the gravitational vertical) and dynamic components (head, trunk, and limb movements) in humans, as in quadrupeds, and both at rest and during locomotion. These skeletal configurations provide static markers to quantify the motor style of individuals because they exhibit large variability among subjects. Also, using four measurements (jerk, root mean square, sample entropy, and the two-thirds power law), it was shown that the dynamics were variable at both intra- and interindividual levels during locomotion. Variability increased following a head-to -toe gradient. These findings led us to select dynamic markers that could define, together with static markers, the motor style of a subject. Finally, our results support the view that postural and motor control are subserved by different neuronal networks in frontal, sagittal, and transversal planes.NEW & NOTEWORTHY During human locomotion, motor control can be conveniently decomposed into a static and dynamic components. Variable dynamics were observed at both the intra- and interindividual levels during locomotion. Variability increased following a head-to-toe gradient. Finally, our results support the view that postural and motor control are subserved by different neuronal networks in the frontal, sagittal, and transversal planes.
Collapse
Affiliation(s)
- Juan Mantilla
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France
| | - Danping Wang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China.,Plateforme Sensorimotricité, CNRS, INSERM, Paris, France
| | - Ioannis Bargiotas
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France
| | - Junhong Wang
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Jiuwen Cao
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| | - Laurent Oudre
- L2TI, Sorbonne Paris Nord University, Villetaneuse, France
| | - Pierre-Paul Vidal
- Université de Paris, CNRS, SSA, École Normale Supérieure Paris-Saclay, Centre Borelli, Paris, France.,Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
6
|
Müller K, Fröhlich S, Germano AMC, Kondragunta J, Agoitia Hurtado MFDC, Rudisch J, Schmidt D, Hirtz G, Stollmann P, Voelcker-Rehage C. Sensor-based systems for early detection of dementia (SENDA): a study protocol for a prospective cohort sequential study. BMC Neurol 2020; 20:84. [PMID: 32145744 PMCID: PMC7060588 DOI: 10.1186/s12883-020-01666-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Dementia and cognitive decline are serious social and economic burdens. An increase in the population of older people, as well as longer lifespans mean that numbers of dementia cases are exponentially rising. Neuropathological changes associated with dementia are thought to appear before the clinical manifestation of cognitive symptoms, i.e., memory impairments. Further, some older adults (OA) experience cognitive decline before it can be objectively diagnosed. For optimal care of these patients, it is necessary to detect cognitive decline and dementia at an early stage. In this vein, motor, sensory, and neurophysiological declines could be promising factors if found to be present before the onset of cognitive impairment. Hence, the objective of the SENDA study is to develop a multi-dimensional sensor-based instrument that allows early detection of cognitive decline or dementia in OA with the help of cognitive, sensory, motor, and neurophysiological parameters before its clinical manifestation. Methods/design In the cohort sequential study, participants are assigned to one of three study groups depending on their cognitive status: 1. cognitively healthy individuals (CHI), 2. subjectively cognitively impaired persons (SCI), or 3. (possible) mildly cognitively impaired persons (pMCI, MCI). All groups take part in the same cognitive (e.g., executive function tests), motor (e.g., gait analyses, balance tests), sensory (e.g., vibration perception threshold test, proprioception tests), and neurophysiological (e.g., electroencephalograms) measurements. Depending on the time at which participants are included into the study, all measurements are repeated up to four times in intervals of 8 months within 3 years to identify associations with cognitive changes over time. Discussion This study aims to detect possible motor, sensory, neurophysiological, and cognitive predictors to develop an early screening tool for dementia and its pre-stages in OA. Thus, affected persons could receive optimal health care at an earlier time point to maintain their health resources. Trial status The study is ongoing. The recruitment of participants will be continued until May 2020.
Collapse
Affiliation(s)
- Katrin Müller
- Department of Sports Psychology (with focus on prevention and rehabilitation), Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany.
| | - Stephanie Fröhlich
- Department of Sports Psychology (with focus on prevention and rehabilitation), Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany
| | - Andresa M C Germano
- Department of Human Locomotion, Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Jyothsna Kondragunta
- Department of Digital Signal Processing and Circuit Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Julian Rudisch
- Department of Sports Psychology (with focus on prevention and rehabilitation), Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany.,Department of Neuromotor Behavior and Exercise, University of Münster, Münster, Germany
| | - Daniel Schmidt
- Department of Human Locomotion, Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Gangolf Hirtz
- Department of Digital Signal Processing and Circuit Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Peter Stollmann
- Department of Analysis, Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Germany
| | - Claudia Voelcker-Rehage
- Department of Sports Psychology (with focus on prevention and rehabilitation), Institute of Human Movement Science and Health, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Thüringer Weg 11, 09126, Chemnitz, Germany.,Department of Neuromotor Behavior and Exercise, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Monteiro TS, Zivari Adab H, Chalavi S, Gooijers J, King BBR, Cuypers K, Mantini D, Swinnen SP. Reduced Modulation of Task-Related Connectivity Mediates Age-Related Declines in Bimanual Performance. Cereb Cortex 2020; 30:4346-4360. [PMID: 32133505 DOI: 10.1093/cercor/bhaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is accompanied by marked changes in motor behavior and its neural correlates. At the behavioral level, age-related declines in motor performance manifest, for example, as a reduced capacity to inhibit interference between hands during bimanual movements, particularly when task complexity increases. At the neural level, aging is associated with reduced differentiation between distinct functional systems. Functional connectivity (FC) dedifferentiation is characterized by more homogeneous connectivity patterns across various tasks or task conditions, reflecting a reduced ability of the aging adult to modulate brain activity according to changing task demands. It is currently unknown, however, how whole-brain dedifferentiation interacts with increasing task complexity. In the present study, we investigated age- and task-related FC in a group of 96 human adults across a wide age range (19.9-74.5 years of age) during the performance of a bimanual coordination task of varying complexity. Our findings indicated stronger task complexity-related differentiation between visuomotor- and nonvisuomotor-related networks, though modulation capability decreased with increasing age. Decreased FC modulation mediated larger complexity-related increases in between-hand interference, reflective of worse bimanual coordination. Thus, the ability to maintain high motor performance levels in older adults is related to the capability to properly segregate and modulate functional networks.
Collapse
Affiliation(s)
- Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Brad Bradley Ross King
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,REVAL Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan Patrick Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Sultana A, Moffatt K. Effects of Aging on Small Target Selection with Touch Input. ACM TRANSACTIONS ON ACCESSIBLE COMPUTING 2019. [DOI: 10.1145/3300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Age-related declines in physical and cognitive function can result in target selection difficulties that hinder device operation. Previous studies have detailed the different types of target selection errors encountered, as well as how they vary with age and with input device for mouse and pen interaction. We extend this work to describe the types of age-related selection errors encountered with small touchscreen devices. Consistent with prior results, we found that older adults had longer target selection times, generated higher error rates, and encountered a broader range of selection difficulties (e.g., miss errors and slip errors) relative to a younger comparison group. However, in contrast to the patterns previously found with pen interaction, we found that miss error (i.e., both landing and lifting outside the target bounds) was a more common source of errors for older adults than slip error (i.e., landing on the target but slipping outside the target bounds before lifting). Moreover, aging influenced both miss and slip errors in our study of touch interaction, whereas for pen interaction, age has been found to influence only slip errors. These differences highlight the need to consider pen and touch interaction separately despite both being forms of direct input. Based on our findings, we discuss possible approaches for improving the accessibility of touch interaction for older adults.
Collapse
|
9
|
Pope MA, Studenka BE. Experience with Event Timing Does not Alter Emergent Timing: Further Evidence for Robustness of Event and Emergent Timing. J Mot Behav 2018; 51:113-120. [PMID: 29447617 DOI: 10.1080/00222895.2018.1432548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although, event and emergent timings are thought of as mutually exclusive, significant correlations between tapping and circle drawing (Baer, Thibodeau, Gralnick, Li, & Penhune, 2013 ; Studenka, Zelaznik, & Balasubramaniam, 2012 ; Zelaznik & Rosenbaum, 2010 ) suggest that emergent timing may not be as robust as once thought. We aimed to test this hypothesis in both a younger (18-25) and older (55-100) population. Participants performed one block of circle drawing as a baseline, then six blocks of tapping, followed by circle drawing. We examined the use of event timing. Our hypothesis that acute experience with event timing would bias an individual to use event timing during an emergent task was not supported. We, instead, support the robustness of event and emergent timing as independent timing modes.
Collapse
Affiliation(s)
- Megan A Pope
- a Department of Kinesiology and Health Science , Utah State University , Logan , UT
| | - Breanna E Studenka
- a Department of Kinesiology and Health Science , Utah State University , Logan , UT
| |
Collapse
|
10
|
Poletti C, Sleimen-Malkoun R, Decker LM, Retornaz F, Lemaire P, Temprado JJ. Strategic Variations in Fitts' Task: Comparison of Healthy Older Adults and Cognitively Impaired Patients. Front Aging Neurosci 2017; 8:334. [PMID: 28163682 PMCID: PMC5247467 DOI: 10.3389/fnagi.2016.00334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
The present study aimed at investigating how healthy older adults (HOA) and cognitively impaired patients (CIP) differ in a discrete Fitts' aiming task. Four levels of task difficulty were used, resulting from the simultaneous manipulation of the size of the target and its distance from home position. We found that movement times (MTs) followed Fitts' law in both HOA and CIP, with the latter being significantly slower and more affected by increased task difficulty. Moreover, correlation analyses suggest that lower information processing speed (IPS) and deficits in executive functions (EFs) are associated with decline of sensorimotor performance in Fitts' task. Analyses of strategic variations showed that HOA and CIP differed in strategy repertoire (which strategies they used), strategy distribution (i.e., how often they used each available strategy), and strategy execution (i.e., how quick they were with each available strategy). These findings further our understanding of how strategic variations used in a sensorimotor task are affected by cognitive impairment in older adults.
Collapse
Affiliation(s)
- Céline Poletti
- Laboratoire de Psychologie Cognitive (LPC), Aix-Marseille Université, CNRSMarseille, France; Institut des Sciences du Mouvement (ISM), Aix-Marseille Université, CNRSMarseille, France
| | - Rita Sleimen-Malkoun
- Institut des Sciences du Mouvement (ISM), Aix-Marseille Université, CNRS Marseille, France
| | | | | | - Patrick Lemaire
- Laboratoire de Psychologie Cognitive (LPC), Aix-Marseille Université, CNRS Marseille, France
| | - Jean-Jacques Temprado
- Institut des Sciences du Mouvement (ISM), Aix-Marseille Université, CNRS Marseille, France
| |
Collapse
|
11
|
Lamb DG, Correa LN, Seider TR, Mosquera DM, Rodriguez JA, Salazar L, Schwartz ZJ, Cohen RA, Falchook AD, Heilman KM. The aging brain: Movement speed and spatial control. Brain Cogn 2016; 109:105-111. [PMID: 27658213 PMCID: PMC6557661 DOI: 10.1016/j.bandc.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND/OBJECTIVES With aging, people commonly develop motor slowing (bradykinesia). Although this slowness with aging may be entirely related to degradation of the cerebral networks important in motor programing, it is possible that, at least in part, it may be a learned procedure for enhancing the accuracy and/or precision of movements. The goal of this study is to test these contradictory hypotheses. METHODS Twenty-four healthy adults, 12 younger than age 26 and 12 older than age 65 were asked to make alternative marks with a pen between a card centered in front of them and a series of circles distributed across a page. Performance was timed, and participants were instructed to complete the task as quickly as possible while not sacrificing accuracy for speed. The circle sizes and hand used varied by trial. RESULTS The older adults performed the task more slowly for all target circle diameters. As the circles decreased in size, the younger adults performed the task more rapidly than did the older participants, but the younger participants also had a greater decline in accuracy. CONCLUSIONS During this aiming task, healthy older adults were less likely than younger adults to sacrifice accuracy for speed. Thus, at least in part, their slowing may be a learned adaptive strategy.
Collapse
Affiliation(s)
- Damon G Lamb
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Center for Neuropsychological Studies, College of Medicine, University of Florida, Gainesville, FL, USA; Cognitive Aging and Memory Center, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Lauren N Correa
- Department of Neurology, University of Florida, Gainesville, FL, USA; Center for Neuropsychological Studies, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Talia R Seider
- Cognitive Aging and Memory Center, Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Diana M Mosquera
- Department of Neurology, University of Florida, Gainesville, FL, USA; Florida State University College of Medicine, Tallahassee, FL, USA
| | - Julio A Rodriguez
- Department of Neurology, University of Florida, Gainesville, FL, USA; Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | - Liliana Salazar
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Zared J Schwartz
- Center for Neuropsychological Studies, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Cognitive Aging and Memory Center, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Adam D Falchook
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Cognitive Aging and Memory Center, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Kenneth M Heilman
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Center for Neuropsychological Studies, College of Medicine, University of Florida, Gainesville, FL, USA; Cognitive Aging and Memory Center, Institute on Aging, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Age effects on voluntary and automatic adjustments in anti-pointing tasks. Exp Brain Res 2016; 234:419-28. [PMID: 26497989 PMCID: PMC4731427 DOI: 10.1007/s00221-015-4459-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/28/2015] [Indexed: 10/28/2022]
Abstract
We examined the effects of age on automatic and voluntary motor adjustments in pointing tasks. To this end, young (20-25 years) and middle-aged adults (48-62 years) were instructed to point at a target that could unexpectedly change its location (to the left or right) or its color (to green or red) during the movement. In the location change conditions, participants were asked to either adjust their pointing movement toward the new location (i.e., normal pointing) or in the opposite direction (i.e., anti-pointing). In the color change conditions, participants were instructed to adjust their movement to the left or right depending on the change in color. The results showed that in a large proportion of the anti-pointing trials, participants made two adjustments: an early initial automatic adjustment in the direction of the target shift followed by a late voluntary adjustment toward the opposite direction. It was found that the late voluntary adjustments were delayed for the middle-aged participants relative to the young participants. There were no age differences for the fast automatic adjustment in normal pointing, but the early adjustment in anti-pointing tended to be later in the middle-aged adults. Finally, the difference in the onset of early and late adjustments in anti-pointing adjustments was greater among the middle-aged adults. Hence, this study is the first to show that aging slows down voluntary goal-directed movement control processes to greater extent than the automatic stimulus-driven processes.
Collapse
|
13
|
Yu NY, Chang SH. Kinematic Analyses of Graphomotor Functions in Individuals with Alzheimer’s Disease and Amnestic Mild Cognitive Impairment. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Chan JS, Wu Q, Liang D, Yan JH. Visuospatial working memory training facilitates visually-aided explicit sequence learning. Acta Psychol (Amst) 2015; 161:145-53. [PMID: 26398484 DOI: 10.1016/j.actpsy.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022] Open
Abstract
Finger sequence learning requires visuospatial working memory (WM). However, the dynamics between age, WM training, and motor skill acquisition are unclear. Therefore, we examined how visuospatial WM training improves finger movement sequential accuracy in younger (n=26, 21.1±1.37years) and older adults (n=22, 70.6±4.01years). After performing a finger sequence learning exercise and numerical and spatial WM tasks, participants in each age group were randomly assigned to either the experimental (EX) or control (CO) groups. For one hour daily over a 10-day period, the EX group practiced an adaptive n-back spatial task while those in the CO group practiced a non-adaptive version. As a result of WM practice, the EX participants increased their accuracy in the spatial n-back tasks, while accuracy remained unimproved in the numerical n-back tasks. In all groups, reaction times (RT) became shorter in most numerical and spatial n-back tasks. The learners in the EX group - but not in the CO group - showed improvements in their retention of finger sequences. The findings support our hypothesis that computerized visuospatial WM training improves finger sequence learning both in younger and in older adults. We discuss the theoretical implications and clinical relevance of this research for motor learning and functional rehabilitation.
Collapse
|
15
|
Verneau M, van der Kamp J, Savelsbergh GJP, de Looze MP. Proactive and retroactive transfer of middle age adults in a sequential motor learning task. Acta Psychol (Amst) 2015; 156:57-63. [PMID: 25697782 DOI: 10.1016/j.actpsy.2015.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/15/2014] [Accepted: 01/29/2015] [Indexed: 11/29/2022] Open
Abstract
We assessed the effects of aging in the transfer of motor learning in a sequential manual assembly task that is representative for real working conditions. On two different days, young (18-30 years) and middle-aged adults (50-65 years) practiced to build two products that consisted of the same six components but which had to be assembled in a partly different order. Assembly accuracy and movement time during tests, which were performed before and after the practice sessions, were compared to determine proactive and retroactive transfer. The results showed proactive facilitation (i.e., benefits from having learned the first product on learning the second one) in terms of an overall shortening of movement time in both age-groups. In addition, only the middle-aged adults were found to show sequence-specific proactive facilitation, in which the shortening of movement time was limited to components that had the same the order in the two products. Most likely, however, the sequence-specific transfer was an epiphenomenon of the comparatively low rate of learning among the middle-aged adults. The results, however, did reveal genuine differences between the groups for retroactive transfer (i.e., effects from learning the second product on performance of the first). Middle-aged adults tended to show more pronounced retroactive interference in terms of a general decrease in accuracy, while younger adults showed sequence-specific retroactive facilitation (i.e., shortening of movement times for components that had the same order in the two products), but only when they were fully accurate. Together this suggests that in the learning of sequential motor tasks the effects of age are more marked for retroactive transfer than for proactive transfer.
Collapse
Affiliation(s)
- Marion Verneau
- Research Institute Move, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands.
| | - John van der Kamp
- Research Institute Move, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands; Institute of Human Performance, University of Hong Kong, Hong Kong
| | - Geert J P Savelsbergh
- Research Institute Move, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands; Research Institute for Biomedical Research into Human Movement and Health, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - Michiel P de Looze
- Research Institute Move, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands; TNO, Quality of Life, Hoofddorp, The Netherlands
| |
Collapse
|
16
|
Tresch UA, Perreault EJ, Honeycutt CF. Startle evoked movement is delayed in older adults: implications for brainstem processing in the elderly. Physiol Rep 2014; 2:2/6/e12025. [PMID: 24907294 PMCID: PMC4208637 DOI: 10.14814/phy2.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Little attention has been given to how age affects the neural processing of movement within the brainstem. Since the brainstem plays a critical role in motor control throughout the whole body, having a clear understanding of deficits in brainstem function could provide important insights into movement deficits in older adults. A unique property of the startle reflex is its ability to involuntarily elicit planned movements, a phenomenon referred to as startReact. The noninvasive startReact response has previously been used to probe both brainstem utilization and motor planning. Our objective was to evaluate deficits in startReact hand extension movements in older adults. We hypothesized that startReact hand extension will be intact but delayed. Electromyography was recorded from the sternocleidomastoid (SCM) muscle to detect startle and the extensor digitorum communis (EDC) to quantify movement onset in both young (24 ± 1) and older adults (70 ± 11). Subjects were exposed to a startling loud sound when prepared to extend their hand. Trials were split into those where a startle did (SCM+) and did not (SCM−) occur. We found that startReact was intact but delayed in older adults. SCM+ onset latencies were faster than SCM− trials in both the populations, however, SCM+ onset latencies were slower in older adults compared to young (Δ = 8 msec). We conclude that the observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our objective was to utilize the noninvasive startReact phenomenon, which is mediated through the brainstem, to gain insight into brainstem processing in older adults. We found that startReact hand extension was intact but delayed in older adults. The observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our result that the startReact response is delayed in older individuals highlights that movements (e.g., posture, locomotion) and reflexes (e.g., long‐latency stretch reflexes) that are coordinated by the brainstem may have similar deficits in older adults.
Collapse
Affiliation(s)
| | - Eric J Perreault
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Biomedical Engineering, Northwestern University, Evanston, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Claire F Honeycutt
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Cai L, Chan JSY, Yan JH, Peng K. Brain plasticity and motor practice in cognitive aging. Front Aging Neurosci 2014; 6:31. [PMID: 24653695 PMCID: PMC3947993 DOI: 10.3389/fnagi.2014.00031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/18/2014] [Indexed: 12/02/2022] Open
Abstract
For more than two decades, there have been extensive studies of experience-based neural plasticity exploring effective applications of brain plasticity for cognitive and motor development. Research suggests that human brains continuously undergo structural reorganization and functional changes in response to stimulations or training. From a developmental point of view, the assumption of lifespan brain plasticity has been extended to older adults in terms of the benefits of cognitive training and physical therapy. To summarize recent developments, first, we introduce the concept of neural plasticity from a developmental perspective. Secondly, we note that motor learning often refers to deliberate practice and the resulting performance enhancement and adaptability. We discuss the close interplay between neural plasticity, motor learning and cognitive aging. Thirdly, we review research on motor skill acquisition in older adults with, and without, impairments relative to aging-related cognitive decline. Finally, to enhance future research and application, we highlight the implications of neural plasticity in skills learning and cognitive rehabilitation for the aging population.
Collapse
Affiliation(s)
- Liuyang Cai
- Department of Psychology, Tsinghua University Beijing, China
| | - John S Y Chan
- Department of Psychology, The Chinese University of Hong Kong Hong Kong, China
| | - Jin H Yan
- Department of Psychology, Tsinghua University Beijing, China ; Institute of Affective and Social Neuroscience, Shenzhen University Shenzhen, China
| | - Kaiping Peng
- Department of Psychology, Tsinghua University Beijing, China
| |
Collapse
|
18
|
Liutsko L, Muiños R, Tous-Ral JM. Age-related differences in proprioceptive and visuo-proprioceptive function in relation to fine motor behaviour. Eur J Ageing 2014; 11:221-232. [PMID: 28804328 DOI: 10.1007/s10433-013-0304-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Leversen et al. (PLoS One 7(6):e38830, 2012) emphasise the importance of understanding the principles of life-long development. In their study of motor control, they found a common tendency towards improved motor performance from childhood to adulthood and a subsequent deterioration. The aim of our study was to examine this issue further by investigating fine motor behaviour (tracing a model line) in 196 participants (age range 12-95 years old) in two sensory conditions-proprioceptive + visual (PV) and proprioceptive only-in both hands and in two types of movement, frontal and transversal. Regression analyses of line length and task performance speed in relation to age were conducted for the different test conditions. The best performance was found in middle age, and a quadratic function provided the best fit for most of the test conditions. The corresponding inflection points (the age at which graphical analysis showed a change in performance as a peak of maturation before decline due to ageing) showed earlier ages in the proprioceptive condition. For most types of movement analysed, performance speed was slower under the PV condition. Paired correlation analysis showed that the symmetry of precision performance between hands became stronger with age. The results provide information on age-dependent differences in proprioception based on fine motor performance. They may be of use in the design of preventive strategies for preserving proprioceptive function by reducing the risk of falls and accidents or diseases such as Parkinson's.
Collapse
Affiliation(s)
- Liudmila Liutsko
- Department of Personality Assessment, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain.,Laboratory of Mira y López, University of Barcelona, Barcelona, Spain
| | - Ruben Muiños
- Department of Personality Assessment, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain.,Laboratory of Mira y López, University of Barcelona, Barcelona, Spain
| | - Josep Maria Tous-Ral
- Department of Personality Assessment, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain.,Research Institute for Cognition, Brain and Behaviour, University of Barcelona, Barcelona, Spain.,Laboratory of Mira y López, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Movement trajectory smoothness is not associated with the endpoint accuracy of rapid multi-joint arm movements in young and older adults. Acta Psychol (Amst) 2013; 143:157-67. [PMID: 23584101 DOI: 10.1016/j.actpsy.2013.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/12/2013] [Accepted: 02/28/2013] [Indexed: 11/20/2022] Open
Abstract
The minimum variance theory proposes that motor commands are corrupted by signal-dependent noise and smooth trajectories with low noise levels are selected to minimize endpoint error and endpoint variability. The purpose of the study was to determine the contribution of trajectory smoothness to the endpoint accuracy and endpoint variability of rapid multi-joint arm movements. Young and older adults performed arm movements (4 blocks of 25 trials) as fast and as accurately as possible to a target with the right (dominant) arm. Endpoint accuracy and endpoint variability along with trajectory smoothness and error were quantified for each block of trials. Endpoint error and endpoint variance were greater in older adults compared with young adults, but decreased at a similar rate with practice for the two age groups. The greater endpoint error and endpoint variance exhibited by older adults were primarily due to impairments in movement extent control and not movement direction control. The normalized jerk was similar for the two age groups, but was not strongly associated with endpoint error or endpoint variance for either group. However, endpoint variance was strongly associated with endpoint error for both the young and older adults. Finally, trajectory error was similar for both groups and was weakly associated with endpoint error for the older adults. The findings are not consistent with the predictions of the minimum variance theory, but support and extend previous observations that movement trajectories and endpoints are planned independently.
Collapse
|
20
|
Liu Y, Cao C, Yan JH. Functional aging impairs the role of feedback in motor learning. Geriatr Gerontol Int 2013; 13:849-59. [PMID: 23551381 DOI: 10.1111/ggi.12013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 11/28/2022]
Abstract
AIM Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. METHODS A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. RESULTS In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. DISCUSSION The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed.
Collapse
Affiliation(s)
- Yu Liu
- Department of Psychology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
21
|
Ren J, Wu YD, Chan JSY, Yan JH. Cognitive aging affects motor performance and learning. Geriatr Gerontol Int 2012; 13:19-27. [DOI: 10.1111/j.1447-0594.2012.00914.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
The loss of dexterity in the bilateral lower extremities in patients with stroke. J Appl Biomech 2011; 27:122-9. [PMID: 21576720 DOI: 10.1123/jab.27.2.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to examine the dexterity of both lower extremities in patients with stroke. Twenty patients with stroke and 20 age-matched control subjects participated in this study. To determine the dexterity of the lower extremities, we examined the ability to control muscle force during submaximal contractions in the knee extensor muscles using a force tracking task. The root mean square errors were calculated from the difference between the target and response force. The root mean square error was significantly greater in the affected limb of patients with stroke compared with those of the unaffected limb and the control subjects, and in the unaffected limb compared with that of the control subjects. Furthermore, the root mean square error of the affected limb was related significantly to motor function as determined by Fugl-Myer assessment. These results demonstrate impairment of the dexterity of both the affected and the unaffected lower extremities in patients with stroke.
Collapse
|
23
|
Steenbergen B, van der Kamp J, Verneau M, Jongbloed-Pereboom M, Masters RSW. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics. Disabil Rehabil 2010; 32:1509-16. [PMID: 20575752 DOI: 10.3109/09638288.2010.497035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may benefit from implicit learning methods when acquiring sports-related motor skills. METHOD We discuss converging evidence that individuals with cerebral palsy and children born prematurely have compromised working memory capacity. This may in part explain the difficulties they encounter when learning motor and other skills. We also review tentative evidence that older people, whose movement dynamics deteriorate, can implicitly learn sports-related motor skills and that this results in more durable performance gains than explicit learning. RESULTS Individuals with altered movement dynamics and compromised working memory can benefit from implicit motor learning. CONCLUSION We conclude with an appeal for more extensive evaluation of the merits of implicit motor learning in individuals with impaired movement dynamics.
Collapse
Affiliation(s)
- Bert Steenbergen
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Yan JH, Abernethy B, Li X. The effects of ageing and cognitive impairment on on-line and off-line motor learning. APPLIED COGNITIVE PSYCHOLOGY 2010. [DOI: 10.1002/acp.1551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
The influence of age and physical activity on upper limb proprioceptive ability. J Aging Phys Act 2009; 17:272-93. [PMID: 19799100 DOI: 10.1123/japa.17.3.272] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of age-related declines in upper limb proprioceptive abilities is limited. Furthermore, the extent to which physical activity might ameliorate age-related changes in proprioception is not known. Upper limb proprioceptive acuity was examined in young and older (active and sedentary) right-handed adults using a wrist-position-matching task that varied in terms of processing demands. Older individuals were also classified according to their participation in tasks specific to the upper limb. Errors were greater for older than younger individuals. Older sedentary adults showed greater errors and performed movements less smoothly than older active adults. The nonspecific group showed greater errors and longer movement times than the upper-limb-specific group. In older adults, decreased ability to perceive limb position may be related to a sedentary lifestyle and declines associated with memory and transfer of proprioceptive information. Performing tasks specific to the upper limbs may reduce age-related declines in proprioception.
Collapse
|
26
|
Abstract
Abstract
The demographics of our societies have changed drastically during the past few decades. The general population is aging rapidly as human life spans continue to expand and more adults are set to mature during the next quarter century. This aging process has numerous implications for the way we live and will have particularly important impacts on health and healthcare. In particular, substantial evidence suggests that cognitive–motor function deteriorates considerably as the result of inactive life style, biological aging, and cognitive impairments. The number of individuals with Alzheimer's disease (AD), an aging-related cognitive disorder, is expected to increase significantly during the next 40 years. The development of mild cognitive impairment (MCI) or AD can exaggerate the functional declines observed in cognitive or motor performance. The functional declines affect an array of social, cognitive, mental, physical, and motor activities in our daily lives. However, recent studies suggest that cognitive, physical, motor practice, or skill learning can improve motor speed, smoothness, and accuracy in both MCI and AD patients and their age-matched healthy peers. From theoretical and practical perspectives, this paper addresses several critical aspects of motor deficits and the kinematical characteristics of motor skill development in MCI and AD populations. Empirical data will be presented relative to the sensory–motor functions of MCI and AD, the motor skill acquisition, exercise rehabilitation in older adults with memory loss, as well as the implications for therapies. Finally, this review concludes with thoughts and suggestions for future research in these areas.
Collapse
|
27
|
Moffatt K, McGrenere J. Exploring Methods to Improve Pen-Based Menu Selection for Younger and Older Adults. ACM TRANSACTIONS ON ACCESSIBLE COMPUTING 2009. [DOI: 10.1145/1525840.1525843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tablet PCs are gaining popularity, but many individuals still struggle with pen-based interaction. In a previous baseline study, we examined the types of difficulties younger and older adults encounter when using pen-based input. The research reported in this article seeks to address one of these errors, namely, missing just below. This error occurs in a menu selection task when a user’s selection pattern is downwardly shifted, such that the top edge of the menu item below the target is selected relatively often, while the corresponding top edge of the target itself is seldom selected. We developed two approaches for addressing missing just below errors: reassigning selections along the top edge and deactivating them. In a laboratory evaluation, only the deactivated edge approach showed promise overall. Further analysis of our data revealed that individual differences played a large role in our results and identified a new source of selection difficulty. Specifically, we observed two error-prone groups of users: the low hitters, who, like participants in the baseline study, made missing just below errors, and the high hitters, who, in contrast, had difficulty with errors on the item above. All but one of the older participants fell into one of these error-prone groups, reinforcing that older users do need better support for selecting menu items with a pen. Preliminary analysis of the performance data suggests both of our approaches were beneficial for the low hitters, but that additional techniques are needed to meet the needs of the high hitters and to address the challenge of supporting both groups in a single interface.
Collapse
|
28
|
Alzheimer's disease and mild cognitive impairment deteriorate fine movement control. J Psychiatr Res 2008; 42:1203-12. [PMID: 18280503 DOI: 10.1016/j.jpsychires.2008.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/28/2007] [Accepted: 01/04/2008] [Indexed: 11/21/2022]
Abstract
Sensory-motor dysfunctions are often associated with Alzheimer's disease (AD) or mild cognitive impairment (MCI). This study suggests that deterioration in fine motor control and coordination characterizes sensory-motor deficiencies of AD and MCI. Nine patients with a clinical diagnosis of probable AD, 9 amnestic MCI subjects and 10 cognitively normal controls performed four types of handwriting movement on a digitizer. Movement time and smoothness were analyzed between the groups and across the movement patterns. Kinematic profiles were also compared among the groups. AD and MCI patients demonstrated slower, less smooth, less coordinated, and less consistent handwriting movements than their healthy counterparts. The theoretical relevance and practical implications of fine motor tasks, such as these movements involved in handwriting, are discussed relative to the deteriorated sensory-motor system of AD and MCI patients.
Collapse
|
29
|
|
30
|
Poston B, Van Gemmert AWA, Barduson B, Stelmach GE. Movement structure in young and elderly adults during goal-directed movements of the left and right arm. Brain Cogn 2008; 69:30-8. [PMID: 18556103 DOI: 10.1016/j.bandc.2008.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 11/19/2022]
Abstract
Elderly adults often exhibit performance deficits during goal-directed movements of the dominant arm compared with young adults. Recent studies involving hemispheric lateralization have provided evidence that the dominant and non-dominant hemisphere-arm systems are specialized for controlling different movement parameters and that hemispheric specialization may be reduced during normal aging. The purpose was to examine age-related differences in the movement structure for the dominant (right) and non-dominant (left) during goal-directed movements. Young and elderly adults performed 72 aiming movements as fast and as accurately as possible to visual targets with both arms. The findings suggest that previous research utilizing the dominant arm can be generalized to the non-dominant arm because performance was similar for the two arms. However, as expected, the elderly adults showed shorter relative primary submovement lengths and longer relative primary submovement durations, reaction times, movement durations, and normalized jerk scores compared to the young adults.
Collapse
Affiliation(s)
- Brach Poston
- Motor Control Laboratory, Department of Kinesiology, Arizona State University, P.O. Box 870404, Tempe, AZ 85287-0404, USA
| | | | | | | |
Collapse
|
31
|
Buiza C, Etxeberria I, Galdona N, González MF, Arriola E, López de Munain A, Urdaneta E, Yanguas JJ. A randomized, two-year study of the efficacy of cognitive intervention on elderly people: the Donostia Longitudinal Study. Int J Geriatr Psychiatry 2008; 23:85-94. [PMID: 17530622 DOI: 10.1002/gps.1846] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Research on non-pharmacological therapies (cognitive rehabilitation) in old age has been very limited, and most has not considered the effect of interventions of this type over extended periods of time. OBJECTIVE To investigate a new cognitive therapy in a randomized study with elderly people who did not suffer cognitive impairment. METHODS The efficacy of this therapy was evaluated by means of post-hoc analysis of 238 people using biomedical, cognitive, behavioural, quality of life (QoL), subjective memory, and affective assessments. RESULTS Scores for learning potential and different types of memory (working memory, immediate memory, logic memory) for the treatment group improved significantly relative to the untreated controls. CONCLUSIONS The most significant finding in this study was that learning potential continued at enhanced levels in trained subjects over an intervention period lasting two years, thereby increasing rehabilitation potential and contributing to successful ageing.
Collapse
Affiliation(s)
- Cristina Buiza
- Department of Research and Development, Matia Gerontological Institute Foundation, Donostia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Myoelectric (EMG) signals are used in assistive technology for prostheses, computer and domestic control. An experimental study previously conducted with young participants was replicated with elderly persons in order to assess the effect of age on the ability to control myoelectric amplitude (or myocontrol). Participants performed pointing tasks as the myoelectric amplitude was captured by a surface electrode in two modalities (sustained: stabilize the amplitude after reaching the desired level; impulsion: return immediately to resting amplitude). There was a significant decrease of performance with Age. However, the patterns of performance of young and aged were noticeably similar. The Impulsion modality was difficult (high rates of failure) and the speed-accuracy trade-offs predicted by Fitts' law were absent (bow-shaped patterns as function of target amplitude instead of logarithmic increase). Conversely, the reach phase of the Sustained modality followed the predictions of Fitts' law. However, the slope of the regression line with Fitts' index of difficulty was quite steeper in aged than in young participants. These findings suggest that 1) all participants, young and aged, adapt their reaching strategies to the anticipated state (sustained amplitude or not) and/or to the difficulty of the task, 2) myocontrol in aged persons is more fragile, i.e., performance is markedly degraded as the difficulty of the task increases. However, when individual performance was examined, some aged individuals were found to perform as well as the young participants, congruently with the literature on good aging.
Collapse
|
33
|
Rossit S, Harvey M. Age-related differences in corrected and inhibited pointing movements. Exp Brain Res 2007; 185:1-10. [PMID: 17899041 DOI: 10.1007/s00221-007-1126-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/30/2007] [Indexed: 11/29/2022]
Abstract
It has been widely reported that aging is accompanied by a decline in motor skill performance and in particular, it has been shown that older subjects take longer to adapt their ongoing reach in response to a target location shift. In the present experiment, we investigated the influence of aging on the ability to perform trajectory corrections in response to a target jump, but also assessed inhibition by asking a younger and an older group of participants to either adapt or stop their ongoing movement in response to a target location change. Results showed that although older subjects took longer to initiate, execute, correct and inhibit an ongoing reach, they performed both tasks with the same level of accuracy as the younger sample. Moreover, the slowing was also observed when older subjects were asked to point to stationary targets. Our findings thus indicate that aging does not specifically influence the ability to perform or inhibit fast online corrections to target location changes, but rather produces a general slowing and increased variability of movement planning, initiation and execution to both perturbed and stationary targets. For the first time, we demonstrate that aging is not accompanied by a decrease in the inhibition of motor control.
Collapse
Affiliation(s)
- Stéphanie Rossit
- Department of Psychology, University of Glasgow, Glasgow G12 8QB, Scotland, UK
| | | |
Collapse
|
34
|
Yan JH, Dick MB. Practice effects on motor control in healthy seniors and patients with mild cognitive impairment and Alzheimer's disease. AGING NEUROPSYCHOLOGY AND COGNITION 2006; 13:385-410. [PMID: 16887780 DOI: 10.1080/138255890969609] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This research was designed to test the hypothesis that motor practice can enhance the capabilities of motor control in healthy controls (NC) and patients with a diagnosis of probable Alzheimer's disease (AD) and mild cognitive impairment (MCI), and consequently results in better motor performance. Approximately half of the subjects in the NC (n = 31), AD (n = 28), and MCI (n = 29) either received or did not receive practice on a task of fast and accurate arm movement with a digitizer. Changes in movement time (MT), movement smoothness (jerk), and percentage of primary submovement (PPS) were recorded and compared among the three groups across six blocks of trials (baseline and five training sessions). For all subjects, practice improved motor functions as reflected by faster and smoother motor execution, as well as a greater proportion of programming control. Compared to unaffected matched controls, AD and MCI subjects exhibited a greater reduction in movement jerk due to practice. Movement time and PPS data revealed that motor practice appeared to reduce the use of "on-line" correction adopted by the AD or MCI patients while performing the aiming movements. Evidently, their arm movements were quicker, smoother, and temporally more consistent than their untrained peers. The findings of this study shed light on how MCI and AD may affect motor control mechanisms, and suggest possible therapeutic interventions aimed at improving motor functioning in these impaired individuals.
Collapse
Affiliation(s)
- Jin H Yan
- California State University at Hayward, 94542, USA.
| | | |
Collapse
|
35
|
Abstract
Dyskinetic cerebral palsy results from injury to the basal ganglia early in life. Symptoms can include hyperkinetic or dystonic arm movements that impair function. It is not known whether these movements comprise a small number of specific abnormal motor patterns or whether they are random and variable. We hypothesize that injury to the basal ganglia leads to impaired filtering and removal of undesired neural signals and that lack of appropriate removal of noisy or irrelevant neural signals leads to random and variable arm movements. To test this hypothesis, we quantified the variability in arm trajectories while seven children with dyskinetic cerebral palsy between the ages of 4 and 13 years old made repeated outward reaching movements. We compared the results with those of 21 healthy children between the ages of 5 and 16 years. The best-fit trajectory to the set of reaching movements for each child was taken as the predictable component of movement. We calculated the ratio of the power in the best-fit trajectory to the total variance. This measure is the signal-to-noise ratio, and it quantifies the extent to which trajectories are predictable. We found that children with dyskinetic cerebral palsy had a significantly reduced signal-to-noise ratio compared with healthy children at similar ages. This result shows that there is increased movement variability, and it is consistent with the hypothesis that inadequate removal of noisy signals could be a cause of the movement disorder in dyskinetic cerebral palsy.
Collapse
Affiliation(s)
- Terence D Sanger
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305-5235, USA.
| |
Collapse
|
36
|
Manckoundia P, Mourey F, Pfitzenmeyer P, Papaxanthis C. Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer's disease elderly subjects. Neuroscience 2005; 137:385-92. [PMID: 16289889 DOI: 10.1016/j.neuroscience.2005.08.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/30/2022]
Abstract
We studied the kinematics of shoulder displacement during sit-to-stand and back-to-sit in 6 healthy elderly subjects and six elderly subjects with mild to moderate Alzheimer's disease in order to elucidate the impact of Alzheimer's disease on motor planning and control processes. During sit-to-stand, Alzheimer's disease subjects reduced their forward displacement and started their upward displacement earlier than healthy elderly subjects. Furthermore, shoulder path curvatures were more pronounced for upward compared with downward displacement in healthy elderly group, in contrast with Alzheimer's disease group. Temporal analysis found that: 1) for both groups, profiles of velocity of sit-to-stand and back-to-sit showed two peaks corresponding respectively to forward/upward and to downward/backward displacements, 2) peaks of velocity were almost comparable between the two groups, 3) duration of sit-to-stand was shorter than duration of back-to-sit in the two groups and 4) duration of sit-to-stand and back-to-sit was shorter in Alzheimer's disease group than in healthy elderly group. However, dissimilarities were observed for transition and deceleration phases during sit-to-stand, and for acceleration and transition phases during back-to-sit, between the two groups. Interestingly, while sit-to-stand and back-to-sit differed in healthy elderly subjects during transition and deceleration phases, such a difference was not observed for Alzheimer's disease subjects. So, our study showed that invariant spatio-temporal movement parameters in the two groups differed, while non-invariant parameters did not, and suggests that higher level motor process of whole body motions are affected by Alzheimer's disease, while lower level motor features remain intact.
Collapse
Affiliation(s)
- P Manckoundia
- INSERM/ERIT-M 0207 Motricité-Plasticité: Performance, Dysfonctionnement, Vieillissement et Technologies d'optimisation, Université de Bourgogne, BP 27877 F-21078 Dijon, France.
| | | | | | | |
Collapse
|
37
|
Barry BK, Carson RG. The Consequences of Resistance Training for Movement Control in Older Adults. J Gerontol A Biol Sci Med Sci 2004; 59:730-54. [PMID: 15304540 DOI: 10.1093/gerona/59.7.m730] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.
Collapse
Affiliation(s)
- Benjamin K Barry
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | |
Collapse
|
38
|
Christou EA, Shinohara M, Enoka RM. Fluctuations in acceleration during voluntary contractions lead to greater impairment of movement accuracy in old adults. J Appl Physiol (1985) 2003; 95:373-84. [PMID: 12651861 DOI: 10.1152/japplphysiol.00060.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The purpose of the study was to assess the effect of movement velocity on the relation between fluctuations in acceleration and the ability to achieve a target velocity during voluntary contractions performed by young (29.5 +/- 4.3 yr) and old (74.9 +/- 6.2 yr) adults. Subjects performed concentric and eccentric contractions with the first dorsal interosseus muscle while lifting a submaximal load (15% of maximum) at six movement velocities (0.03-1.16 rad/s). Fluctuations in acceleration, the accuracy of matching the target velocity, and electromyographic (EMG) activity were determined from three trials for each contraction type and movement velocity. The fluctuations in acceleration increased with movement velocity for both concentric and eccentric contractions, but they were greatest during fast eccentric contractions ( approximately 135%) when there was stronger modulation of acceleration in the 5- to 10-Hz bandwidth. Nonetheless, EMG amplitude for first dorsal interosseus increased with movement velocity only for concentric and not eccentric contractions. Consistent with the minimum variance theory, movement accuracy was related to the fluctuations in acceleration for both types of contractions in all subjects. For a given level of fluctuations in acceleration, however, old subjects were three times less accurate than young subjects. Although the EMG amplitude at each speed was similar for young and old adults, only the young adults modulated the power in the EMG spectrum with speed. Thus the fluctuations in acceleration during voluntary contractions had a more pronounced effect on movement accuracy for old adults compared with young adults, probably due to factors that influenced the frequency-domain characteristics of the EMG.
Collapse
Affiliation(s)
- Evangelos A Christou
- Department of Kinesiology and Applied Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
39
|
Christou EA, Carlton LG. Old adults exhibit greater motor output variability than young adults only during rapid discrete isometric contractions. J Gerontol A Biol Sci Med Sci 2001; 56:B524-32. [PMID: 11723145 DOI: 10.1093/gerona/56.12.b524] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to examine the ability of young and elderly individuals to control submaximum levels of force (5-90%) during continuous and rapid discrete isometric contractions of the quadriceps femoris. Participants were 24 young (25.3 +/- 2.8 years) and 24 elderly individuals (73.3 +/- 5.5 years) that were healthy and active. The strength of elderly participants was approximately 40% lower than young participants. The standard deviation and coefficient of variation (CV) of force were greater during discrete contractions than during continuous isometric contractions. During continuous isometric contractions, young and elderly participants exhibited similar CVs of force. During discrete contractions, however, elderly participants exhibited greater CVs for peak force and impulse and greater standard deviations and CVs for temporal characteristics than young participants. Results suggest that the control of force in active elderly people declines only during rapid discrete contractions and that this decline may be associated with declines in temporal characteristics of the force production.
Collapse
Affiliation(s)
- E A Christou
- University of Illinois at Urbana-Champaign, USA.
| | | |
Collapse
|