1
|
Katavic S, Cehic I, Zukic N, Mirvic M, Dizdar M, Gutalj A, Saric Medic B, Jerković-Mujkić A, Mahmutović-Dizdarević I, Mesic A. In vitro assessment of the antioxidative, toxicological and antimicrobial properties of battery of parabens. Drug Chem Toxicol 2024; 47:463-472. [PMID: 37334811 DOI: 10.1080/01480545.2023.2222928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
The aim of this study was to evaluate antioxidative features using 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) scavenging method, bovine serum albumin (BSA)-binding properties with usage of spectrofluorimetric method, proliferative and cyto/genotoxic status by use of chromosome aberration test, and antimicrobial potential using broth microdilution method, followed by resazurin assay of benzyl-, isopropyl-, isobutyl and phenylparaben in vitro. Our results showed that all parabens had significant antiradical scavenger activity compared to p-hydroxybenzoic acid (PHBA) precursor. Higher mitotic index for benzyl-, isopropyl and isobutylparaben (250 µg/mL) in comparison with control was demonstrated. An increase in the frequency of acentric fragments in lymphocytes treated with benzylparaben and isopropylparaben (125 and 250 µg/mL), and isobutylparaben (250 µg/mL) was observed. Isobutylparaben (250 µg/mL) induced higher number of dicentric chromosomes. An increased number of minute fragments in lymphocytes exposed to benzylparaben (125 and 250 µg/mL) was found. A significant difference in the frequency of chromosome pulverization, between phenylparaben (250 µg/mL) and control, was detected. Benzylparaben (250 µg/mL) and phenylparaben (62.5 µg/mL) caused an increase in the number of apoptotic cells, while isopropylparaben (62.5, 125 and 250 µg/mL) and isobutylparaben (62.5 and 125 µg/mL) induced higher frequency of necrosis. Minimum inhibitory concentration (MIC) of tested parabens ranged 15.62-250 µg/mL for bacteria, and 125-500 µg/mL for the yeast. Minimum microbiocidal concentration ranged 31.25 to 500 µg/mL, and 250 to 1000 µg/mL in bacteria and fungi respectively. The lowest MICs for bacteria were observed for phenyl- (15.62 µg/mL) and isopropylparaben (31.25 µg/mL) against Enterococcus faecalis.
Collapse
Affiliation(s)
- Stela Katavic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Ilma Cehic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Nejla Zukic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Merjem Mirvic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Muamer Dizdar
- University of Sarajevo, Faculty of Science, Department of Chemistry, Sarajevo, Bosnia and Herzegovina
| | - Ana Gutalj
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Belmina Saric Medic
- University of Sarajevo, Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Anesa Jerković-Mujkić
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | | | - Aner Mesic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. ENVIRONMENTAL RESEARCH 2021; 198:110488. [PMID: 33221305 DOI: 10.1016/j.envres.2020.110488] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Parabens usage as preservatives in cosmetics and personal care products have been debated among scientists and consumers. Parabens are easy to production, effective and cheap, but its safety status remains controversial. Other popular cosmetics preservatives are formaldehyde, triclosan, methylisothiazolinone, methylchloroisothiazolinone, phenoxyethanol, benzyl alcohol and sodium benzoate. Although their high antimicrobial effectiveness, they also exhibit some adverse health effects. Lately, scientists have shown that natural substances such as essential oils and plant extracts present antimicrobial potential. However, their use in cosmetic is a challenge. The present review article is a comprehensive summary of the available methods to prevent microbial contamination of cosmetics and personal care products, which can allow reducing the use of parabens in these products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
3
|
Yang QQ, Sui Z, Lu W, Corke H. Soybean lecithin-stabilized oil-in-water (O/W) emulsions increase the stability and in vitro bioaccessibility of bioactive nutrients. Food Chem 2021; 338:128071. [PMID: 33092005 DOI: 10.1016/j.foodchem.2020.128071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
This study was proposed to investigate the possibility of co-delivering essential oils and lipophilic nutrients via lecithin stabilized emulsions. Emulsions with different droplet sizes (62.5-105 nm), zeta potentials (-33.7 to -58.6 mV), and PdI values (0.155-0.275) were successfully prepared. Incorporation of curcumin into emulsions significantly improved its water solubility (1700-fold), thermal and photochemical stability. The droplet size of curcumin-loaded emulsions did not change over 30 days of storage at 4 °C. Gastrointestinal tract (GIT) digestion caused significant changes in the droplet size and interfacial properties of curcumin-loaded emulsions. The bioaccessibility of encapsulated curcumin was 4.79-10.6-fold higher than that of free molecule. This is mainly attributed to the different solubility of curcumin in essential oils, which also showed different bioaccessibility. The findings suggested that emulsions can be novel carriers for co-delivering essential oils and lipophilic nutrients with increased stability and bioaccessibility.
Collapse
Affiliation(s)
- Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Lu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
4
|
Holm R, Olesen NE, Alexandersen SD, Dahlgaard BN, Westh P, Mu H. Thermodynamic investigation of the interaction between cyclodextrins and preservatives - Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations. Eur J Pharm Sci 2015; 87:22-9. [PMID: 26391874 DOI: 10.1016/j.ejps.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 11/18/2022]
Abstract
Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments.
Collapse
Affiliation(s)
- René Holm
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Niels Erik Olesen
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Signe Dalgaard Alexandersen
- Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Birgitte N Dahlgaard
- Pharmaceutical Development, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, Copenhagen University, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Dobler D, Schmidts T, Klingenhöfer I, Runkel F. Ionic liquids as ingredients in topical drug delivery systems. Int J Pharm 2013; 441:620-7. [DOI: 10.1016/j.ijpharm.2012.10.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
|
6
|
|