1
|
Emami S, Hemmati Z, Yaqoubi S, Hamishehkar H, Alvani A. Nanocrystal Agglomerates of Curcumin Prepared by Electrospray Drying as an Excipient-Free Dry Powder for Inhalation. Adv Pharmacol Pharm Sci 2024; 2024:6288621. [PMID: 39281030 PMCID: PMC11398964 DOI: 10.1155/2024/6288621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Curcumin has shown beneficial effects on pulmonary diseases with chronic inflammation or abnormal inflammatory responses, including chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. Clinical applications of curcumin are limited due to its chemical instability in solution, low water solubility, poor oral bioavailability, and intestinal and liver first-pass metabolism. Pulmonary delivery of curcumin can address these challenges and provide a high concentration in lung tissues. The purpose of the current work was to prepare a novel inhalable dry powder of curcumin nanocrystals without added excipients using electrospray drying (ED) with improved dissolution and aerosolization properties. ED of curcumin was performed at 2 and 4% w/v concentrations in acetone. Physicochemical properties of the formulated powders were evaluated by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), density and powder flow measurements, and in vitro dissolution. The in vitro deposition studies were conducted using next-generation impactor (NGI) and aerosol performance and aerodynamic particle size parameters were calculated for prepared formulations. ED could produce agglomerates of nanocrystals with a size of about 500 nm at an acceptable yield of about 50%. PXRD and FTIR data revealed that prepared nanocrystals were in a stable crystalline state. The bulk and tapped density of prepared agglomerates were in the range appropriate for pulmonary delivery. Formed nanocrystals could significantly improve the dissolution rate of water-insoluble curcumin. The optimized formulation exhibited acceptable recovered dose percentage, high emitted dose percentage, optimum mean mass median aerodynamic diameter, small geometric standard deviation, and high fine-particle fraction that favors delivery of curcumin to the deep lung regions. The ED proved to be an efficient technique to prepare curcumin nanocrystals for pulmonary delivery in a single step, at a mild condition, and with no surfactant.
Collapse
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Hemmati
- Student Research Committee School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Yaqoubi
- Drug Applied Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Alvani
- Student Research Committee Faculty of Pharmacy Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Sakhiya DC, Borkhataria CH. A review on advancement of cocrystallization approach and a brief on screening, formulation and characterization of the same. Heliyon 2024; 10:e29057. [PMID: 38601657 PMCID: PMC11004889 DOI: 10.1016/j.heliyon.2024.e29057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The objective of this review is, to discuss recent advancements in screening methods for co-formers, evaluation cum confirmation methods and co-crystallization with examples. Co-crystals are considered as a new form of an old drug entity. Co-crystals improve the stability, hygroscopicity, solubility, dissolution, and physicochemical properties of pure drugs without altering chemical and pharmacological properties. Advancement in co-crystal formulation methods like electrospray and laser-irradiation methods are showing potential for solvent-free co-crystallization and tends to give better yield and lesser loss of materials. Screening methods are also transformed from trial and error to in-silico methods, which facilitate the selection process by reducing the time of screening and increasing the number of co-formers to be screened. Advanced evaluation methods like Raman and solid-state NMR spectroscopy provide a better understanding of crystal lattice by pinpointing the interaction between drug/co-former molecules. The same evaluation methods can also differentiate between the formation of salt and co-crystals. Co-crystals are helping open a new door in pharmaceutical industries in the field of formulation for the improvement of physicochemical properties in existing old molecules and several new molecules. With a motto of "making a good drug better", co-crystals show scope for vast research and give researchers an ocean of opportunities to make the impossible, possible.
Collapse
Affiliation(s)
- Dhruv C. Sakhiya
- Gujarat Technological University (GTU) Nr.Vishwakarma Government Engineering College Nr.Visat Three Roads, Visat - Gandhinagar Highway Chandkheda, Ahmedabad, 382424, Gujarat, India
| | | |
Collapse
|
3
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Dyba A, Wiącek E, Nowak M, Janczak J, Nartowski KP, Braun DE. Metronidazole Cocrystal Polymorphs with Gallic and Gentisic Acid Accessed through Slurry, Atomization Techniques, and Thermal Methods. CRYSTAL GROWTH & DESIGN 2023; 23:8241-8260. [PMID: 37937188 PMCID: PMC10626573 DOI: 10.1021/acs.cgd.3c00951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Indexed: 11/09/2023]
Abstract
In this study, key features of metronidazole (MNZ) cocrystal polymorphs with gallic acid (GAL) and gentisic acid (GNT) were elucidated. Solvent-mediated phase transformation experiments in 30 solvents with varying properties were employed to control the polymorphic behavior of the MNZ cocrystal with GAL. Solvents with relative polarity (RP) values above 0.35 led to cocrystal I°, the thermodynamically stable form. Conversely, solvents with RP values below 0.35 produced cocrystal II, which was found to be only 0.3 kJ mol-1 less stable in enthalpy. The feasibility of electrospraying, including solvent properties and process conditions required, and spray drying techniques to control cocrystal polymorphism was also investigated, and these techniques were found to facilitate exclusive formation of the metastable MNZ-GAL cocrystal II. Additionally, the screening approach resulted in a new, high-temperature polymorph I of the MNZ-GNT cocrystal system, which is enantiotropically related to the already known form II°. The intermolecular energy calculations, as well as the 2D similarity between the MNZ-GAL polymorphs and the 3D similarity between MNZ-GNT polymorphs, rationalized the observed transition behaviors. Furthermore, the evaluation of virtual cocrystal screening techniques identified molecular electrostatic potential calculations as a supportive tool for coformer selection.
Collapse
Affiliation(s)
- Aleksandra
J. Dyba
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
- Department
of Drug Form Technology, Wroclaw Medical
University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Ewa Wiącek
- Department
of Drug Form Technology, Wroclaw Medical
University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Maciej Nowak
- Department
of Drug Form Technology, Wroclaw Medical
University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Jan Janczak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okolna 2, 50-950 Wroclaw, Poland
| | - Karol P. Nartowski
- Department
of Drug Form Technology, Wroclaw Medical
University, Borowska 211A, 50-556 Wroclaw, Poland
- School
of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, U.K.
| | - Doris E. Braun
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
O'Sullivan A, Long B, Verma V, Ryan KM, Padrela L. Solid-State and Particle Size Control of Pharmaceutical Cocrystals using Atomization-Based Techniques. Int J Pharm 2022; 621:121798. [PMID: 35525471 DOI: 10.1016/j.ijpharm.2022.121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Poor bioavailability and aqueous solubility represent a major constraint during the development of new API molecules and can influence the impact of new medicines or halt their approval to the market. Cocrystals offer a novel and competitive advantage over other conventional methods with respect towards the substantial improvement in solubility profiles relative to the single-API crystals. Furthermore, the production of such cocrystals through atomization-based methods allow for greater control, with respect to particle size reduction, to further increase the solubility of the API. Such atomization-based methods include supercritical fluid methods, conventional spray drying and electrohydrodynamic atomization/electrospraying. The influence of process parameters such as solution flow rates, pressure and solution concentration, in controlling the solid-state and final particle size are discussed in this review with respect to atomization-based methods. For the last decade, literature has been attempting to catch-up with new regulatory rulings regarding the classification of cocrystals, due in part to data sparsity. In recent years, there has been an increase in cocrystal publications, specifically employing atomization-based methods. This review considers the benefits to employing atomization-based methods for the generation of pharmaceutical cocrystals, examines the most recent regulatory changes regarding cocrystals and provides an outlook towards the future of this field.
Collapse
Affiliation(s)
- Aaron O'Sullivan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Barry Long
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
6
|
Multicomponent crystal compromising dasatinib and selected co-crystals formers: a patent evaluation of EP2861589B1. Pharm Pat Anal 2022; 11:15-21. [PMID: 35172634 DOI: 10.4155/ppa-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cocrystallization has gained significant prominence in pharmaceutical product development because of the enhancement of physical, chemical and pharmacological properties of active pharmaceutical ingredients, such as stability, solubility, dissolution rate, taste, hygroscopicity, mechanical property, bioavailability, permeability and therapeutic activity. Traditionally, co-crystals can be prepared by a grinding, solvent evaporation and slurry method. However, sophisticated methods such as spa drying, hot-melt extrusion, supercritical fluid and laser irradiation are also reported to be used for producing co-crystals. The selected patent describes the development of multicomponent crystals of dasatinib, with an aim to enhance the aqueous solubility of a selected drug. However issues surrounding the toxicity, stability, large scale manufacture, in vivo performance in human beings and regulations require adequate addressal prior to exploring the commercial viability of pharmaceutical co-crystals.
Collapse
|
7
|
Santos JAV, Baptista JA, Santos IC, Maria TMR, Canotilho J, Castro RAE, Eusébio MES. Pharmaceutical nanococrystal synthesis: a novel grinding approach. CrystEngComm 2022. [DOI: 10.1039/d1ce00407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanococrystals – a new green in situ surfactant-assisted mechanochemical synthesis.
Collapse
Affiliation(s)
| | | | - Inês C. Santos
- CQC, Departamento de Química, Universidade de Coimbra, Portugal
| | | | - João Canotilho
- CQC, Departamento de Química, Universidade de Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | - Ricardo A. E. Castro
- CQC, Departamento de Química, Universidade de Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | | |
Collapse
|
8
|
In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Araya-Sibaja AM, Fandaruff C, Wilhelm K, Vega-Baudrit JR, Guillén-Girón T, Navarro-Hoyos M. Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190430153231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primarily composed of organic molecules, pharmaceutical materials, including drugs and
excipients, frequently exhibit physicochemical properties that can affect the formulation, manufacturing
and packing processes as well as product performance and safety. In recent years, researchers
have intensively developed Crystal Engineering (CE) in an effort to reinvent bioactive molecules
with well-known, approved pharmacological effects. In general, CE aims to improve the physicochemical
properties without affecting their intrinsic characteristics or compromising their stability.
CE involves the molecular recognition of non-covalent interactions, in which organic materials are
responsible for the regular arrangement of molecules into crystal lattices. Modern CE, encompasses
all manipulations that result in the alteration of crystal packing as well as methods that disrupt crystal
lattices or reduce the size of crystals, or a combination of them. Nowadays, cocrystallisation has been
the most explored strategy to improve solubility, dissolution rate and bioavailability of Active Pharmaceutical
Ingredients (API). However, its combinatorial nature involving two or more small organic
molecules, and the use of diverse crystallisation processes increase the possible outcomes. As a result,
numerous organic materials can be obtained as well as several physicochemical and mechanical
properties can be improved. Therefore, this review will focus on novel organic solids obtained when
CE is applied including crystalline and amorphous, single and multicomponent as well as nanosized
ones, that have contributed to improving not only solubility, dissolution rate, bioavailability permeability
but also, chemical and physical stability and mechanical properties.
Collapse
Affiliation(s)
| | | | - Krissia Wilhelm
- Escuela de Quimica, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | | | - Teodolito Guillén-Girón
- Escuela de Ciencia e Ingenieria de los Materiales, Tecnologico de Costa Rica, Cartago 159-7050, Costa Rica
| | | |
Collapse
|
10
|
Adibkia K, Selselehjonban S, Emami S, Osouli-Bostanabad K, Barzegar-Jalali M. Electrosprayed polymeric nanobeads and nanofibers of modafinil: preparation, characterization, and drug release studies. ACTA ACUST UNITED AC 2019; 9:179-188. [PMID: 31508333 PMCID: PMC6726752 DOI: 10.15171/bi.2019.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/03/2022]
Abstract
![]()
Introduction: Modafinil (MDF) is used orally for the treatment of attention-deficit/hyperactivity disorder and narcolepsy. It holds low solubility and high permeability; therefore, improving its dissolution properties by preparing nanoformulations can be a promising approach to enhance its oral absorption. Our aims were to prepare and characterize MDF-Eudragit® RS100 (MDF-ERS) nanoparticles by electrospray technique.
Methods: Electrosprayed nanoparticles were fabricated by varying MDF to ERS ratios and concentrations. The formulations were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FTIR). Release studies were performed on nanoparticles, physical mixtures, and raw MDF. The release data were fitted to different models to understand the mechanism of the drug release.
Results: Electrospraying of MDF and ERS solution resulted in the preparation of nonobeads or nanofibers, and the particulate characteristics of the obtained products were largely controlled by the polymer amount in the solution. PXRD and thermal analyses showed that MDF was an amorphous phase in the structures of nanoparticles. Using FTIR, no interaction was observed between MDF and ERS in nanoparticles. Nanoparticles showed biphasic release profiles and the order of dissolution rates was: nanofibers>MDF>nanobeads. The well-fitted model was Weibull model, indicating a Fickian diffusion as the main mechanism of release.
Conclusion: The results suggest that by optimization of variables such as solution concentration of MDF-ERS nanofibers and nanobeads with higher dissolution rates can be made by electrospray. Electrospray deposition as a simple, continuous, and surfactant free method is an excellent choice for preparation of drug loaded polymeric nanoparticles.
Collapse
Affiliation(s)
- Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Selselehjonban
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Emami
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Karim Osouli-Bostanabad
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Adibkia K, Ghajar S, Osouli-Bostanabad K, Balaei N, Emami S, Barzegar-Jalali M. Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation. Adv Pharm Bull 2019; 9:231-240. [PMID: 31380248 PMCID: PMC6664122 DOI: 10.15171/apb.2019.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/11/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.
Collapse
Affiliation(s)
- Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Ghajar
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Osouli-Bostanabad
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Balaei
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Emami
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm 2018; 547:404-420. [PMID: 29890258 DOI: 10.1016/j.ijpharm.2018.06.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Cocrystals are homogenous (single-phase) crystalline structures composed by two or more components in a definite stoichiometric ratio bonded together by noncovalent bonds. Pharmaceutical industry has been showing interest in cocrystals due to their ability to improve active pharmaceutical ingredients (API's) properties, such as solubility, dissolution, bioavailability, stability and processability. The necessity for high-throughput screening methods and methods capable of producing cocrystals in an industrial scale still hinders the use of cocrystals by the pharmaceutical industry. The aim of this review is to present an extensive overview of the cocrystallization methods, focusing in the specificities of each technique, its advantages and disadvantages. The review is divided into solvent-based and solvent-free methods. The most appropriate methods to the different stages of cocrystals manufacture, from the screening phase to industrial production are identified. The use of continuous and scalable methods in cocrystal production as well as the implementation of quality-by-design and process analytical technology concepts are also addressed.
Collapse
Affiliation(s)
- Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Bárbara Baptista
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Almeida Lopes
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mafalda Cruz Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. ACTA ACUST UNITED AC 2018; 8:305-320. [PMID: 30397585 PMCID: PMC6209825 DOI: 10.15171/bi.2018.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
Abstract
![]()
Introduction: Oral drug delivery is the most favored route of drug administration. However, poor oral bioavailability is one of the leading reasons for insufficient clinical efficacy. Improving oral absorption of drugs with low water solubility and/or low intestinal membrane permeability is an active field of research. Cocrystallization of drugs with appropriate coformers is a promising approach for enhancing oral bioavailability.
Methods: In the present review, we have focused on recent advances that have been made in improving oral absorption through cocrystallization. The covered areas include supersaturation and its importance on oral absorption of cocrystals, permeability of cocrystals through membranes, drug-coformer pharmacokinetic (PK) interactions, conducting in vivo-in vitro correlations for cocrystals. Additionally, a discussion has been made on the integration of nanocrystal technology with supramolecular design. Marketed cocrystal products and PK studies in human subjects are also reported.
Results: Considering supersaturation and consequent precipitation properties is necessary when evaluating dissolution and bioavailability of cocrystals. Appropriate excipients should be included to control precipitation kinetics and to capture solubility advantage of cocrystals. Beside to solubility, cocrystals may modify membrane permeability of drugs. Therefore, cocrystals can find applications in improving oral bioavailability of poorly permeable drugs. It has been shown that cocrystals may interrupt cellular integrity of cellular monolayers which can raise toxicity concerns. Some of coformers may interact with intestinal absorption of drugs through changing intestinal blood flow, metabolism and inhibiting efflux pumps. Therefore, caution should be taken into account when conducting bioavailability studies. Nanosized cocrystals have shown a high potential towards improving absorption of poorly soluble drugs.
Conclusions: Cocrystals have found their way from the proof-of-principle stage to the clinic. Up to now, at least two cocrystal products have gained approval from regulatory bodies. However, there are remaining challenges on safety, predicting in vivo behavior and revealing real potential of cocrystals in the human.
Collapse
Affiliation(s)
- Shahram Emami
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|