1
|
Mita H, Kuroda T, Minamijima Y, Tamura N, Ohta M. Concentration of Marbofloxacin in equine subcutaneous tissue fluid after subcutaneous administration in encapsulated microparticles. J Equine Vet Sci 2024; 141:105148. [PMID: 39019294 DOI: 10.1016/j.jevs.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Surgical-site infections (SSIs) at implant sites in horses are sometimes difficult to control with systemic antimicrobials. Because one of the likely reasons is insufficient antimicrobial concentrations, there is a need to increase these concentrations in and around the infected tissue. Marbofloxacin (MAR)-encapsulated microparticles (MAR-MPs) made of biodegradable poly (lactic-co-glycolic) acid are capable of sustained release in vitro. We examined the concentration of MAR in the subcutaneous tissue fluid at sites where MAR-MPs had been administered. On day 0, six 3- × 4-cm subcutaneous pockets were created in the neck of each of six Thoroughbred horses under sedation and local anesthesia. MAR-MPs containing 50 mg of MAR were added to each pocket, which was then sutured. On days 1, 2, 3, 4, and 7, subcutaneous tissue fluid from one pocket per horse was collected and analyzed by LC-MS/MS. From days 1 to 7, the median MAR concentration in the subcutaneous tissue fluid ranged from 17.7 (4.89-125.6) to 33.05 (15.1-71.6) µg/mL. The median concentrations in the subcutaneous tissue fluid exceeded the MIC90 (the minimum inhibitory concentration that would inhibit the growth of 90 % of the tested bacterial isolates) of MAR for clinical isolates reported previously. The area of swelling at the site of administration was significantly larger on days 1 to 4 than just after administration (P < 0.05). MAR-MPs could be useful for controlling SSIs that require high antimicrobial concentrations for extended periods when they are used with strategies that reduce side effects.
Collapse
Affiliation(s)
- Hiroshi Mita
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan.
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| | | | - Norihisa Tamura
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| | - Minoru Ohta
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| |
Collapse
|
2
|
Zou Y, Gao W, Jin H, Mao C, Zhang Y, Wang X, Mei D, Zhao L. Cellular Uptake and Transport Mechanism of 6-Mercaptopurine Nanomedicines for Enhanced Oral Bioavailability. Int J Nanomedicine 2023; 18:79-94. [PMID: 36636639 PMCID: PMC9830076 DOI: 10.2147/ijn.s394819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Background Nanomedicines have significant advantages in enhancing the oral bioavailability of drugs, but a deeper understanding of the underlying mechanisms remains to be interpreted. Hence, the present study aims to explain the uptake and trafficking mechanism for 6-MP nanomedicines we previously constructed. Methods 6-MP loaded poly(lactide-co-glycolide) (PLGA) nanomedicines (6-MPNs) were prepared by the multiple emulsion method. The transcytosis mechanism of 6-MPNs was investigated in Caco-2 cells, Caco-2 monolayers, follicle associated epithelium (FAE) monolayers and rats, including transmembrane pathway, intracellular trafficking, paracellular transport and the involvement of transporter. Results Pharmacokinetics in rats showed that the area under the curve (AUC) of 6-MP in the 6-MPNs group (147.3 ± 42.89 μg/L·h) was significantly higher than that in the 6-MP suspensions (6-MPCs) group (70.31 ± 18.24 μg/L·h). The uptake of 6-MPNs in Caco-2 cells was time-, concentration- and energy-dependent. The endocytosis of intact 6-MPNs was mediated mainly through caveolae/lipid raft, caveolin and micropinocytosis. The intracellular trafficking of 6-MPNs was affected by endoplasmic reticulum (ER)-Golgi complexes, late endosome-lysosome and microtubules. The multidrug resistance associated protein 4 (MRP4) transporter-mediated transport of free 6-MP played a vital role on the transmembrane of 6-MPNs. The trafficking of 6-MPNs from the apical (AP) side to the basolateral (BL) side in Caco-2 monolayers was obviously improved. Besides, 6-MPNs affected the distribution and expression of zona occludens-1 (ZO-1). The transport of 6-MPNs in FAE monolayers was concentration- and energy-dependent, while reaching saturation over time. 6-MPNs improved the absorption of the intestinal Peyer's patches (PPs) in rats. Conclusion 6-MPNs improve the oral bioavailability through multiple pathways, including active transport, paracellular transport, lymphatic delivery and MRP4 transporter. The findings of current study may shed light on the cellular uptake and transcellular trafficking mechanism of oral nanomedicines.
Collapse
Affiliation(s)
- Yaru Zou
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China,Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, Jiangsu, 215025, People’s Republic of China
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Huizhen Jin
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, Jiangsu, 215025, People’s Republic of China
| | - Chenmei Mao
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, Jiangsu, 215025, People’s Republic of China
| | - Yi Zhang
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
| | - Dong Mei
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China,Correspondence: Dong Mei; Libo Zhao, Email ;
| | - Libo Zhao
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China,Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| |
Collapse
|
3
|
Sidarta M, Baruah L, Wenzel M. Roles of Bacterial Mechanosensitive Channels in Infection and Antibiotic Susceptibility. Pharmaceuticals (Basel) 2022; 15:ph15070770. [PMID: 35890069 PMCID: PMC9322971 DOI: 10.3390/ph15070770] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
Bacteria accumulate osmolytes to prevent cell dehydration during hyperosmotic stress. A sudden change to a hypotonic environment leads to a rapid water influx, causing swelling of the protoplast. To prevent cell lysis through osmotic bursting, mechanosensitive channels detect changes in turgor pressure and act as emergency-release valves for the ions and osmolytes, restoring the osmotic balance. This adaptation mechanism is well-characterized with respect to the osmotic challenges bacteria face in environments such as soil or an aquatic habitat. However, mechanosensitive channels also play a role during infection, e.g., during host colonization or release into environmental reservoirs. Moreover, recent studies have proposed roles for mechanosensitive channels as determinants of antibiotic susceptibility. Interestingly, some studies suggest that they serve as entry gates for antimicrobials into cells, enhancing antibiotic efficiency, while others propose that they play a role in antibiotic-stress adaptation, reducing susceptibility to certain antimicrobials. These findings suggest different facets regarding the relevance of mechanosensitive channels during infection and antibiotic exposure as well as illustrate that they may be interesting targets for antibacterial chemotherapy. Here, we summarize the recent findings on the relevance of mechanosensitive channels for bacterial infections, including transitioning between host and environment, virulence, and susceptibility to antimicrobials, and discuss their potential as antibacterial drug targets.
Collapse
|
4
|
Tong X, Patel SK, Li J, Patton D, Xu E, Anderson PL, Parikh U, Sweeney Y, Strizki J, Hillier SL, Rohan LC. Development and Evaluation of Nanoparticles-in-Film Technology to Achieve Extended In Vivo Exposure of MK-2048 for HIV Prevention. Polymers (Basel) 2022; 14:1196. [PMID: 35335526 PMCID: PMC8955144 DOI: 10.3390/polym14061196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
MK-2048 is a second-generation integrase inhibitor active against HIV, which has been applied vaginally using ring formulations. In this work, a nanoparticle-in-film technology was developed as a discrete pre-exposure prophylactic product option against HIV for an extended duration of use. A film platform loaded with poly (lactic-co-glycolic acid) nanoparticles (PNP) encapsulating MK-2048 was engineered. MK-2048 PNPs were loaded into films that were manufactured via the solvent casting method. Physicochemical and mechanical properties, in vitro efficacy, Lactobacillus compatibility, in vitro and ex vivo permeability, and in vivo pharmacokinetics in macaques were evaluated. PNPs with a mean diameter of 382.2 nm and −15.2 mV zeta potential were obtained with 95.2% drug encapsulation efficiency. PNP films showed comparable in vitro efficacy to free MK-2048 (IC50 0.46 vs. 0.54 nM) and were found to have no impact on Lactobacillus. MK-2048 encapsulated in PNPs showed an increase in permeability (>4-fold) compared to the free MK-2048 in MDCKII cell lines. Furthermore, PNPs had higher ectocervical tissue permeability (1.7-fold) compared to free MK-2048. PNP films showed sustained drug levels for at least 3 weeks in the macaque vaginal fluid. This work demonstrates the synergy of integrating nanomedicine and polymeric film technology to achieve sustained vaginal drug delivery.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.T.); (S.K.P.); (J.L.); (E.X.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
| | - Sravan Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.T.); (S.K.P.); (J.L.); (E.X.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.T.); (S.K.P.); (J.L.); (E.X.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (D.P.); (Y.S.)
| | - Elaine Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.T.); (S.K.P.); (J.L.); (E.X.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
| | - Peter L. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA;
| | - Urvi Parikh
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
| | - Yvonne Sweeney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (D.P.); (Y.S.)
| | - Julie Strizki
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA;
| | - Sharon L. Hillier
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (X.T.); (S.K.P.); (J.L.); (E.X.)
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; (U.P.); (S.L.H.)
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Elbrink K, Van Hees S, Chamanza R, Roelant D, Loomans T, Holm R, Kiekens F. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2021; 163:158-170. [PMID: 33848628 DOI: 10.1016/j.ejpb.2021.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/30/2023]
Abstract
The purpose of this work was to evaluate solid lipid nanoparticles (SLNs) as a long acting injectable drug delivery platform for intramuscular and subcutaneous administration. SLNs were developed with a low (unsaturated) and high (supersaturated) drug concentration at equivalent lipid doses. The impact of the drug loading as well as the administration route for the SLNs using two model compounds with different physicochemical properties were explored for their in vitro and in vivo performance. Results revealed that drug concentration had an influence on the particle size and entrapment efficiency of the SLNs and, therefore, indirectly an influence on the Cmax/dose and AUC/dose after administration to rats. Furthermore, the in vitro drug release was compound specific, and linked to the affinity of the drug compounds towards the lipid matrix and release medium. The pharmacokinetic parameters resulted in an increased tmax, t1/2 and mean residence time (MRT) for all formulations after intramuscular and subcutaneous dosing, when compared to intravenous administration. Whereas, the subcutaneous injections performed better for those parameters than the intramuscular injections, because of the higher blood perfusion in the muscles compared with the subcutaneous tissues. In conclusion, SLNs extend drug release, need to be optimized for each drug, and are appropriate carriers for the delivery of drugs that require a short-term sustained release in a timely manner.
Collapse
Affiliation(s)
- Kimberley Elbrink
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Sofie Van Hees
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ronnie Chamanza
- Janssen Pharmaceutica, Nonclinical Safety, Pathology/Toxicology, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Dirk Roelant
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Tine Loomans
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - René Holm
- Janssen Pharmaceutica, Drug Product and Development, Parenterals and Liquids, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
7
|
Zou Y, Mei D, Yuan J, Han J, Xu J, Sun N, He H, Yang C, Zhao L. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine 2021; 16:1127-1141. [PMID: 33603372 PMCID: PMC7886780 DOI: 10.2147/ijn.s290466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. It requires a long and rigorous course of chemotherapy treatments. 6-Mercaptopurine (6-MP) is one of the primary drugs used in chemotherapy. Unfortunately, its efficacy has been limited due to its insolubility, poor bioavailability and serious adverse effects. To overcome these drawbacks, we constructed 6-mercaptopurine (6-MP)-loaded nanomedicines (6-MPNs) with biodegradable poly(lactide-co-glycolide) (PLGA) to enhance the anticancer efficacy of 6-MP. Methods We prepared the 6-MPNs using a double-emulsion solvent evaporation method, characterizing them for the physicochemical properties. We then investigated the plasma, intestinal region and other organs in Sprague Dawley (SD) rats for pharmacokinetics. Additionally, we evaluated its anticancer efficacy in vitro on the human T leukemia cell line Jurkat and in vivo on the ALL model mice. Results The 6-MPNs were spherical in shape with uniform particle size and high encapsulation efficiency. The in vitro release profile showed that 6-MPNs exhibited a burst release that a sustained release phase then followed. The apoptosis assay demonstrated that 6-MPNs could improve the in vitro cytotoxicity in Jurkat cells. Pharmacokinetics profiles revealed that 6-MPNs had improved oral bioavailability. Tissue distribution experiments indicated that 6-MPNs increased the duodenum absorption of 6-MP, at the same time having a low accumulation of the toxic metabolites of 6-MP. The in vivo pharmacodynamics study revealed that 6-MPNs could prolong the survival time of the ALL model mice. The prepared 6-MPNs, therefore, have superior properties in terms of anticancer efficacy against ALL with reduced systemic toxicity. Conclusion Our nanomedicines provide a promising delivery strategy for 6-MP; they offer a simple preparation method and high significance for clinical translation.
Collapse
Affiliation(s)
- Yaru Zou
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jinjie Yuan
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jiaqi Han
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jiamin Xu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| |
Collapse
|
8
|
Kullar R, Tran MCN, Goldstein EJC. Investigational Treatment Agents for Recurrent Clostridioides difficile Infection (rCDI). J Exp Pharmacol 2020; 12:371-384. [PMID: 33116952 PMCID: PMC7553590 DOI: 10.2147/jep.s242959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a major cause of nosocomial diarrhea that is deemed a global health threat. C. difficile strain BI/NAP1/027 has contributed to the increase in the mortality, severity of CDI outbreaks and recurrence rates (rCDI). Updated CDI treatment guidelines suggest vancomycin and fidaxomicin as initial first-line therapies that have initial clinical cure rates of over 80%. Unacceptably high recurrence rates of 15–30% in patients for the first episode and 40% for the second recurrent episode are reported. Alternative treatments for rCDI include fecal microbiota transplant and a human monoclonal antibody, bezlotoxumab, that can be used in patients with high risk of rCDI. Various emerging potential therapies with narrow spectrum of activity and little systemic absorption that are in development include 1) Ibezapolstat (formerly ACX-362E), MGB-BP-3, and DS-2969b-targeting bacterial DNA replication, 2) CRS3213 (REP3123)-inhibiting toxin production and spore formation, 3) ramizol and ramoplanin-affecting bacterial cell wall, 4) LFF-571-blocking protein synthesis, 5) Alanyl-L-Glutamine (alanylglutamine)-inhibiting damage caused by C. difficile by protecting intestinal mucosa, and 6) DNV3837 (MCB3681)-prodrug consisting of an oxazolidinone–quinolone combination that converts to the active form DNV3681 that has activity in vitro against C. difficile. This review article provides an overview of these developing drugs that can have potential role in the treatment of rCDI and in lowering recurrence rates.
Collapse
Affiliation(s)
| | - Mai-Chi N Tran
- Pharmacy Department, Keck Medical Center of USC, Los Angeles, CA, USA.,Clinica Juan Pablo Medical Group, Los Angeles, CA, USA
| | - Ellie J C Goldstein
- R.M. Alden Research Laboratory, Santa Monica, CA, USA.,David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
9
|
Antibiotic Treatment Pipeline for Clostridioides difficile Infection (CDI): A Wide Array of Narrow-Spectrum Agents. Curr Infect Dis Rep 2020. [DOI: 10.1007/s11908-020-00730-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Rifampicin-Loaded Mesoporous Silica Nanoparticles for the Treatment of Intracellular Infections. Antibiotics (Basel) 2019; 8:antibiotics8020039. [PMID: 30979069 PMCID: PMC6628058 DOI: 10.3390/antibiotics8020039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases remain a major burden in today’s world, causing high mortality rates and significant economic losses, with >9 million deaths per year predicted by 2030. Invasion of host cells by intracellular bacteria poses treatment challenges due to the poor permeation of antimicrobials into the infected cells. To overcome these limitations, mesoporous silica nanoparticles (MSNP) loaded with the antibiotic rifampicin were investigated as a nanocarrier system for the treatment of intracellular bacterial infection with specific interest in the influence of particle size on treatment efficiency. An intracellular infection model was established using small colony variants (SCV) of S. aureus in macrophages to systemically evaluate the efficacy of rifampicin-loaded MSNP against the pathogen as compared to a rifampicin solution. As hypothesized, the superior uptake of MSNP by macrophages resulted in an enhanced treatment efficacy of the encapsulated rifampicin as compared to free antibiotic. This study provides a potential platform to improve the performance of currently available antibiotics against intracellular infections.
Collapse
|
11
|
Tran MCN, Kullar R, Goldstein EJC. Investigational drug therapies currently in early-stage clinical development for the treatment of clostridioides (clostridium) difficile infection. Expert Opin Investig Drugs 2019; 28:323-335. [DOI: 10.1080/13543784.2019.1581763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mai-Chi N. Tran
- Department of Pharmacy, Providence St. John’s Health Center, Santa Monica,
CA, USA
- Department of Pharmacy, Clinica Juan Pablo Medical Group, Los Angeles,
CA, USA
| | | | - Ellie J. C. Goldstein
- R M Alden Research Laboratory, Santa Monica,
CA, USA
- David Geffen School of Medicine, Los Angeles,
CA, USA
| |
Collapse
|
12
|
A 14-day repeat dose oral gavage range-finding study of a first-in-class CDI investigational antibiotic, in rats. Sci Rep 2019; 9:158. [PMID: 30655592 PMCID: PMC6336794 DOI: 10.1038/s41598-018-36690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistant bacteria are winning the fight over antibiotics with some bacteria not responding to any antibiotics, threatening modern medicine as we know it. The development of new, effective and safe antibiotics is critical for addressing this issue. Ramizol, a first-in-class styrylbenzene based antibiotic, is an investigational drug indicated for Clostridium difficile infections (CDI). The objective of this range-finding study was to evaluate the potential general toxicity (based on toxicological endpoints selected) and toxicokinetics of Ramizol in male and female rats that may arise from repeated exposure via oral gavage over a test period of at least 14 days at doses of 50 mg/kg, 500 mg/kg and 1500 mg/kg. There were no mortalities in this study and no Ramizol-related clinical observations. Additionally, there were no changes in mean body weight, body weight gain, food consumption or food efficiency for male and female rats attributable to Ramizol administration. The observed pharmacokinetic behavior showed the presence of Ramizol in plasma at 24 hours post-dosing combined with increasing AUC(0-24) values during the course of this study in groups administered 1500 mg/kg/day, which suggests that at least some dosing groups will show accumulation of compound during repeated dose studies. These toxicology results have shown Ramizol is well-tolerated at very high concentrations in rats and support the further drug development of Ramizol as a first-in-class antibiotic for the treatment of CDI.
Collapse
|