1
|
Deng Y, Shen L, Zhu H, Zhou Y, Hu X. Network pharmacology analysis of the Huangqi-Gancao herb pair reveals quercetin as a therapeutics for allergic rhinitis via the RELA-regulated IFNG/IRF1 axis response. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03353-8. [PMID: 39133272 DOI: 10.1007/s00210-024-03353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Despite the complexity of allergic rhinitis (AR) pathogenesis, no FDA-approved drug has been developed to achieve optimal therapeutic effects. The present study explored the efficacy and mechanism of Huangqi (Hedysarum Multijugum Maxim)-Gancao (Glycyrrhizae Radix et Rhizoma or licorice) herb pair in treating AR by network pharmacology and experimental approaches. The bioactive ingredients of Huangqi and Gancao were identified and used to predict the targets of these herbs in AR and generate the pharmacological network. Ovalbumin (OVA)-induced AR mouse model was established to assess the anti-AR effect of the Huangqi decoction (HQD) prepared based on both herbs. We identified 90 active ingredients of the Huangqi-Gancao pair, targeting 69 AR-related genes. Quercetin (QUE) was identified as the hub ingredient of this pair, with 57 targets in AR. The protein-protein interaction (PPI) network analysis and molecular docking revealed IL1B, TNF, STAT1, IL6, PTGS2, RELA, IL2, NFKBIA, IFNG, IL10, IL1A, IRF1, EGFR, and CXCL10 as important targets of QUE in AR treatment. Experimentally, QUE or HQD significantly alleviated the AR-induced histopathological changes, AR symptoms, and IgE level and counteracted AR-induced expression changes of IFNG, IRF1, RELA, and NFKBIA. These effects were promoted by the NF-kB inhibitor helenalin, indicating that HQD and QUE counteracted AR in mice by regulating the IFNG/IRF1 signaling via the NF-κB pathway in AR mice. These findings shed light on the efficacy of the constituents of Huangqi-Gancao pair, their potential targets, and the molecular mechanisms of HQD in treating AR, which could advance the development of tailored therapeutic interventions for this disorder.
Collapse
Affiliation(s)
- Yongjun Deng
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Limin Shen
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Huilan Zhu
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Yanying Zhou
- Department of Otolaryngology, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, Shanghai, 201300, China
| | - Xin Hu
- Department of Otolaryngology, Renhe Hospital in Baoshan District, Shanghai, 200431, China.
| |
Collapse
|
2
|
Yang Q, Lu Y, Du A. m6A-related lncRNAs as potential biomarkers and the lncRNA ELFN1-AS1/miR-182-5p/BCL-2 regulatory axis in diffuse large B-cell lymphoma. J Cell Mol Med 2024; 28:e18046. [PMID: 38037859 PMCID: PMC10826449 DOI: 10.1111/jcmm.18046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid subtype. However, unsatisfactory survival outcomes remain a major challenge, and the underlying mechanisms are poorly understood. N6-methyladenosine (m6A), the most common internal modification of eukaryotic mRNA, participates in cancer pathogenesis. In this study, m6A-associated long non-coding RNAs (lncRNA) were retrieved from publicly available databases. Univariate, LASSO, and multivariate Cox regression analyses were performed to establish an m6A-associated lncRNA model specific to DLBCL. Kaplan-Meier curves, principal component analysis, functional enrichment analyses and nomographs were used to study the risk model. The underlying clinicopathological characteristics and drug sensitivity predictions against the model were identified. Risk modelling based on the three m6A-associated lncRNAs was an independent prognostic factor. By regrouping patients using our model-based method, we could differentiate patients more accurately for their response to immunotherapy. In addition, prospective compounds that can target DLBCL subtypes have been identified. The m6A-associated lncRNA risk-scoring model developed herein holds implications for DLBCL prognosis and clinical response prediction to immunotherapy. In addition, we used bioinformatic tools to identify and verify the ceRNA of the m6A-associated lncRNA ELFN1-AS1/miR-182-5p/BCL-2 regulatory axis. ELFN1-AS1 was highly expressed in DLBCL and DLBCL cell lines. ELFN1-AS1 inhibition significantly reduced the proliferation of DLBCL cells and promoted apoptosis. ABT-263 inhibits proliferation and promotes apoptosis in DLBCL cells. In vitro and in vivo studies have shown that ABT-263 combined with si-ELFN1-AS1 can inhibit DLBCL progression.
Collapse
Affiliation(s)
- Qinglong Yang
- Department of General SurgeryGuizhou Provincial people's HospitalGuiyangChina
| | - Yingxue Lu
- Department of Infectious DiseasesGuizhou Provincial people's HospitalGuiyangChina
| | - Ashuai Du
- Department of Infectious DiseasesGuizhou Provincial people's HospitalGuiyangChina
| |
Collapse
|
3
|
Umar AH, Ratnadewi D, Rafi M, Sulistyaningsih YC, Hamim H, Kusuma WA. Drug candidates and potential targets of Curculigo spp. compounds for treating diabetes mellitus based on network pharmacology, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:8544-8560. [PMID: 36300505 DOI: 10.1080/07391102.2022.2135597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Curculigo spp. is a herb that is commonly used in Indonesia to treat diabetes mellitus (DM) . The main active components of Curculigo spp. were identified through our previous metabolomic study and online database platform. However, the biological mechanisms underlying Curculigo spp. activity in treating DM remain unclear. Therefore, in this study, a network pharmacology was used to explore the active compounds of Curculigo spp. and their potential molecular mechanisms for treating DM. Oral bioavailability and drug-likeness from the compounds of Curculigo spp. were screened using Lipinski's rule of five, BBB, HIA + and Caco-2 permeability criteria. A network of compound-target-disease-pathway was then constructed using Cytoscape. The highest degree compounds and targets were then confirmed by molecular docking and molecular dynamics (MD) simulations. The human body can absorb 33 compounds derived from Curculigo spp. In addition, 58 nodes and 62 edges generated a network analysis with the DM target. The highest degree of the compound-target-disease pathway was for orcinol glucoside, AKR1B1, autoimmune diabetes, bile acid and bile salt metabolism. Furthermore, the computational docking method on Curculigo spp. compounds with the highest degree revealed that orcinol glucoside interacted with PTPN1 through a hydrogen bond and resulted in a binding energy of -7.2 kcal mol-1. Through hydrogen bonds, orcinol glucoside in PTPN1 regulates multiple signaling pathways via the adherens junction pathway, which may play a therapeutic role in DM (type 2 diabetes: obesity). In addition, MD simulation confirmed that orcinol glucoside, is suitable for DM treatment by interacting with PTPN1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Halim Umar
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, Indonesia
| | - Diah Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | | | - Hamim Hamim
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| |
Collapse
|
4
|
Xu H, You M, Xiang X, Zhao J, Yuan P, Chu L, Xie C. Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858314. [PMID: 36338345 PMCID: PMC9633197 DOI: 10.1155/2022/3858314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2024]
Abstract
Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1β, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Xiang Xiang
- Neurosurgery Department of Chongqing University, Three Gorges Hospital, Chongqing 400010, China
| | - Jun Zhao
- Department of Neurosurgery, Dazhou Hospital of Integrated Traditional and Western Medicine, 635000, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
5
|
Liu C, Ren Y, Sui X, Liu K, Zhang J, Wang Z, Li Y, Zhang Y. Integrating network pharmacology, transcriptomics, and molecular simulation to reveal the mechanism of tert-butylhydroquinone for treating diabetic retinopathy. Eur J Pharmacol 2022; 931:175215. [PMID: 35987258 DOI: 10.1016/j.ejphar.2022.175215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Diabetic retinopathy (DR), a common microvascular complication of diabetes mellitus, is a significant cause of blindness. As one of the crucial factors in the pathogenesis of DR, oxidative stress provides new insights for the treatment of DR. Tert-butylhydroquinone (TBHQ), an efficient phenolic antioxidant, has been proved to inhibit diabetic retina injury. However, the mechanism of TBHQ for DR treatment is still unclear. The present study was designed to investigate the potential mechanism of TBHQ for treating DR. Firstly, the potential targets of TBHQ and DR were selected to construct protein-protein interaction network, which was applied to illustrate the potential mechanism of TBHQ against DR. Combined with transcriptomics and molecular simulation, the potential mechanisms were systematically verified. The results showed that TBHQ inhibited retinal microvascular injury by regulating oxidative stress, inflammation, cell proliferation-death regulation, and vascular system development. The mechanisms of these activities were associated with hypoxia-inducible factor-1 (HIF-1), nuclear factor-erythroid 2 related factor 2 (Nrf2), vascular endothelial growth factor (VEGF), forkhead box O (FoxO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and rhoptry-associated protein1 (Rap1) signaling pathways and their related targets nitric oxide synthase 3 (NOS3), mitogen-activated protein kinase 8 (MAPK8), prostaglandin-endoperoxide synthase 2 (PTGS2), and heme oxygenase 1 (HMOX1). In conclusion, a systematic perspective for the mechanism of TBHQ against DR was revealed by present study which lays a foundation for the application of TBHQ in treating DR.
Collapse
Affiliation(s)
- Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Ren
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin Sui
- Information and Educational Technology Center, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Kaiyang Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianing Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zian Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yingying Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
6
|
Magnoliae flos Downregulated Lipopolysaccharide-Induced Inflammatory Responses via NF-κB/ERK-JNK MAPK/STAT3 Pathways. Mediators Inflamm 2022; 2022:6281892. [PMID: 35795403 PMCID: PMC9251077 DOI: 10.1155/2022/6281892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Magnoliae flos is the dried flower bud of Magnolia biondii and related plants. It has been used as a medicinal herb for the treatment of rhinitis, sinusitis, and sinus headaches. Nevertheless, the effects of Magnoliae flos in microbial infection or sepsis remain unclear. In this study, we investigated the anti-inflammatory effects of Magnoliae flos water extract (MF) in lipopolysaccharide- (LPS-) induced septic mice and LPS-stimulated RAW264.7 macrophages. Results. We found that MF reduced the mortality of LPS-challenged mice. Enzyme immunoassays and reverse transcription polymerase chain reaction analysis revealed that MF administration attenuated mRNA expression and protein production of proinflammatory mediators, including cyclooxygenase 2, inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-6. In parallel to these results in mice, pretreatment with MF suppressed the LPS-induced production of proinflammatory mediators in RAW264.7 macrophages. In addition, we found that MF exerted its suppressive effects by inhibiting the activation of the mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription pathways at the protein level. Conclusion. MF could be a potential therapeutic agent for regulating excessive inflammatory responses in sepsis.
Collapse
|
7
|
Zhang Y, Hua W, Dang Y, Cheng Y, Wang J, Zhang X, Teng M, Wang S, Zhang M, Kong Z, Lu X, Zheng Y. Validated Impacts of N6-Methyladenosine Methylated mRNAs on Apoptosis and Angiogenesis in Myocardial Infarction Based on MeRIP-Seq Analysis. Front Mol Biosci 2022; 8:789923. [PMID: 35155564 PMCID: PMC8831860 DOI: 10.3389/fmolb.2021.789923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives: N6-methyladenosine (m6A) is hypothesized to play a role in the regulation of pathogenesis of myocardial infarction (MI). This study was designed to compare m6A-tagged transcript profiles to identify mRNA-specific changes on pathophysiological variations after MI. Methods: N6-methyladenosine methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were interacted to select m6A-modified mRNAs with samples collected from sham operated and MI rat models. m6A methylation regulated mRNAs were interacted with apoptosis/angiogenesis related genes in GeneCards. Afterwards, MeRIP-quantitative real-time PCR (MeRIP-qRT-PCR) was performed to measure m6A methylation level of hub mRNAs. m6A methylation variation was tested under different oxygen concentration or hypoxic duration in H9c2 cells and HUVECs. In addition, Western blot and qRT-PCR were employed to detect expression of hub mRNAs and relevant protein level. Flow cytometry and Tunel assay were conducted to assess apoptotic level. CCK-8, EdU, and tube formation assay were performed to measure cell proliferation and tube formation ability. Results: Upregulation of Mettl3 was firstly observed in vivo and in vitro, followed by upregulation of m6A methylation level. A total of 567 significantly changed m6A methylation peaks were identified, including 276 upregulated and 291 downregulated peaks. A total of 576 mRNAs were upregulated and 78 were downregulated. According to combined analysis of MeRIP-seq and RNA-seq, we identified 26 significantly hypermethylated and downregulated mRNAs. Based on qRT-PCR and interactive analysis, Hadh, Kcnn1, and Tet1 were preliminarily identified as hub mRNAs associated with apoptosis/angiogenesis. MeRIP-qRT-PCR assay confirmed the results from MeRIP-seq. With the inhibition of Mettl3 in H9c2 cells and HUVECs, downregulated m6A methylation level of total RNA and upregulated expression of hub mRNAs were observed. Increased m6A level was verified in the gradient context in terms of prolonged hypoxic duration and decreased oxygen concentration. Under simulated hypoxia, roles of Kcnn1 and Tet1 in angiogenesis and Hadh, Tet1, and Kcnn1 in apoptosis were further confirmed with our validation experiments. Conclusion: Roles of m6A-modified mRNA transcripts in the context of MI were preliminarily verified. In the context of m6A methylation, three hub mRNAs were validated to impact the process of apoptosis/angiogenesis. Our study provided theoretical basis and innovative targets for treatment of MI and paved the way for future investigations aiming at exploring upstream epigenetic mechanisms of pathogenesis after MI.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yini Dang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayue Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Teng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shenrui Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Kong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yu Zheng, ; Xiao Lu,
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yu Zheng, ; Xiao Lu,
| |
Collapse
|
8
|
Qiu ZK, Liu ZT, Pang JL, Wu HB, Liu X, Yang ZM, Li X, Chen JS. A network pharmacology study with molecular docking to investigate the possibility of licorice against posttraumatic stress disorder. Metab Brain Dis 2021; 36:1763-1777. [PMID: 34417940 DOI: 10.1007/s11011-021-00816-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Post traumatic stress disorder (PTSD) is a mental health condition that has a debilitating effect on a person's quality of life and leads to a high socioeconomic burden. Licorice has been demonstrated to have neuroprotective and antidepressant-like effects, but little is known about its effects for the treatment of PTSD. The present study aimed to explore the potential of licorice for PTSD therapy using a network pharmacology approach with molecular docking studies. The compounds of licorice were obtained from databases with screening by absorption, distribution, metabolism and excretion (ADME) evaluation. Genes associated with compounds or PTSD were obtained from public databases, and the genes overlapping between licorice compounds and PTSD were compared by Venn diagram. A network of medicine-ingredients-targets-disease was constructed, visualized, and analyzed using cytoscape software. Protein-protein interactions, gene ontology, pathway enrichment and molecular docking were performed to evaluate the effect of licorice for the treatment of PTSD. 69 potential compounds were screened after ADME evaluation. A total of 81 compound-related genes and 566 PTSD-related genes were identified in the databases with 27 overlapping genes. Licorice compounds (e.g., medicarpin, 7-methoxy-2-methyl isoflavone, shinpterocarpin, formononetin, licochalcone a) and target proteins (e.g., ESR1, PTGS2, NOS2, and ADRB2) with high degree in the network were involved in G protein-coupled receptor signaling pathways at the postsynaptic/synaptic membrane. Moreover, neuroactive ligand-receptor interactions, calcium signaling, cholinergic synapse, serotonergic synapse and adrenergic signaling in cardiomyocytes may play important roles in the treatment of PTSD by licorice. This study provides molecular evidence of the beneficial effects of licorice for the treatment of PTSD.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Zhi-Ting Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jia-Li Pang
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Han-Biao Wu
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Xu Liu
- Medical Supplies Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Ze-Min Yang
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Xiong Li
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China.
| | - Ji-Sheng Chen
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Yang S, Fu Q, Deng H, Liu Z, Zhong J, Zhu X, Wang Q, Sun C, Wu J. Mechanisms and molecular targets of the Yu-Ping-Feng powder for allergic rhinitis, based on network pharmacology. Medicine (Baltimore) 2021; 100:e26929. [PMID: 34477124 PMCID: PMC8415986 DOI: 10.1097/md.0000000000026929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
In traditional Chinese medicine (TCM), Yu-Ping-Feng powder (YPFP) has been used to treat allergic rhinitis (AR) for centuries. However, the mechanisms underlying its effects or its molecular targets in AR treatment are yet to be elucidated. Therefore, the active compounds of YPFP and their targets were collected and identified from the Traditional Chinese Medicine Systems Pharmacology database. Moreover, AR-associated targets were acquired from the GeneCards and Online Mendelian Inheritance in Man database. Proteins interactions network of YPFP presumed targets and AR-associated targets were examined and merged to reveal the candidate YPFP targets against AR.Cytoscape software and BisoGenet Database were employed to perform the Visualization and Integrated Discovery (Cluster Profiler R package, version: 3.8.1). Kyoto Encyclopedia of Genes and Genomes and genome pathway analyses. To identify the key target genes, a gene-pathway network has been constructed.We identified 44 effective active compounds and 622 YPFP targets. Also 1324 target genes related to AR were identified. Twenty pathways, including those of AGE-RAGE signaling, fluid shear stress, atherosclerosis, PI3K-Akt signaling, and tumor necrosis factor signaling was enriched significantly. MAPK1 was identified as the core gene, while others including RELA, AKT1, NFKBIA, IL6, and JUN, were also important in the gene-pathway network. Clearly, network pharmacology can be applied in revealing the molecular targets and mechanisms of action of complex herbal preparations.These findings suggested that YPFP could treat AR by regulating immunological functions, diminishing inflammation, and improving immunity through different pathways.
Collapse
Affiliation(s)
- Shasha Yang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qinwei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Deng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhiqing Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chuanhui Sun
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
10
|
Ling Y, Xu H, Ren N, Cheng C, Zeng P, Lu D, Yao X, Ma W. Prediction and Verification of the Major Ingredients and Molecular Targets of Tripterygii Radix Against Rheumatoid Arthritis. Front Pharmacol 2021; 12:639382. [PMID: 34168557 PMCID: PMC8217827 DOI: 10.3389/fphar.2021.639382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Tripterygii Radix exhibits good clinical efficacy and safety in rheumatoid arthritis (RA) patients, but its effective components and mechanism of action are still unclear. The purpose of this study was to explore and verify the major ingredients and molecular targets of Tripterygii Radix in RA using drug-compounds-biotargets-diseases network and protein-protein interaction (PPI) network analyses. The processes and pathways were derived from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The most important compounds and biotargets were determined based on the degree values. RA fibroblast-like synoviocytes (RA-FLS) were separated from RA patients and identified by hematoxylin and eosin (HE) staining and immunohistochemistry. The purity of RA-FLS was acquired by flow cytometry marked with CD90 or VCAM-1. RA-FLS were subjected to control, dimethyl sulfoxide (control), kaempferol, or lenalidomide treatment. Cell migration was evaluated by the transwell assay. The relative expression of biotarget proteins and cytokines was analyzed by western blotting and flow cytometry. In total, 144 chemical components were identified from Tripterygii Radix; kaempferol was the most active ingredient among 33 other components. Fourteen proteins were found to be affected in RA from 285 common biotargets. The tumor necrosis factor (TNF) signaling pathway was predicted to be one of the most latent treatment pathways. Migration of RA-FLS was inhibited and the expression of protein kinase B (AKT1), JUN, caspase 3 (CASP3), TNF receptor 1 and 2 (TNFR1 and TNFR2), interleukin-6 (IL-6), and TNF-α was significantly affected by kaempferol. Thus, this study confirmed kaempferol as the effective component of Tripterygii Radix against RA-FLS and TNF signaling pathway and its involvement in the regulation of AKT1, JUN, CASP3, TNFR1, TNFR2, IL-6, and TNF-α expression.
Collapse
Affiliation(s)
- Yi Ling
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Xu
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nina Ren
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changming Cheng
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ping Zeng
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Daomin Lu
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xueming Yao
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wukai Ma
- Department of Rheumatology Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
11
|
Hong PTL, Kim HJ, Kim WK, Nam JH. Flos magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:251-258. [PMID: 33859065 PMCID: PMC8050608 DOI: 10.4196/kjpp.2021.25.3.251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022]
Abstract
Flos magnoliae (FM), the dry flower buds of Magnolia officinalis or its related species, is a traditional herbal medicine commonly used in Asia for symptomatic relief of and treating allergic rhinitis, headache, and sinusitis. Although several studies have reported the effects of FM on store-operated calcium entry (SOCE) via the ORAI1 channel, which is essential during intracellular calcium signaling cascade generation for T cell activation and mast cell degranulation, the effects of its isolated constituents on SOCE remain unidentified. Therefore, we investigated which of the five major constituents of 30% ethanoic FM (vanillic acid, tiliroside, eudesmin, magnolin, and fargesin) inhibit SOCE and their physiological effects on immune cells. The conventional whole-cell patch clamp results showed that fargesin, magnolin, and eudesmin significantly inhibited SOCE and thus human primary CD4+ T lymphocyte proliferation, as well as allergen-induced histamine release in mast cells. Among them, fargesin demonstrated the most potent inhibitory effects not only on ORAI1 (IC50 = 12.46 ± 1.300 μM) but also on T-cell proliferation (by 87.74% ± 1.835%) and mast cell degranulation (by 20.11% ± 5.366%) at 100 μM. Our findings suggest that fargesin can be a promising candidate for the development of therapeutic drugs to treat allergic diseases.
Collapse
Affiliation(s)
- Phan Thi Lam Hong
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Hyun Jong Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea.,Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
12
|
Liang Y, Zou J, Zhang X, Shi Y, Tai J, Wang Y, Guo D, Yang M. Preparation and quality evaluation of a volatile oil microemulsion from Flos magnoliae and Centipeda minima. Mol Med Rep 2020; 22:4531-4540. [PMID: 33174034 PMCID: PMC7646747 DOI: 10.3892/mmr.2020.11571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/10/2020] [Indexed: 11/05/2022] Open
Abstract
In order to improve the water solubility of the volatile oils extracted from Flos magnoliae (FM) and Centipeda minima (CM), they were prepared as a microemulsion (ME), which were then used in the development of an FM and CM volatile oil ME for the treatment of allergic rhinitis (AR). ME was prepared by phase inversion emulsification, and the prescription factors such as emulsifier, co‑emulsifier, oil phase, Km, which represents the ratio of the mass of emulsifier to that of the co‑emulsifier, and preparation factors such as temperature affecting the formation of the ME were selected according to the formation area of ME in a pseudo‑ternary phase diagram. The quality of the ME was evaluated based on its appearance, particle size, Zeta potential and stability. The content of eucalyptol in ME was determined by gas chromatography‑mass spectrometry (GC‑MS). The cumulative permeability of the ME within 24 h was measured with a transdermal diffusion tester. The results revealed that the best formula for preparation of the ME was as follows: Castor oil polyoxyethylene ether (EL‑40) was the emulsifier; the co‑emulsifier was anhydrous ethanol; the Km was 2:1; the mixed phase of volatile oil and isopropyl myristate with mass ratio of 1:1 was used as oil phase; and the preparation temperature was 25˚C. The content of eucalyptol in the ME was 2.57 mg/g, and the cumulative permeability of the ME in 24 h was significantly increased compared with that of the reference oil solution. The appearance of the ME was uniform, and the solution was transparent. In conclusion, compared with traditional preparations, FM and CM volatile oil ME is a novel, improved and more effective preparation for the treatment of AR.
Collapse
Affiliation(s)
- Yulin Liang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jia Tai
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yu Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|
13
|
Lu YC, Yang CW, Lin YH, Hsueh JY, Chen JL, Yang SH, Chen YC, Chen HY. Identifying the Chinese Herbal Medicine Network and Core Formula for Allergic Rhinitis on a Real-World Database. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5979708. [PMID: 33204289 PMCID: PMC7665915 DOI: 10.1155/2020/5979708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
MATERIALS AND METHODS Patients with a primary diagnosis of AR (ICD-9-CM code: 477.9) in 2010 were included, and the National Health Insurance Research Database in Taiwan was used as the data source. Association rule mining and social network analysis were used to establish and explore the CHM network. Possible molecular pathways of the CHM network were summarized and compared with commonly used western medicine (WM) by conducting overrepresentation analysis in the Reactome pathway database. The potential proteins acted by CHMs were obtained from the CHM ingredient-protein databases, including STITCH, TCMSP, TCMID, and TCM@Taiwan. RESULTS There were 89,148 AR subjects found in 2010, and a total of 33,507 patients ever used CHM. On an average, 5.6 types of CHMs were utilized per prescription. Xin-Yi-Qing-Fei-Tang was used most frequently (25.5% of 222,279 prescriptions), while Xiao-Qing-Long-Tang with Xin-Yi-San was the most commonly prescribed CHM-CHM combination. Up to six distinctive clusters could be found among the CHM network, and core CHMs could be found for AR, such as Xiao-Qing-Long-Tang and Xin-Yi-Qing-Fei-Tang. A total of 140 molecular pathways were covered by the CHM network (2,432 ingredients from 31 kinds of CHMs), while 39 WMs covered 55 pathways. Among pathways responding to the immune system, WM mainly acted on cytokine signaling-related pathways, while CHM mostly acted on neutrophil/macrophage-related innate pathways and dendritic cell-related adaptive immunity pathways. CONCLUSION Our study demonstrated and analyzed the CHM network for AR. Core CHM for AR and possible molecular pathways were presented as well, and this information is crucial for researchers to select candidates for CHM-related studies.
Collapse
Affiliation(s)
- Yen-Chu Lu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Wei Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hsuan Lin
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ju-Yu Hsueh
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Hair Growth Effect of Emulsion Extracted Brevilin A, a JAK3 Inhibitor, from Centipeda minima. Processes (Basel) 2020. [DOI: 10.3390/pr8070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Janus kinase 3 (JAK3) inhibitors have been used effectively in the treatment of several cases of alopecia universalis and its variants. Our study aims to evaluate whether the emulsion extract of brevilin A from Centipeda minima (CMX) stimulates hair regrowth in a clinical trial, as a JAK3 inhibitor, combined with network pharmacology-based analysis. CMX showed potent inhibition of JAK3 in a concentration-dependent manner. Significant differences in total hair count, terminal hair count, and anagen hair count from the baseline to 24 weeks were observed between the placebo and CMX subjects. The gene set enrichment analysis showed that the targets of CMX are mainly associated with the JAK-STAT signaling pathway, cytokine–cytokine receptor interactions, and the MAPK signaling pathway. This study suggests that the medicinal herbal extract CMX is useful in the treatment of mild to moderate vertex balding that contribute to the visible improvements in hair growth observed in treated patients.
Collapse
|
15
|
Ye XW, Deng YL, Xia LT, Ren HM, Zhang JL. Uncovering the mechanism of the effects of Paeoniae Radix Alba on iron-deficiency anaemia through a network pharmacology-based strategy. BMC Complement Med Ther 2020; 20:130. [PMID: 32345291 PMCID: PMC7189569 DOI: 10.1186/s12906-020-02925-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Paeoniae Radix Alba, the root of the plant Paeonia lactiflora Pall, is a common blood-enriching drug in traditional Chinese medicine. Its effectiveness in the clinical treatment of anaemia is remarkable, but its potential pharmacologic mechanism has not been clarified. METHODS In this study, the potential pharmacologic mechanism of Paeoniae Radix Alba in the treatment of iron-deficiency anaemia was preliminarily elucidated through systematic and comprehensive network pharmacology. RESULTS Specifically, we obtained 15 candidate active ingredients from among 146 chemical components in Paeoniae Radix Alba. The ingredients were predicted to target 77 genes associated with iron-deficiency anaemia. In-depth analyses of these targets revealed that they were mostly associated with energy metabolism, cell proliferation, and stress responses, suggesting that Paeoniae Radix Alba helps alleviate iron-deficiency anaemia by affecting these processes. In addition, we conducted a core target analysis and a cluster analysis of protein-protein interaction (PPI) networks. The results showed that four pathways, the p53 signalling pathway, the IL-17 signalling pathway, the TNF signalling pathway and the AGE-RAGE signalling pathway in diabetic complications, may be major pathways associated with the ameliorative effects of Paeoniae Radix Alba on iron-deficiency anaemia. Moreover, molecular docking verified the credibility of the network for molecular target prediction. CONCLUSIONS Overall, this study predicted the functional ingredients in Paeoniae Radix Alba and their targets and uncovered the mechanism of action of this drug, providing new insights for advanced research on Paeoniae Radix Alba and other traditional Chinese medicines.
Collapse
Affiliation(s)
- Xian-Wen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ya-Ling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Lan-Ting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Hong-Min Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jin-Lian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
16
|
Huang J, Chen F, Zhong Z, Tan HY, Wang N, Liu Y, Fang X, Yang T, Feng Y. Interpreting the Pharmacological Mechanisms of Huachansu Capsules on Hepatocellular Carcinoma Through Combining Network Pharmacology and Experimental Evaluation. Front Pharmacol 2020; 11:414. [PMID: 32308626 PMCID: PMC7145978 DOI: 10.3389/fphar.2020.00414] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal cancers across the world. Chinese medicine has been used as adjunctive or complementary therapy for the management of HCC. Huachansu belongs to a class of toxic steroids isolated from toad venom that has important anti-cancer property. This study was aimed to identify the bioactive constituents and molecular targets of Huachansu capsules (HCSCs) for treating HCC using network pharmacology analysis and experimental assays. The major bioactive components of HCSCs were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A series of network pharmacology methods including target prediction, pathway identification, and network establishment were applied to identify the modes of action of HCSCs against HCC. Furthermore, a series of experiments, including MTT, clonogenic assay, 3-D transwell, wound healing assay, as well as flow cytometry, were conducted to verify the inhibitory ability of HCSCs on HCC in vitro. The results showed that 11 chemical components were identified from HCSCs. The network pharmacological analysis showed that there were 82 related anti-HCC targets and 14 potential pathways for these 11 components. Moreover, experimental assays confirmed the inhibitory effects of HCSCs against HCC in vitro. Taken together, our study revealed the synergistic effects of HCSCs on a systematic level, and suggested that HCSCs exhibited anti-HCC effects in a multi-component, multi-target, and multi-pathway manner.
Collapse
Affiliation(s)
- Jihan Huang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuting Liu
- Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyuan Fang
- Marine College, Shandong University (Weihai), Weihai, China
| | - Tao Yang
- Center for Drug Clinical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
17
|
A Systems Pharmacology Approach for Identifying the Multiple Mechanisms of Action for the Rougui-Fuzi Herb Pair in the Treatment of Cardiocerebral Vascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5196302. [PMID: 32025235 PMCID: PMC6982690 DOI: 10.1155/2020/5196302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Cardiocerebral vascular diseases (CCVDs) are the main reasons for high morbidity and mortality all over the world, including atherosclerosis, hypertension, myocardial infarction, stroke, and so on. Chinese herbs pair of the Cinnamomum cassia Presl (Chinese name, rougui) and the Aconitum carmichaelii Debx (Chinese name, fuzi) can be effective in CCVDs, which is recorded in the ancient classic book Shennong Bencao Jing, Mingyibielu and Thousand Golden Prescriptions. However, the active ingredients and the molecular mechanisms of rougui-fuzi in treatment of CCVDs are still unclear. This study was designed to apply a system pharmacology approach to reveal the molecular mechanisms of the rougui-fuzi anti-CCVDs. The 163 candidate compounds were retrieved from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). And 84 potential active compounds and the corresponding 42 targets were obtained from systematic model. The underlying mechanisms of the therapeutic effect for rougui-fuzi were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, component-target-disease (C-T-D) and target-pathway (T-P) networks were constructed to further dissect the core pathways, potential targets, and active compounds in treatment of CCVDs for rougui-fuzi. We also constituted protein-protein in interaction (PPI) network by the reflect target protein of the crucial pathways against CCVDs. As a result, 21 key compounds, 8 key targets, and 3 key pathways were obtained for rougui-fuzi. Afterwards, molecular docking was performed to validate the reliability of the interactions between some compounds and their corresponding targets. Finally, UPLC-Q-Exactive-MSE and GC-MS/MS were analyzed to detect the active ingredients of rougui-fuzi. Our results may provide a new approach to clarify the molecular mechanisms of Chinese herb pair in treatment with CCVDs at a systematic level.
Collapse
|