1
|
Karpuz M, Aydin HH, Ozgenc E, Erel-Akbaba G, Atlihan-Gundogdu E, Senyigit Z. 99mTc-labeled, tofacitinib citrate encapsulated chitosan microspheres loaded in situ gel formulations for intra-articular treatment of rheumatoid arthritis. Drug Dev Res 2024; 85:e22247. [PMID: 39138857 DOI: 10.1002/ddr.22247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Inflammatory diseases including rheumatoid arthritis are major health problems. Although different techniques and drugs are clinically available for the diagnosis and therapy of the disease, novel approaches regarding radiolabeled drug delivery systems are researched. Hence, in the present study, it was aimed to design, prepare, and characterize 99mTc-radiolabeled and tofacitinib citrate-encapsulated microsphere loaded poloxamer in situ gel formulations for the intra-articular treatment. Among nine different microsphere formulations, MS/TOFA-9 was chosen as the most proper one due to particle size, high encapsulation efficiency, and in vitro drug release behavior. Poloxamer 338 at a concentration of 15% was used to prepare in situ gel formulations. For intra-articular administration, microspheres were dispersed in an in situ gel containing 15% Poloxamer 338 and characterized in terms of gelation temperature, viscosity, rheological, mechanical, and spreadability properties. After the determination of the safe dose for MS/TOFA-9 and PLX-MS/TOFA-9 as 40 µL/mL in the cell culture study performed on healthy cells, the high anti-inflammatory effects were due to significant cellular inhibition of fibroblasts. In the radiolabeling studies with 99mTc, the optimum radiolabeling condition was determined as 200 ppm SnCl2 and 0.5 mg ascorbic acid, and both 99mTc-MS/TOFA-9 and 99mTc-PLX-MS/TOFA-9 exhibited high cellular binding capacity. In conclusion, although further in vivo experiments are required, PLX-MS/TOFA-9 was found to be a promising agent for intra-articular injection in rheumatoid arthritis.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Husniye Hande Aydin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Zeynep Senyigit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
2
|
Gharat S, Basudkar V, Momin M. In-Vitro and in-Vivo Evaluation of the Developed Curcumin-Cyclosporine-Loaded Nanoemulgel for the Management of Rheumatoid Arthritis. Immunol Invest 2024; 53:490-522. [PMID: 38197806 DOI: 10.1080/08820139.2024.2301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Topical nanogel-based formulations have shown potential in the management of rheumatoid arthritis (RA). The aim of this research work was to explore the synergistic effect of Curcumin (CUR) and Cyclosporine (CYC) in combination via a topical route for the management of RA. METHODS The CUR+CYC loaded nanoemulsion was developed using the spontaneous emulsification technique and was subsequently incorporated into Carbopol® Ultrez 30-NF gel. The effect of the developed formulation on levels of proinflammatory cytokines (IL-6, TNF-α) and anti-inflammatory cytokine (IL-10) was evaluated using lipopolysaccharide (LPS) induced RAW 264.7 cell culture model. The anti-arthritic activity was evaluated in a Complete Freund's Adjuvant (CFA) induced arthritic rat model. RESULTS The optimized nanoemulgel (CUR + CYC NE gel) exhibited average globule size of 15.32 nm ±2.7 nm, poly-dispersity index of 0.181 ± 0.034 and zeta potential of -16.3 mV ± 0.9 mV. The cumulative drug release from ex-vivo diffusion studies on porcine ear skin was 99.189% ± 1.419% at the of 24 h and 99.177% ± 1.234% at the end of 18 h for CUR and CYC, respectively. The cell culture studies revealed that the formulation was able to significantly lower (p < .001) the levels of IL-6 and TNF-α, inhibited prostaglandin E2 (PGE2) while significantly elevating (p < .001) the levels of anti-inflammatory cytokine (IL-10). The gel was found to be non-irritating and showed the inhibition of paw edema and substantial reduction of arthritic symptoms in an arthritic rat model as compared to commercial and other conventional alternatives. CONCLUSION This study highlights the potential of the developed nanoemulgel for the management of RA by enhancing the topical permeation of CUR and CYC.
Collapse
Affiliation(s)
- Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Vivek Basudkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director (I/C), SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Sciences, Mumbai, India
| |
Collapse
|
3
|
Ain QU, Zeeshan M, Mazhar D, Zeb A, Afzal I, Ullah H, Ali H, Rahdar A, Díez-Pascual AM. QbD-Based Fabrication of Biomimetic Hydroxyapatite Embedded Gelatin Nanoparticles for Localized Drug Delivery against Deteriorated Arthritic Joint Architecture. Macromol Biosci 2024; 24:e2300336. [PMID: 37815044 DOI: 10.1002/mabi.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Biomaterials such as nanohydroxyapatite and gelatin are widely explored to improve damaged joint architecture associated with rheumatoid arthritis (RA). Besides joint damage, RA is associated with inflammation of joints and cartilage, which potentiates the need for both bone nucleation and therapeutic intervention. For such purpose, a modified nanoprecipitation method is used herein to fabricate tofacitinib (Tofa)-loaded nanohydroxyapatite (nHA) embedded gelatin (GLT) nanoparticles (NPs) (Tofa-nHA-GLT NPs). The quality by design (QbD) approach is chosen to assess the key parameters that determine the efficiency of the NPs, and are further optimized via Box-Behnken design of experiment. The particle size, polydispersity, zeta potential, and encapsulation efficiency (EE) of the prepared NPs are found to be 269 nm, 0.18, -20.5 mV, and 90.7%, respectively. Furthermore, the NPs have improved stability, skin permeability, and a sustained drug release pattern at pH 6.5 (arthritic joint pH). Moreover, rhodamine-B loaded nHA-GLT NPs demonstrates considerably higher cellular uptake by the murine-derived macrophages than free rhodamine-B solution. In vitro, cell-based experiments confirm the good cell biocompatibility with insignificant toxicity. Thus, QbD-based approach has successfully led to the development of Tofa-nHA-GLT NPs with the potential to target inflamed arthritic joint.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ahmed Zeb
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hameed Ullah
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
4
|
Sinha A, Garg U, Nagaich U, Chaudhary A, Pandey M, Jain N. Emulgels: a promising topical drug delivery system for arthritis management and care. Pharm Dev Technol 2024; 29:25-39. [PMID: 38014878 DOI: 10.1080/10837450.2023.2289170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Emulgels, hybrid formulations of emulsions and gels, offer distinct benefits viz. extended release, enhanced bioavailability, and targeted drug delivery to inflamed joints, thereby minimizing systemic side effects, and maximizing therapeutic efficacy in targeting the diseases. Oral medications and topical creams have limitations viz. limited permeation, efficacy, and side effects. Arthritis is a prevalent chronic inflammatory disorder affecting a substantial global population of about 350 million necessitating the exploration of innovative and effective treatment approaches. Inflammation of one or more joints in the body is referred to generally as arthritis, associated with joint discomfort, edema, stiffness, and decreased motion in the joints. MAIN PART Emulgels further improve drug solubility and penetration into the affected tissues, augmenting the potential for disease-modifying effects. This review article comprehensively examines recent research for the potential of emulgels (micro- and nanoemulgels) as a potential therapeutic approach for arthritis management, thus showcasing their promising potential in precise treatment regimens. Despite the considerable progress in emulgel-based arthritis therapies, the review emphasizes the need for additional research and translation to clinical trials, thus ascertaining their long-term safety, efficacy, and cost-effectiveness compared to conventional treatments. CONCLUSION With ongoing advancements in drug delivery, emulgels present an exciting frontier in arthritis-associated conditions, with the potential to revolutionize arthritis treatment and significantly enhance patient life's quality.
Collapse
Affiliation(s)
- Aditi Sinha
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Upendra Nagaich
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
5
|
Mahajan A, Sharma G, Thakur A, Singh B, Mehta H, Mittal N, Dogra S, Katare OP. Tofacitinib in dermatology: a potential opportunity for topical applicability through novel drug-delivery systems. Nanomedicine (Lond) 2024; 19:79-101. [PMID: 38197372 DOI: 10.2217/nnm-2023-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Tofacitinib is a first-generation JAK inhibitor approved by the US FDA for treating rheumatoid arthritis. It exhibits a broad-spectrum inhibitory effect with abilities to block JAK-STAT signalling. The primary objective of this review is to obtain knowledge about cutting-edge methods for effectively treating a variety of skin problems by including tofacitinib into formulations that are based on nanocarriers. The review also highlights clinical trials and offers an update on published clinical patents. Nanocarriers provide superior performance compared to conventional treatments in terms of efficacy, stability, drug bioavailability, target selectivity and sustained drug release. Current review has the potential to make significant contributions to the ongoing discussion involving dermatological treatments and the prospective impact of nanotechnology on transforming healthcare within this field.
Collapse
Affiliation(s)
- Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sunil Dogra
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
6
|
Lal DK, Kumar B, Saeedan AS, Ansari MN. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023; 15:pharmaceutics15041187. [PMID: 37111672 PMCID: PMC10145625 DOI: 10.3390/pharmaceutics15041187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The anti-inflammatory drugs that are generally available possess the disadvantage of hydrophobicity, which leads to poor permeability and erratic bioavailability. Nanoemulgels (NEGs) are novel drug delivery systems that aim to improve the solubility and permeability of drugs across the biological membrane. The nano-sized droplets in the nanoemulsion enhance the permeation of the formulation, along with surfactants and co-surfactants that act as permeation enhancers and can further improve permeability. The hydrogel component of NEG helps to increase the viscosity and spreadability of the formulation, making it ideal for topical application. Moreover, oils that have anti-inflammatory properties, such as eucalyptus oil, emu oil and clove oil, are used as oil phases in the preparation of the nanoemulsion, which shows a synergistic effect with active moiety and enhances its overall therapeutic profile. This leads to the creation of hydrophobic drugs that possess enhanced pharmacokinetic and pharmacodynamic properties, and simultaneously avoid systemic side effects in individuals with external inflammatory disorders. The nanoemulsion's effective spreadability, ease of application, non-invasive administration, and subsequent ability to achieve patient compliance make it more suitable for topical application in the combat of many inflammatory disorders, such as dermatitis, psoriasis, rheumatoid arthritis, osteoarthritis and so on. Although the large-scale practical application of NEG is limited due to problems regarding its scalability and thermodynamic instability, which arise from the use of high-energy approaches during the production of the nanoemulsion, these can be resolved by the advancement of an alternative nanoemulsification technique. Considering the potential advantages and long-term benefits of NEGs, the authors of this paper have compiled a review that elaborates the potential significance of utilizing nanoemulgels in a topical delivery system for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|