1
|
Fu Y, Luo XD, Li JZ, Mo QY, Wang X, Zhao Y, Zhang YM, Luo HT, Xia DY, Ma WQ, Chen JY, Wang LH, Deng QY, Ben L, Kashif Saleemi M, Jiang XZ, Chen J, Miao K, Lin ZP, Zhang P, Ye H, Cao QY, Zhu YW, Yang L, Tu Q, Wang W. Host-derived Lactobacillus plantarum alleviates hyperuricemia by improving gut microbial community and hydrolase-mediated degradation of purine nucleosides. eLife 2024; 13:e100068. [PMID: 39508089 PMCID: PMC11542919 DOI: 10.7554/elife.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The gut microbiota is implicated in the pathogenesis of hyperuricemia (HUA) and gout. However, it remains unclear whether probiotics residing in the host gut, such as Lactobacillus, can prevent HUA development. Herein, we isolated Lactobacillus plantarum SQ001 from the cecum of HUA geese and conducted in vitro assays on uric acid (UA) and nucleoside co-culture. Metabolomics and genome-wide analyses, revealed that this strain may promote nucleoside uptake and hydrolysis through its nucleoside hydrolase gene. The functional role of iunH gene was confirmed via heterologous expression and gene knockout studies. Oral administration of L. plantarum SQ001 resulted in increased abundance of Lactobacillus species and reduced serum UA levels. Furthermore, it downregulated hepatic xanthine oxidase, a key enzyme involved in UA synthesis, as well as renal reabsorption protein GLUT9, while enhancing the expression of renal excretion protein ABCG2. Our findings suggest that L. plantarum has potential to ameliorate gut microbial dysbiosis with HUA, thereby offering insights into its potential application as a probiotic therapy for individuals with HUA or gout.
Collapse
Affiliation(s)
- Yang Fu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Xiao-Dan Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Jin-Ze Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Qian-Yuan Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong UniversityShandongChina
| | - Yue Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, Shandong UniversityShandongChina
| | - Hao-Tong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Dai-Yang Xia
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong LaboratoryZhuhaiChina
| | - Wei-Qing Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Jian-Ying Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Li-Hau Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Qiu-Yi Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Lukuyu Ben
- International Livestock Research InstituteNairobiKenya
| | | | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. LtdGuangdongChina
| | - Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. LtdGuangdongChina
| | - Kai Miao
- CancerCenter, Faculty of Health Sciences, University of MacauMacauChina
| | - Zhen-Ping Lin
- Shantou Baisha Research Institute of Origin Species of Poultry and StockShantouChina
| | - Peng Zhang
- Chimelong Safari Park, Chimelong Group CoGuangzhouChina
| | - Hui Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Qing-Yun Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Yong-Wen Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Lin Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong UniversityQingdaoChina
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Wence Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Zou Y, Ro KS, Jiang C, Yin D, Zhao L, Zhang D, Du L, Xie J. The anti-hyperuricemic and gut microbiota regulatory effects of a novel purine assimilatory strain, Lactiplantibacillus plantarum X7022. Eur J Nutr 2024; 63:697-711. [PMID: 38147149 DOI: 10.1007/s00394-023-03291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Probiotics have been reported to effectively alleviate hyperuricemia and regulate the gut microbiota. The aim of this work was to study the in vivo anti-hyperuricemic properties and the mechanism of a novel strain, Lactiplantibacillus plantarum X7022. METHODS Purine content and mRNA expression of purine assimilation related enzymes were determined by HPLC and qPCR, respectively. Hyperuricemic mice were induced by potassium oxonate and hypoxanthine. Uric acid (UA), blood urea nitrogen, creatinine and renal inflammation were examined by kits. The expression of renal UA transporters was subjected to western blotting. Kidney tissues were sectioned for histological analysis. The fecal short-chain fatty acids (SCFAs) were determined by HPLC, and gut microbiota was investigated using the 16S rDNA metagenomic sequencing. RESULTS L. plantarum X7022 possesses a complete purine assimilation pathway and can exhaust xanthine, guanine, and adenine by 82.1%, 33.1%, and 12.6%, respectively. The strain exhibited gastrointestinal viability as 44% at the dose of 109 CFU/mL in mice. After four-week administration of the strain, a significant decrease of 35.5% in the serum UA level in hyperuricemic mice was achieved. The diminished contents of fecal propionate and butyrate were dramatically boosted. The treatment also alleviated renal inflammation and restored renal damage. The above physiological changes may due to the inhibited xanthine oxidase (XO) activity, as well as the expressional regulation of UA transporters (GLUT9, URAT1 and OAT1) to the normal level. Notably, gut microbiota dysbiosis in hyperuricemic mice was improved with the inflammation and hyperuricemia related flora depressed, and SCFAs production related flora promoted. CONCLUSION The strain is a promising probiotic strain for ameliorating hyperuricemia.
Collapse
Affiliation(s)
- Yuan Zou
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Kum-Song Ro
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
- Department of Biotechnology, Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Chentian Jiang
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Deyi Yin
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, Jiangsu, People's Republic of China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Engineering, School of Biotechnology, East China University of Science and Technology, P. O. Box 283130 # Meilong Rd, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China
| |
Collapse
|
3
|
Kudo M, Gao M, Hayashi M, Kobayashi Y, Yang J, Liu T. Ilex paraguariensis A.St.-Hil. improves lipid metabolism in high-fat diet-fed obese rats and suppresses intracellular lipid accumulation in 3T3-L1 adipocytes via the AMPK-dependent and insulin signaling pathways. Food Nutr Res 2024; 68:10307. [PMID: 38327997 PMCID: PMC10845893 DOI: 10.29219/fnr.v68.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Background Obesity is closely associated with several chronic diseases, and adipose tissue plays a major role in modulating energy metabolism. Objective This study aimed to determine whether Mate, derived from I. paraguariensis A.St.-Hil., ameliorates lipid metabolism in 3T3-L1 adipocytes and high-fat diet (HFD)-fed obese Sprague-Dawley (SD) rats. Design 3T3-L1 adipocytes were cultured for 7 days, following which intracellular lipid accumulation and expression levels of lipid metabolism-related factors were examined. Dorsomorphin was used to investigate the potential pathways involved, particularly the adenosine monophosphate-activated protein kinase (AMPK)- dependent pathway. Mate was administered to rat HFD-fed obese SD models for 8 consecutive weeks. The expression of lipid metabolism-related factors in the organs and tissues collected from dissected SD rats was evaluated. Results Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes, increased the protein and gene expression levels of AMPK, hormone sensitive lipase (HSL), calmodulin kinase kinase (CaMKK), liver kinase B1 (LKB1), protein kinase A (PKA), CCAAT/enhancer binding protein β (C/EBPβ), insulin receptor b (IRβ), and insulin receptor substrate 1 (IRS1) (Tyr465), and decreased those of sterol regulatory element binding protein 1C (Srebp1c), fatty acid synthase (FAS), peroxisome-activated receptor γ (PPARγ), and IRS1 (Ser1101). Furthermore, an AMPK inhibitor abolished the effects exerted by Mate on intracellular lipid accumulation and HSL and FAS expression levels. Mate treatment suppressed body weight gain and improved serum cholesterol levels in HFD-fed obese SD rats. Treatment with Mate increased the protein and gene expression levels of AMPK, PKA, Erk1/Erk2 (p44/p42), and uncoupling protein 1 and reduced those of mammalian target of rapamycin, S6 kinase, Srebp1c, ap2, FAS, Il6, Adiponectin, Leptin, and Fabp4 in rat HFD-fed obese SD models. Discussion and conclusions Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes and improved lipid metabolism in the epididymal adipose tissue of HFD-fed obese SD rats via the activation of AMPK-dependent and insulin signaling pathways.
Collapse
Affiliation(s)
- Maya Kudo
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Ming Gao
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
- Institute for Bioscience, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Misa Hayashi
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd., Sakura, Chiba, Japan
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Wang L, Ye J. Commentary: Gut microbiota reduce the risk of hyperuricemia and gout in the human body. Acta Pharm Sin B 2024; 14:433-435. [PMID: 38261824 PMCID: PMC10793086 DOI: 10.1016/j.apsb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Lin Wang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11:31. [PMID: 37296111 PMCID: PMC10256815 DOI: 10.1038/s41413-023-00264-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis (OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the development of innovative GM-targeted therapies for OP.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Fermented Supernatants of Lactobacillus plantarum GKM3 and Bifidobacterium lactis GKK2 Protect against Protein Glycation and Inhibit Glycated Protein Ligation. Nutrients 2023; 15:nu15020277. [PMID: 36678147 PMCID: PMC9864088 DOI: 10.3390/nu15020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
With age, protein glycation in organisms increases continuously. Evidence from many studies shows that the accumulation of glycated protein is highly correlated with biological aging and the development of aging-related diseases, so developing a dietary agent to attenuate protein glycation is very meaningful. Previous studies have indicated that lactic acid bacteria-fermented products have diverse biological activities especially in anti-aging, so this study was aimed to investigate the inhibitory effect of the fermented supernatants of Lactobacillus plantarum GKM3 (GKM3) and Bifidobacterium lactis GKK2 (GKK2) on protein glycation. The results show that GKM3- and GKK2-fermented supernatants can significantly inhibit protein glycation by capturing a glycation agent (methylglyoxal) and/or protecting functional groups in protein against methylglyoxal-induced responses. GKM3- and GKK2-fermented supernatants can also significantly inhibit the binding of glycated proteins to the receptor for advanced glycation end products (RAGE). In conclusion, lactic acid bacteria fermentation products have the potential to attenuate biological aging by inhibiting protein glycation.
Collapse
|
8
|
Supplementation of Lactobacillus plantarum (TCI227) Prevented Potassium-Oxonate-Induced Hyperuricemia in Rats. Nutrients 2022; 14:nu14224832. [PMID: 36432519 PMCID: PMC9693167 DOI: 10.3390/nu14224832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperuricemia (HC) is one of the important risk factors for gout, arteriosclerosis, and cardiovascular disease. Animal studies have shown that Lactobacillus plantarum can improve microbiota and immune regulation, as well as inhibit uric acid production. However, it is not clear whether L. plantarum can improve HC and intestinal microbiota. We used potassium oxonate (PO) to induce HC in male SD rats and then treated them with L. plantarum TCI227 in a dose-dependent manner (HC + LD, HC + MD, HC + HD) for 4 weeks. We examined organ weight, conducted biochemical examinations of blood and urine, and analyzed the intestinal microbiota in feces through a 16s rDNA sequence analysis. In this study, TCI227 improved body weight, decreased creatinine and serum uric acid, and increased urine uric acid compared to the HC group. Furthermore, TCI227 increased short-chain fatty acids (SCFAs). In the fecal microbiota (family), TCI227 increased the level of Lactobacillaceae and then decreased the levels of Deferribacteres and Prevotellaceae compared to the HC group. Finally, in the fecal microbiota (genus), TCI227 decreased the level of Prevotella and then increased the levels of Lactobacillus and Ruminococcus compared to the HC group. This study suggested that TCI227 can improve HC and can change the composition of intestinal microbiota in PO-induced male HC SD rats.
Collapse
|
9
|
Sun L, Ni C, Zhao J, Wang G, Chen W. Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia: a review. Crit Rev Food Sci Nutr 2022; 64:2016-2031. [PMID: 36073759 DOI: 10.1080/10408398.2022.2119934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyperuricemia is closely linked with an increased risk of developing hypertension, diabetes, renal failure and other metabolic syndromes. Probiotics, bioactive compounds and dietary patterns are safe cost-efficient ways to control hyperuricemia, whereas comprehensive reviews of their anti-hyperuricemic mechanisms are limited. This review summarizes the roles of probiotics, bioactive compounds and dietary patterns in treating hyperuricemia and critically reviews the possible mechanisms by which these interventions exert their activities. The dietary patterns are closely related to the occurrence of hyperuricemia through the indirect action of gut microbiota or the direct effects of host purine metabolism. The Mediterranean and Dietary Approaches to Stop Hypertension diets help reduce serum uric acid concentrations and thus prevent hyperuricemia. Meanwhile, probiotics alleviate hyperuricemia by ways of absorbing purine, restoring gut microbiota dysbiosis and inhibiting xanthine oxidase (XO) activity. Bioactive compounds such as polyphenols, peptides and alkaloids exert various anti-hyperuricemic effects, by regulating urate transporters, blocking the active sites of XO and inhibiting the toll-like receptor 4/nuclear factor kappa B signaling pathway and NOD-, LRR- and pyrin domain-containing protein 3 signaling pathway. This review will assist people with hyperuricemia to adopt a healthy diet and contribute to the application of natural products with anti-hyperuricemic activity.
Collapse
Affiliation(s)
- Lei Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Caixin Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Zhang N, Zhou J, Zhao L, Wang O, Zhang L, Zhou F. Dietary Ferulic Acid Ameliorates Metabolism Syndrome-Associated Hyperuricemia in Rats via Regulating Uric Acid Synthesis, Glycolipid Metabolism, and Hepatic Injury. Front Nutr 2022; 9:946556. [PMID: 35845766 PMCID: PMC9280472 DOI: 10.3389/fnut.2022.946556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ferulic acid is a well-known phenolic acid compound and possesses multiple health-promoting and pharmacological effects. Metabolic syndrome (MetS) and hyperuricemia (HUA) have become health problems worldwide and are closely connected. The aim of this study was to explore the influence of ferulic acid on MetS-related HUA and its underlying mechanisms. Rats were administered high-fructose and high-fat diet (HFFD) with or without ferulic acid (0.05 and 0.1%) for 20 weeks. Intake of HFFD resulted in obesity, hyperglycemia, insulin resistance, and dyslipidemia, which were alleviated by ferulic acid consumption. Treatment of rats with ferulic acid diminished the levels of lipids and inflammatory cytokines and enhanced the activities of antioxidant enzymes in the liver caused by HFFD. Additionally, administration of ferulic acid blocked a HFFD-induced elevation in activities and mRNA expression of enzymes involving in uric acid (UA) synthesis. Molecular docking analysis denoted that ferulic acid bound to the active center of these enzymes, indicative of the potential interaction with each other. These two aspects might partially be responsible for the decrement in serum UA content after ferulic acid ingestion. In conclusion, ferulic acid supplementation ameliorated lipid and glucose metabolic abnormalities, hepatic damage, and UA formation in MetS rats. There was a dose correlation between lipid deposition and UA synthesis-related indicators. These findings implied that ferulic acid could be applied as a promising dietary remedy for the management of MetS-associated HUA.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Feng Zhou,
| |
Collapse
|
11
|
Heat-Killed Enterococcus faecalis Prevents Adipogenesis and High Fat Diet-Induced Obesity by Inhibition of Lipid Accumulation through Inhibiting C/EBP-α and PPAR-γ in the Insulin Signaling Pathway. Nutrients 2022; 14:nu14061308. [PMID: 35334965 PMCID: PMC8953550 DOI: 10.3390/nu14061308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing consumption of food with high caloric density and a sedentary lifestyle have influenced the increasing obesity prevalence worldwide. The recent pandemic has contributed to this problem. Obesity refers to a state in which lipid accumulates excessively in adipocytes and adipose tissues. Dried heat-killed Enterococcus faecalis (EF-2001) prevents allergic mechanisms, inflammation, and tumor progression. In the present study, we investigated the effects of EF-2001 on high fat diet (HFD)-induced obese rats. The degree of obesity in experimental rats was reduced after 6 weeks of oral administration of 3 mg/kg or 30 mg/kg dosages of EF-2001, indicating regulating effects in rats with HFD-induced obesity. We found that EF-2001 decreased the amounts of total cholesterol, triglyceride, and non-high density lipoprotein (HDL) in HFD-induced obese rats. The effects of EF-2001 on 3T3-L1 adipocytes stained with Oil red O stain are shown in reductions of lipid accumulation, respectively. In addition, we examined the relationships between EF-2001 treatment and mechanisms for the insulin signaling of adipogenesis in 3T3-L1 cells. EF-2001 induced down-regulation in phosphorylation of Erk, JNK, and Akt through the inhibition of insulin receptor phosphorylation. EF-2001 inhibits the expressions of C/EBP-α and PPAR-γ, a lipid metabolism-related transcription factor through confocal microscope observation and Western blot on 3T3-L1 adipocytes and HFD-induced obese rats. Based on our results, intake of EF-2001 significantly prevented HFD-induced obesity in rats through inhibition of C/EBP-α and PPAR-γ in the insulin signaling pathway on lipid accumulation.
Collapse
|
12
|
Kim HW, Yoon EJ, Jeong SH, Park MC. Distinct Gut Microbiota in Patients with Asymptomatic Hyperuricemia: A Potential Protector against Gout Development. Yonsei Med J 2022; 63:241-251. [PMID: 35184426 PMCID: PMC8860935 DOI: 10.3349/ymj.2022.63.3.241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Here, we aimed to elucidate the differences in microbiota composition between patients with gout and those with asymptomatic hyperuricemia (asHU) and determine the effect of uric acid-lowering therapy (ULT) on the gut microbiome. MATERIALS AND METHODS Stool samples from patients with asHU (n=8) and three groups of gout patients, i.e., acute gout patients before ULT (0ULT, n=14), the same acute gout patients after 30-day ULT (30ULT, n=9), and chronic gout patients after ≥6-month ULT (cULT, n=18) were collected and analyzed using 16S rRNA gene-based pyrosequencing. The composition of microbial taxonomy and communities, species diversity, and relationships among microbial communities were elucidated by bioinformatic analysis. RESULTS Gout patients showed less diverse gut microbiota than asHU patients. The microbiota of the asHU group exhibited a higher Firmicutes-to-Bacteroidetes (F/B) ratio and lower Prevotella-to-Bacteroides (P/B) ratio than the gout group; significantly, the F/B ratio increased in gout patients after ULT. Moreover, a balanced enterotype populated asHU patients compared to gout patients. Notably, the gut microbiota in asHU patients had a higher proportion of taxa with potentially anti-inflammatory effects compared to the gut microbiota in gout patients. CONCLUSION We found that microbial composition differs between asHU and gout patients. The differential gut microbiota in asHU patients may protect against gout development, whereas that in gout patients may have a role in gout provocation. ULT in gout patients altered the gut microbiota, and may help alleviate gout pathology and mitigate gout progression.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Medicine, The Graduate School, Yonsei University College of Medicine, Seoul, Korea
- Hospital Medicine Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun-Jeong Yoon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food-Gut-Health Axis. Foods 2021; 10:foods10123099. [PMID: 34945650 PMCID: PMC8701325 DOI: 10.3390/foods10123099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Fermented dairy products are the good source of different species of live lactic acid bacteria (LAB), which are beneficial microbes well characterized for their health-promoting potential. Traditionally, dietary intake of fermented dairy foods has been related to different health-promoting benefits including antimicrobial activity and modulation of the immune system, among others. In recent years, emerging evidence suggests a contribution of dairy LAB in the prophylaxis and therapy of non-communicable diseases. Live bacterial cells or their metabolites can directly impact physiological responses and/or act as signalling molecules mediating more complex communications. This review provides up-to-date knowledge on the interactions between LAB isolated from dairy products (dairy LAB) and human health by discussing the concept of the food–gut-health axis. In particular, some bioactivities and probiotic potentials of dairy LAB have been provided on their involvement in the gut–brain axis and non-communicable diseases mainly focusing on their potential in the treatment of obesity, cardiovascular diseases, diabetes mellitus, inflammatory bowel diseases, and cancer.
Collapse
|
14
|
Ma X, Bi Q, Kong Y, Xu H, Liang M, Mai K, Zhang Y. Dietary lipid levels affected antioxidative status, inflammation response, apoptosis and microbial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111118. [PMID: 34793954 DOI: 10.1016/j.cbpa.2021.111118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
15
|
Lin SW, Tsai YS, Chen YL, Wang MF, Chen CC, Lin WH, Fang TJ. Lactobacillus plantarum GKM3 Promotes Longevity, Memory Retention, and Reduces Brain Oxidation Stress in SAMP8 Mice. Nutrients 2021; 13:2860. [PMID: 34445020 PMCID: PMC8401498 DOI: 10.3390/nu13082860] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: An age-related cognitive decline is commonly affecting the life of elderly with symptoms involved in progressive impairments to memory and learning. It has been proposed that probiotics could modulate age-related neurological disorders via the gut-brain axis. (2) Methods: To investigate the anti-aging effect of probiotic Lactobacillus plantarum GKM3, both survival tests and cognitive experiments were conducted in the SAMP8 mice model. The six-month-old SAMP8 (n = 20 in each gender) were fed with probiotic GKM3 at a dosage of 5.1 × 109 and 1.0 × 109 cfu/ kg B.W./day until their natural death. Then, the life span was investigated. Three-month-old SAMP8 (n = 10 in each gender) were administered GKM3 for 14 weeks. Then, the behavior tests and oxidation parameters were recorded. (3) Results: GKM3 groups showed significantly increased latency in the passive avoidance test and time of successful avoidance in the active avoidance test. The TBARS and 8-OHdG from mice brains also showed a significant reduction in the groups treated with GKM3. In addition, lower accumulation of the amyloid-β protein was found in SAMP8 mice brains with the supplement of GKM3. (4) Conclusions: These results indicated that L. plantarum GKM3 delayed the process of aging, alleviated age-related cognitive impairment, and reduced oxidative stress.
Collapse
Affiliation(s)
- Shih-Wei Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402204, Taiwan;
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (Y.-L.C.)
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (Y.-L.C.)
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433303, Taiwan;
| | - Chin-Chu Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106319, Taiwan;
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104336, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Wen-Hsin Lin
- Department of Pharmacy, China Medical University, Taichung 404333, Taiwan
| | - Tony J. Fang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402204, Taiwan;
| |
Collapse
|
16
|
Ni C, Li X, Wang L, Li X, Zhao J, Zhang H, Wang G, Chen W. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct 2021; 12:7054-7067. [PMID: 34152353 DOI: 10.1039/d1fo00198a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Globally, the incidence of hyperuricaemia is steadily increasing. The evidence increasingly suggests an association between hyperuricaemia and the gut microbiota, which may enable the development of a novel therapeutic approach. We studied the effects of treatment with lactic acid bacteria (LAB) on hyperuricaemia and their potential underlying mechanisms. A mouse model of hyperuricaemia was generated by oral gavage with hypoxanthine and intraperitoneal injections of potassium oxonate for 2 weeks. The anti-hyperuricaemic activities of 10 LAB strains relative to allopurinol as a positive drug control were investigated in the mouse model. Lactobacillus rhamnosus R31, L. rhamnosus R28-1 and L. reuteri L20M3 effectively reduced the uric acid (UA) concentrations in serum and urine and the xanthine oxidase (XOD) activity levels in serum and hepatic tissue in mice with hyperuricaemia. These strains also reversed the elevated lipopolysaccharide (LPS) concentration, hepatic inflammation and slight renal injury associated with hyperuricaemia. A correlation analysis revealed that UA-reducing LAB strains promoted short-chain fatty acid (SCFA) production to suppress serum and hepatic XOD activity by increasing the abundances of SCFA production-related gut bacterial taxa. However, the UA-reducing effects of LAB strains might not be mediated by purine degradation. In summary, L. rhamnosus R31, L. rhamnosus R28-1 and L. reuteri L20M3 relieved hyperuricaemia in our mouse model by promoting SCFA production in a purine degradation-independent manner. Our findings suggest a novel therapeutic approach involving LAB strains for hyperuricaemia.
Collapse
Affiliation(s)
- Caixin Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Archer AC, Muthukumar SP, Halami PM. Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2021; 13:1068-1080. [PMID: 33575913 PMCID: PMC8342349 DOI: 10.1007/s12602-021-09744-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
The growing incidence of type 2 diabetes and obesity has become a worldwide crisis with increased socio-economic burden. Changes in lifestyle and food habits resulting in dysbiosis of the gut microbiota and low-grade inflammation are linked to the rising incidence. The aim of this study was to investigate the effects of potential probiotic Lactobacillus fermentum MCC2759 and MCC2760 on intestinal markers of inflammation using a high-fat diet (HFD)-fed model and a streptozotocin (STZ)-induced diabetic model. Lact. fermentum administration showed improved oral glucose tolerance compared with the model controls of HFD (AUC 1518) and STZ (628.8). Plasma insulin levels improved in the Lact. fermentum treated groups of HFD + MCC2759 (129 ± 4.24 pmol/L) and HFD + MCC2760 (151.5 ± 9.19 pmol/L) in HFD study, while in STZ diabetic study, the insulin levels were normalized with Lact. fermentum administration, for D + MCC2759 (120.5 ± 7.77) and D + MCC2760 (138 ± 5.65 pmol/L) groups. The results showed reduction in inflammatory tone in liver, muscle, and adipose tissues of rats in both models with stimulation of anti-inflammatory IL-10 by real-time quantitative polymerase chain reaction. Additionally, the potential probiotic cultures also displayed normalization of markers related to intestinal barrier integrity (ZO-1), TLR-4 receptor, and insulin sensitivity (GLUT-4, GLP-1, adiponectin). Thus, the results suggest that Lact. fermentum could act as potential probiotic for lifestyle-related disorders such as obesity, diabetes, and metabolic syndrome as both prophylactic and adjunct therapies.
Collapse
Affiliation(s)
| | - Serva Peddha Muthukumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, 570020, Mysuru, India
| | | |
Collapse
|
18
|
Lactobacillus plantarum GKM3 and Lactobacillus paracasei GKS6 Supplementation Ameliorates Bone Loss in Ovariectomized Mice by Promoting Osteoblast Differentiation and Inhibiting Osteoclast Formation. Nutrients 2020; 12:nu12071914. [PMID: 32605314 PMCID: PMC7401263 DOI: 10.3390/nu12071914] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis, an imbalance in the bone-forming process mediated by osteoblasts and the bone-resorbing function mediated by osteoclasts, is a bone degenerative disease prevalent among the aged population. Due to deleterious side effects of currently available medications, probiotics as a potential treatment of osteoporosis is an appealing approach. Hence, this study aims to evaluate the beneficial effects of two novel Lactobacilli strain probiotics on bone health in ovariectomized (OVX) induced osteoporotic mice model and its underlying mechanisms. Forty-five 9-week-old Institute of Cancer Research (ICR) mice underwent either a sham-operation (n = 9) or OVX (n = 36). Four days after the operation, OVX mice were further divided into four groups and received either saline alone, Lactobacillus plantarum GKM3, Lactobacillus paracasei GKS6 or alendronate per day for 28 days. After sacrifice by decapitation, right distal femur diaphysis was imaged via micro-computed tomography (MCT) and parameters including bone volume/tissue volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and bone mineral density (BMD) were measured. Moreover, GKM3 and GKS6 on RANKL-induced osteoclast formation and osteoblast differentiation using in vitro cultures were also investigated. The results showed that both probiotics strains inhibited osteoporosis in the OVX mice model, with L. paracasei GKS6 outperforming L. plantarum GKM3. Besides this, both GKS6 and GKM3 promoted osteoblast differentiation and inhibited RANKL-induced osteoclast differentiation via the Bone Morphogenetic Proteins (BMP) and RANKL pathways, respectively. These findings suggested that both strains of Lactobacilli may be pursued as potential candidates for the treatment and management of osteoporosis, particularly in postmenopausal osteoporosis.
Collapse
|
19
|
Ma Y, Ding S, Liu G, Fang J, Yan W, Duraipandiyan V, Al-Dhabi NA, Esmail GA, Jiang H. Egg Protein Transferrin-Derived Peptides IRW and IQW Regulate Citrobacter rodentium-Induced, Inflammation-Related Microbial and Metabolomic Profiles. Front Microbiol 2019; 10:643. [PMID: 31001226 PMCID: PMC6456682 DOI: 10.3389/fmicb.2019.00643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Bioactive peptides that target the gastrointestinal tract can strongly affect the health of animals and humans. This study aimed to evaluate the abilities of two peptides derived from egg albumin transferrin, IRW and IQW, to treat enteritis in a mouse model of Citrobacter rodentium-induced colitis by evaluating serum metabolomics and gut microbes. Forty-eight mice were randomly assigned to six groups: basal diet (CTRL), intragastric administration Citrobacter rodentium (CR), basal diet with 0.03%IRW (IRW), CR with 0.03% IRW (IRW+CR), basal diet with 0.03%IQW (IQW) and CR with 0.03% IQW (IQW+CR). CR administration began on day 10 and continued for 7 days. After 14 days of IRW and IQW treatment, serum was collected and subjected to a metabolomics analysis. The length and weight of each colon were measured, and the colon contents were collected for 16srRNA sequencing. The colons were significantly longer in the CR group, compared to the CTRL group. A serum metabolomics analysis revealed no significant difference in microbial diversity between the six groups. Compared with the CTRL group, the proportions of Firmicutes and Actinobacteria species decreased significantly and the proportions of Bacteroidetes and Proteobacteria species increased in the CR group. There were no significant differences between the CTRL and other groups. The serum metabolomics analysis revealed that Infected by CR increased the levels of oxalic acid, homogentisic acid and prostaglandin but decreased the levels of L-glutamine, L-acetyl carnitine, 1-methylhistidine and gentisic acid. Therefore, treatment with IRW and IQW was shown to regulate the intestinal microorganisms associated with colonic inflammation and serum metabolite levels, thus improving intestinal health.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Veeramuthu Duraipandiyan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|