1
|
Mamirgova ZZ, Zinin AI, Chinarev AA, Chizhov AO, Birin KP, Bovin NV, Kononov LO. Destabilization of Glycosyl Cation by an Electron-Withdrawing Substituent at C-5 Makes Sialylation Reaction More α-Stereoselective. J Org Chem 2025; 90:931-937. [PMID: 39791133 DOI: 10.1021/acs.joc.4c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Comparison of the reactivity of sialyl chlorides and bromides based on N-acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and i-PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the SN1-like reaction pathway unfavorable. A change to the SN2-like reaction pathway ensures preferential formation of the α-glycoside.
Collapse
Affiliation(s)
- Zarina Z Mamirgova
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| | - Alexander I Zinin
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| | - Alexander A Chinarev
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russian Federation
| | - Alexander O Chizhov
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| | - Kirill P Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky prosp. 31-4, Moscow 119071, Russian Federation
| | - Nicolai V Bovin
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russian Federation
| | - Leonid O Kononov
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Mamirgova ZZ, Zinin AI, Chizhov AO, Kononov LO. Synthesis of sialyl halides with various acyl protective groups. Carbohydr Res 2024; 536:109033. [PMID: 38295530 DOI: 10.1016/j.carres.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glycosyl halides are historically one of the first glycosyl donors used in glycosylation reactions, and interest in glycosylation reactions involving this class of glycosyl donors is currently increasing. New methods for their activation have been proposed and effective syntheses of oligosaccharides with their participation have been developed. At the same time, the possibilities of using these approaches to the synthesis of sialosides are restricted by the limited diversity of known sialyl halides (previously, mainly sialyl chlorides, less often sialyl bromides and sialyl fluorides, with acetyl (Ac) groups at the oxygen atoms and AcNH, Ac2N and N3 groups at C-5 were used). This work describes the synthesis of six new N-acetyl- and N-trifluoroacetyl-sialyl chlorides and bromides with O-chloroacetyl and O-trifluoroacetyl protective groups. Preparation of N,O-trifluoroacetyl protected derivatives was made possible due to development of the synthesis of sialic acid methyl ester pentaol with N-trifluoroacetyl group.
Collapse
Affiliation(s)
- Zarina Z Mamirgova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation.
| |
Collapse
|
3
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Anal Bioanal Chem 2022; 414:5139-5163. [PMID: 35199190 DOI: 10.1007/s00216-022-03948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Glycans, including oligosaccharides and glycoconjugates, play an integral role in modulating the biological functions of macromolecules. Many physiological and pathological processes are mediated by interactions between glycans, which has led to the use of glycans as biosensors for pathogen and biomarker detection. Elucidating the relationship between glycan structure and biological function is critical for advancing our understanding of the impact glycans have on human health and disease and for expanding the repertoire of glycans available for bioanalysis, especially for diagnostics. Such efforts have been limited by the difficulty in obtaining sufficient quantities of homogenous glycan samples needed to resolve the exact relationships between glycan structure and their structural or modulatory functions on a given glycoconjugate. Synthetic strategies offer a viable route for overcoming these technical hurdles. In recent years, microfluidics have emerged as powerful tools for realizing high-throughput and reproducible syntheses of homogenous glycans for the potential use in functional studies. This critical review provides readers with an overview of the microfluidic technologies that have been developed for chemical and enzymatic glycan synthesis. The advantages and limitations associated with using microreactor platforms to improve the scalability, productivity, and selectivity of glycosylation reactions will be discussed, as well as suggested future work that can address certain pitfalls.
Collapse
|
5
|
Panova MV, Medvedev MG, Orlova AV, Kononov LO. Exhaustive Conformational Search for Sialyl Cation Reveals Possibility of Remote Participation of Acyl Groups. Chemphyschem 2021; 23:e202100788. [PMID: 34837303 DOI: 10.1002/cphc.202100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Indexed: 11/11/2022]
Abstract
Finding convenient ways for the stereoselective α-sialylation is important due to the high practical significance of α-sialic acid-containing glycans and neoglycoconjugates. It was proposed that sialylation stereoselectivity is determined by the structure of the sialyl cation (also known in biochemistry as "sialosyl cation"), a supposed intermediate in this reaction. Here we design a new approach for studying the conformational space of highly flexible sialyl cation and find 1625 unique conformers including those stabilized by covalent remote participation (also known as long-range participation) of 4-O-acetyl (4-OAc), 5-N-trifluoroacetyl (5-NTFA), as well as 7,8,9-OAc from both α and β sides. The most energetically stable sialyl cation conformers are featured by 4-OAc participation, closely followed by 5-NTFA- and 7-OAc-stabilized conformers; unstabilized sialyl cation conformers are ∼10 kcal mol-1 less stable than the 4-OAc-stabilized ones. Analysis of all the obtained conformers by means of substituents positions, side chain conformations and ring puckering led us to a new "eight-conformer hypothesis" which describes interconversions among the most important sialyl cation conformers and predicts that stronger remote participation of acyl groups favors β-anomers. Thus, selective synthesis of the desired α-sialosides requires minimization of acyl groups participation.
Collapse
Affiliation(s)
- Maria V Panova
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Michael G Medvedev
- Group of Theoretical Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| |
Collapse
|
6
|
Tsutsui M, Sianturi J, Masui S, Tokunaga K, Manabe Y, Fukase K. Efficient Synthesis of Antigenic Trisaccharides ContainingN-Acetylglucosamine: Protection of NHAc as NAc2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masato Tsutsui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Julinton Sianturi
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Seiji Masui
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Kento Tokunaga
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; Machikaneyama 1-1, Toyonaka 560-0043 Osaka Japan
- Core for Medicine and Science Collaborative Research and Education; Project Research Center for Fundamental Science; Osaka University; Osaka Japan
| |
Collapse
|
7
|
Liu DM, Wang HL, Lei JC, Zhou XY, Yang JS. A Highly α-Stereoselective Sialylation Method Using 4-O
-4-Nitropicoloyl Thiosialoside Donor. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dong-Mei Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Hong-Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jin-Cai Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
8
|
Are N-phthaloyl and O-allyl protective groups orthogonal? Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Kooner AS, Yu H, Chen X. Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Front Immunol 2019; 10:2004. [PMID: 31555264 PMCID: PMC6724515 DOI: 10.3389/fimmu.2019.02004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.
Collapse
Affiliation(s)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Step-economy synthesis of β-steryl sialosides using a sialyl iodide donor. J Antibiot (Tokyo) 2019; 72:449-460. [PMID: 30886347 DOI: 10.1038/s41429-019-0165-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 11/08/2022]
Abstract
Steryl glycosides are prevalent in nature and have unique biological activities dictated by sterol structure, sugar composition, and the stereochemical attachment of the aglycone. A single configurational switch can have profound biological consequences meriting the systematic study of structure and function relationships. Steryl congeners of N-acetyl neuraminic acid (NANA) impact neurobiological processes and may also mediate host/microbe interactions. In order to study these processes, a platform for the synthesis of β-steryl sialosides has been established. Promoter-free glycosidations using a novel α-linked sialyl iodide donor efficiently provide unique amphiphilic sialoglycoconjugates for examining bioactivities in various systems.
Collapse
|
11
|
Patel A, Tiwari S, Jha PK. Density functional theory based probe of the affinity interaction of saccharide ligands with extra-cellular sialic acid residues. J Biomol Struct Dyn 2018; 37:1545-1554. [PMID: 29624120 DOI: 10.1080/07391102.2018.1461690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in glycosylation pattern leads to malignant transformations among the cells. In combination with upregulated actions of sialyltransferases, it ultimately leads to differential expression of sialic acid (SA) at cell surface. Given its negative charge and localization to extracellular domain, SA has been exploited for the development of targeted theranostics using approaches, such as, cationization and appending recognition saccharides on carrier surface. In this study, we have performed quantum mechanical calculations based on density functional theory (DFT) to study the interaction of saccharides with extracellular SA. Gradient-corrected DFT with the three parameter function (B3) was utilized for the calculation of Lee-Yang-Parr (LYP) correlation function. Atomic charge, vibrational frequencies and energy of the optimized structures were calculated through B3LYP. Our calculations demonstrate a stronger galactose-sialic acid interaction at tumour-relevant low pH and hyperthermic condition. These results support the application of pH responsive delivery vehicles and targeted hyperthermic chemotherapy for eradicating solid tumour deposits. These studies, conducted a priori, can guide the formulation scientists over appropriate choice of ligands and their applications in the design of 'smart' theranostic tools.
Collapse
Key Words
- AChE, Acetylcholine Esterase
- ASDase, aspartate semialdehyde dehydrogenase
- B3LYP, Becke 3-Parameter Lee, Yang and Parr
- BACE1, Beta-secretase 1
- BSSE, basis set superposition error
- CK2, casein kinase 2
- CMAS, cytidine monophosphate N-acetylneuraminic acid synthase
- DFT, density functional theory
- EcPLA, Echis carinatus Phospholipase A
- FF, fukui function
- GSK3β, glycogen synthase kinase 3β
- Gal, galactose
- HLG, HOMO-LUMO gap
- HOMO, highest occupied molecular orbital
- LUMO, lowest unoccupied molecular orbital
- MEP, molecular electrostatic potential
- Man, mannose
- NBO, natural bond orbital
- NC, nanocarriers.
- PBA, phenylboronic acid
- SA, sialic acid
- cancer
- density functional theory
- hypersialylation
- recognition saccharides
- targeted theranostics
Collapse
Affiliation(s)
- Anjali Patel
- a Department of Physics, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara - 390 002 , India
| | - Sanjay Tiwari
- b Maliba Pharmacy College , UKA Tarsadia University, Gopal-Vidyanagar Campus , Surat , 394350 , India
| | - Prafulla K Jha
- a Department of Physics, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara - 390 002 , India
| |
Collapse
|
12
|
Gao J, Guo Z. Progress in the synthesis and biological evaluation of lipid A and its derivatives. Med Res Rev 2018; 38:556-601. [PMID: 28621828 PMCID: PMC5732894 DOI: 10.1002/med.21447] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Lipid A is one of the core structures of bacterial lipopolysaccharides (LPSs), and it is mainly responsible for the strong immunostimulatory activities of LPS through interactions with the Toll-like receptors and other molecules in the human immune system. To obtain structurally homogeneous and well-defined lipid As and its derivatives in quantities meaningful for various biological studies and applications, their chemical synthesis has become a focal point. This review has provided a survey of significant progresses made in the synthesis of lipid A, and its derivatives that carry diverse saturated and unsaturated lipids, have the phosphate group at its reducing end replaced with a more stable phosphate or carboxyl group, or lack the reducing end phosphate or both phosphate groups, as well as progresses in the synthesis of LPS analogs and other lipid A conjugates. These synthetic molecules have facilitated the elucidation of the structure-activity relationships of lipid A useful for the design and development of lipid A based therapeutics, such as those utilized to treat sepsis, and other medical applications, for example the use of monophosphoryl lipid A as a carrier molecule for the study of fully synthetic self-adjuvanting conjugate vaccines. These topics are also briefly covered in the current review.
Collapse
Affiliation(s)
- Jian Gao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Abstract
Investigations of methodologies aimed on improving the stereoselective synthesis of sialosides and the efficient assembly of sialic acid glycoconjugates has been the mission of dedicated research groups from the late 1960s. This review presents major accomplishments in the field, with the emphasis on significant breakthroughs and influential synthetic strategies of the last decade.
Collapse
|
14
|
Konishi N, Shirahata T, Yokoyama M, Katsumi T, Ito Y, Hirata N, Nishino T, Makino K, Sato N, Nagai T, Kiyohara H, Yamada H, Kaji E, Kobayashi Y. Synthesis of Bisdesmosidic Oleanolic Acid Saponins via a Glycosylation-Deprotection Sequence under Continuous Microfluidic/Batch Conditions. J Org Chem 2017; 82:6703-6719. [DOI: 10.1021/acs.joc.7b00841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Naruki Konishi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Yokoyama
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Katsumi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshikazu Ito
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nozomu Hirata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Nishino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Noriko Sato
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takayuki Nagai
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroaki Kiyohara
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruki Yamada
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eisuke Kaji
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
15
|
Mizuno M. Carbohydrate Synthesis Using Fluorous Chemistry. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute
| |
Collapse
|
16
|
Nagasaki M, Manabe Y, Minamoto N, Tanaka K, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of a Complex-Type N-Glycan Containing a Core Fucose. J Org Chem 2016; 81:10600-10616. [PMID: 27775350 DOI: 10.1021/acs.joc.6b02106] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A chemical synthesis of a core fucose containing N-glycan was achieved. Asparagine was introduced at an early stage of the synthesis, and the sugar chain was convergently elongated. As for the fragment synthesis, we reinvestigated α-sialylation, β-mannosylation, and N-glycosylation to reveal that precise temperature control was essential for these glycosylations. Intermolecular hydrogen bonds involving acetamide groups were found to reduce the reactivity in glycosylations: the protection of NHAc as NAc2 dramatically improved the reactivity. The dodecasaccharide-asparagine framework was constructed via the (4 + 4) glycosylation and the (4 + 8) glycosylation using the tetrasaccharide donor and the tetrasaccharide-asparagine acceptor. An ether-type solvent enhanced the yields of these key glycosylations between large substrates. After the whole deprotection of the dodecasaccharide, the target N-glycan was obtained.
Collapse
Affiliation(s)
- Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Minamoto
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
17
|
Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function. J Antibiot (Tokyo) 2016; 70:152-157. [PMID: 27353163 DOI: 10.1038/ja.2016.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/24/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022]
Abstract
A series of lipophilic teicoplanin pseudoaglycon derivatives, including alkyl-, aryl-, calixarene- and protected sugar-containing conjugates, were prepared using azide-alkyne click chemistry. Out of the conditions applied, the CuSO4-ascorbate reagent system proved to be more efficient than the Cu(I)I-Et3N-mediated reaction. Some of the new compounds have high in vitro activity against glycopeptide-resistant Gram-positive bacteria, including vanA-positive Enterococcus faecalis. A few of them also display promising in vitro anti-influenza activity.
Collapse
|
18
|
Pradhan TK, Mong KKT. Glycosylation Chemistry of 3-Deoxy-D-manno-Oct-2-ulosonic Acid (Kdo) Donors. Isr J Chem 2015. [DOI: 10.1002/ijch.201400145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Fukase K, Shimoyama A, Manabe Y. Effective Synthesis of Oligosaccharide under Microfluidic Conditions. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Salmasan RM, Manabe Y, Kitawaki Y, Chang TC, Fukase K. Efficient Glycosylation Using In(OTf)3 as a Lewis Acid: Activation of N-Phenyltrifluoroacetimidate or Thioglycosides with Halogenated Reagents or PhIO. CHEM LETT 2014. [DOI: 10.1246/cl.140167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Yuriko Kitawaki
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
21
|
Uchinashi Y, Tanaka K, Manabe Y, Fujimoto Y, Fukase K. Practical and Efficient Method for α-Sialylation with an Azide Sialyl Donor Using a Microreactor. J Carbohydr Chem 2014. [DOI: 10.1080/07328303.2014.880116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Hsu Y, Ma HH, Lico LS, Jan JT, Fukase K, Uchinashi Y, Zulueta MML, Hung SC. One-pot synthesis of N-acetyl- and N-glycolylneuraminic acid capped trisaccharides and evaluation of their influenza A(H1 N1) inhibition. Angew Chem Int Ed Engl 2014; 53:2413-6. [PMID: 24482157 DOI: 10.1002/anie.201309646] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/25/2013] [Indexed: 12/23/2022]
Abstract
Human lung epithelial cells natively offer terminal N-acetylneuraminic acid (Neu5Ac) α(2→6)-linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N-Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one-pot assembly and divergent transformation. The sugar assembly made use of an N-phthaloyl-protected sialyl imidate for chemoselective activation and α-stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc-capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.
Collapse
Affiliation(s)
- Yun Hsu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Taipei 115 (Taiwan); Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300 (Taiwan)
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hsu Y, Ma HH, Lico LS, Jan JT, Fukase K, Uchinashi Y, Zulueta MML, Hung SC. One-Pot Synthesis ofN-Acetyl- andN-Glycolylneuraminic Acid Capped Trisaccharides and Evaluation of Their Influenza A(H1 N1) Inhibition. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Fukase K, Fujimoto Y, Shimoyama A, Tanaka K. Synthesis of Bacterial Glycoconjugates and Their Bio-functional Studies in Innate Immunity. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Shimoyama A, Saeki A, Tanimura N, Tsutsui H, Miyake K, Suda Y, Fujimoto Y, Fukase K. Chemical synthesis of Helicobacter pylori lipopolysaccharide partial structures and their selective proinflammatory responses. Chemistry 2011; 17:14464-74. [PMID: 22095469 DOI: 10.1002/chem.201003581] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 07/27/2011] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori is a common cause of gastroduodenal inflammatory diseases such as chronic gastritis and peptic ulcers and also an important factor in gastric carcinogenesis. Recent reports have demonstrated that bacterial inflammatory processes, such as stimulation with H. pylori lipopolysaccharide (LPS), initiate atherosclerosis. To establish the structures responsible for the inflammatory response of H. pylori LPS, we synthesized various kinds of lipid A structures (i.e., triacylated lipid A and Kdo-lipid A compounds), with or without the ethanolamine group at the 1-phosphate moiety, by a new divergent synthetic route. Stereoselective α-glycosylation of Kdo N-phenyltrifluoroacetimidate was achieved by use of microfluidic methods. None of the lipid A and Kdo-lipid A compounds were a strong inducer of IL-1β, IL-6, or IL-8, suggesting that H. pylori LPS is unable to induce acute inflammation. In fact, the lipid A and Kdo-lipid A compounds showed antagonistic activity against cytokine induction by E. coli LPS, except for the lipid A compound with the ethanolamine group, which showed very weak agonistic activity. On the other hand, these H. pylori LPS partial structures showed potent IL-18- and IL-12-inducing activities. IL-18 has been shown to correlate with chronic inflammation, so H. pylori LPS might be implicated in the chronic inflammatory responses induced by H. pylori. These results also indicated that H. pylori LPS can modulate the immune response: NF-κB activation through hTLR4/MD-2 was suppressed, whereas production of IL-18 and IL-12 was promoted.
Collapse
Affiliation(s)
- Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida JI. Indirect Cation-Flow Method: Flash Generation of Alkoxycarbenium Ions and Studies on the Stability of Glycosyl Cations. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida JI. Indirect Cation-Flow Method: Flash Generation of Alkoxycarbenium Ions and Studies on the Stability of Glycosyl Cations. Angew Chem Int Ed Engl 2011; 50:5153-6. [DOI: 10.1002/anie.201100854] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 11/05/2022]
|
28
|
Hanashima S. Recent Strategies for Stereoselective Sialylation and Their Application to the Synthesis of Oligosialosides. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Uchinashi Y, Nagasaki M, Zhou J, Tanaka K, Fukase K. Reinvestigation of the C5-acetamide sialic acid donor for α-selective sialylation: practical procedure under microfluidic conditions. Org Biomol Chem 2011; 9:7243-8. [DOI: 10.1039/c1ob06164j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Orlova AV, Shpirt AM, Kulikova NY, Kononov LO. N,N-Diacetylsialyl chloride—a novel readily accessible sialyl donor in reactions with neutral and charged nucleophiles in the absence of a promoter. Carbohydr Res 2010; 345:721-30. [DOI: 10.1016/j.carres.2010.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 10/20/2022]
|
31
|
Hsu CH, Chu KC, Lin YS, Han JL, Peng YS, Ren CT, Wu CY, Wong CH. Highly Alpha-Selective Sialyl Phosphate Donors for Efficient Preparation of Natural Sialosides. Chemistry 2010; 16:1754-60. [DOI: 10.1002/chem.200903035] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Yu B, Sun J. Glycosylation with glycosyl N-phenyltrifluoroacetimidates (PTFAI) and a perspective of the future development of new glycosylation methods. Chem Commun (Camb) 2010; 46:4668-79. [DOI: 10.1039/c0cc00563k] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Tanaka K. A New Paradigm for Practical Synthesis of Biofunctional Natural Products: Renaissance of Traditional Organic Reactions under Microfluidic Conditions. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Kawakami H, Goto K, Mizuno M. Multi-step Synthesis of a Protected Monosaccharide Unit by Iterative Reactions in Microreactors and Fluorous Liquid-phase Extractions. CHEM LETT 2009. [DOI: 10.1246/cl.2009.906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Hanashima S, Sato KI, Ito Y, Yamaguchi Y. Silylene/Oxazolidinone Double-Locked Sialic Acid Building Blocks for Efficient Sialylation Reactions in Dichloromethane. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900543] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Tanaka K, Fukase K. Acid-mediated reactions under microfluidic conditions: a new strategy for practical synthesis of biofunctional natural products. Beilstein J Org Chem 2009; 5:40. [PMID: 19777137 PMCID: PMC2748710 DOI: 10.3762/bjoc.5.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/20/2009] [Indexed: 11/23/2022] Open
Abstract
Microfluidic conditions were applied to acid-mediated reactions, namely, glycosylation, reductive opening of the benzylidene acetal groups, and dehydration, which are the keys to the practical synthesis of N-glycans and the immunostimulating natural product, pristane. A distinctly different reactivity from that in conventional batch stirring was found; the vigorous micromixing of the reactants with the concentrated acids is critical especially for the "fast" reactions to be successful. Such a common feature might be due to the integration of all favorable aspects of microfluidic conditions, i.e., efficient mixing, precise temperature control, and the easy handling of the reactive intermediate by controlling the residence time. The microfluidic reactions cited in this review indicate the need to reinvestigate the traditional or imaginary reactions which have so far been performed and evaluated only in batch apparatus, and therefore they could be recognized as a new strategy in synthesizing natural products of prominent biological activity in a "practical" and a "industrial" manner.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
37
|
Tanaka K, Fukase K. Renaissance of Traditional Organic Reactions under Microfluidic Conditions: A New Paradigm for Natural Products Synthesis. Org Process Res Dev 2009. [DOI: 10.1021/op900084f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Tanaka K, Fujii Y, Tokimoto H, Mori Y, Tanaka SI, Bao GM, Siwu ER, Nakayabu A, Fukase K. Synthesis of a Sialic Acid Containing Complex-TypeN-Glycan on a Solid Support. Chem Asian J 2009; 4:574-80. [DOI: 10.1002/asia.200800411] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Hanashima S, Tomiya T, Ishikawa D, Akai S, Sato KI. Sialylation using N-glycolylneuraminyl phosphite donors to synthesize Neu5Gc-containing glycans. Carbohydr Res 2009; 344:959-65. [PMID: 19358980 DOI: 10.1016/j.carres.2009.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
Abstract
Efficient sialylations using N-glycolylneuraminic acid (Neu5Gc) phosphite donors having an acetyl or benzyl group on the glycolyl moiety are described in the synthesis of Neu5Gc-containing glycans. Both phosphite donors 1 and 2 were readily coupled with primary and secondary acceptor alcohols in propionitrile at -78 degrees C to provide the desired glycosides with good alpha-selectivities.
Collapse
Affiliation(s)
- Shinya Hanashima
- Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Yokohama, Japan
| | | | | | | | | |
Collapse
|
40
|
Kononov LO, Malysheva NN, Orlova AV. Stereoselectivity of Glycosylation May Change During the Reaction Course: Highly α-Stereoselective Sialylation Achieved by Supramer Approach. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Tanaka K, Mori Y, Fukase K. Practical Synthesis of a Manβ(1-4)GlcNTroc Fragment via Microfluidic β-Mannosylation. J Carbohydr Chem 2009. [DOI: 10.1080/07328300802571129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
De Meo C, Priyadarshani U. C-5 Modifications in N-acetyl-neuraminic acid: scope and limitations. Carbohydr Res 2008; 343:1540-52. [DOI: 10.1016/j.carres.2008.04.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/02/2008] [Accepted: 04/06/2008] [Indexed: 11/24/2022]
|
43
|
Kononov LO, Malysheva NN, Kononova EG, Orlova AV. Intermolecular Hydrogen‐Bonding Pattern of a Glycosyl Donor: The Key to Understanding the Outcome of Sialylation. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800324] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
|