1
|
Kohout CV, Del Bino L, Petrosilli L, D'Orazio G, Romano MR, Codée JDC, Adamo R, Lay L. Semisynthetic Glycoconjugates as Potential Vaccine Candidates Against Haemophilus influenzae Type a. Chemistry 2024; 30:e202401695. [PMID: 38889267 DOI: 10.1002/chem.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Glycoconjugate vaccines are based on chemical conjugation of pathogen-associated carbohydrates with immunogenic carrier proteins and are considered a very cost-effective way to prevent infections. Most of the licensed glycoconjugate vaccines are composed of saccharide antigens extracted from bacterial sources. However, synthetic oligosaccharide antigens have become a promising alternative to natural polysaccharides with the advantage of being well-defined structures providing homogeneous conjugates. Haemophilus influenzae (Hi) is responsible for a number of severe diseases. In recent years, an increasing rate of invasive infections caused by Hi serotype a (Hia) raised some concern, because no vaccine targeting Hia is currently available. The capsular polysaccharide (CPS) of Hia is constituted by phosphodiester-linked 4-β-d-glucose-(1→4)-d-ribitol-5-(PO4→) repeating units and is the antigen for protein-conjugated polysaccharide vaccines. To investigate the antigenic potential of the CPS from Hia, we synthesized related saccharide fragments containing up to five repeating units. Following the synthetic optimization of the needed disaccharide building blocks, they were assembled using the phosphoramidite approach for the installation of the phosphodiester linkages. The resulting CPS-based Hia oligomers were conjugated to CRM197 carrier protein and evaluated in vivo for their immunogenic potential, showing that all glycoconjugates were capable of raising antibodies recognizing Hia synthetic fragments.
Collapse
Affiliation(s)
- Claudia V Kohout
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | | | - Laura Petrosilli
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe D'Orazio
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | | | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | - Luigi Lay
- Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
3
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
4
|
Khatuntseva EA, Nifantiev NE. Glycoconjugate Vaccines for Prevention of Haemophilus influenzae Type b Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:26-52. [PMID: 33776394 PMCID: PMC7980804 DOI: 10.1134/s1068162021010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022]
Abstract
This review summarizes the experience in laboratory- and industrial-scale syntheses of glycoconjugate vaccines used for prevention of infectious diseases caused by Haemophilus influenzae type b bacteria based on the linear capsular polysaccharide poly-3-β-D-ribosyl-(1→1)-D-ribitol-5-phosphate (PRP) or related synthetic oligosaccharide ligands. The methods for preparation of related oligosaccharide derivatives and results of the studies evaluating effect of their length on immunogenic properties of the conjugates with protein carriers are overviewed.
Collapse
Affiliation(s)
- E A Khatuntseva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - N E Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Baek JY, Geissner A, Rathwell DCK, Meierhofer D, Pereira CL, Seeberger PH. A modular synthetic route to size-defined immunogenic Haemophilus influenzae b antigens is key to the identification of an octasaccharide lead vaccine candidate. Chem Sci 2017; 9:1279-1288. [PMID: 29675174 PMCID: PMC5887106 DOI: 10.1039/c7sc04521b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
A Haemophilus influenzae b vaccine lead antigen was identified by the immunological evaluation of chemically precisely defined capsular polysaccharide repeating unit oligosaccharides.
The first glycoconjugate vaccine using isolated glycans was licensed to protect children from Haemophilus influenzae serotype b (Hib) infections. Subsequently, the first semisynthetic glycoconjugate vaccine using a mixture of antigens derived by polymerization targeted the same pathogen. Still, a detailed understanding concerning the correlation between oligosaccharide chain length and the immune response towards the polyribosyl-ribitol-phosphate (PRP) capsular polysaccharide that surrounds Hib remains elusive. The design of semisynthetic and synthetic Hib vaccines critically depends on the identification of the minimally protective epitope. Here, we demonstrate that an octasaccharide antigen containing four repeating disaccharide units resembles PRP polysaccharide in terms of immunogenicity and recognition by anti-Hib antibodies. Key to this discovery was the development of a modular synthesis that enabled access to oligosaccharides up to decamers. Glycan arrays containing the synthetic oligosaccharides were used to analyze anti-PRP sera for antibodies. Conjugates of the synthetic antigens and the carrier protein CRM197, which is used in licensed vaccines, were employed in immunization studies in rabbits.
Collapse
Affiliation(s)
- J Y Baek
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - A Geissner
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D C K Rathwell
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D Meierhofer
- Max-Planck Institute for Molecular Genetics (MPIMG) , 14195 Berlin , Germany
| | - C L Pereira
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - P H Seeberger
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| |
Collapse
|
6
|
Elie CJJ, Muntendam HJ, van der Marel GA, van Boom JH, Hoogerhout P, van de Werken G. Synthesis of a spacer-containing trimeric fragment of the capsular polysaccharide from Escherichia coli K100. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19901090904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Elie CJJ, Muntendam HJ, van den Elst H, van der Marel GA, van Boom JH, Hoogerhout P. Synthesis of fragments of the capsular polysaccharide of Haemophilus influenzae type b: Part IIII-3. A solid-phase synthesis of a spacer-containing ribosylribitol phosphate hexamer. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19891080604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Nilsson S, Bengtsson M, Norberg T. Solid-Phase Synthesis of a Fragment of the Capsular Polysaccharide ofHaemophilus InfluenzaeType B UsingH-Phosphonate Intermediates. J Carbohydr Chem 2006. [DOI: 10.1080/07328309208017993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Stinabritt Nilsson
- a Organic Synthesis Department BioCarb Technology AB , S-223 70, Lund, Sweden
| | - Marita Bengtsson
- a Organic Synthesis Department BioCarb Technology AB , S-223 70, Lund, Sweden
| | - Thomas Norberg
- a Organic Synthesis Department BioCarb Technology AB , S-223 70, Lund, Sweden
| |
Collapse
|
9
|
Pozsgay V. Oligosaccharide-protein conjugates as vaccine candidates against bacteria. Adv Carbohydr Chem Biochem 2001; 56:153-99. [PMID: 11039111 DOI: 10.1016/s0065-2318(01)56004-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- V Pozsgay
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2720, USA
| |
Collapse
|
10
|
Peeters CC, Tenbergen-Meekes AM, Poolman JT, Zegers BJ, Rijkers GT. In vitro antibody response of human lymphocytes to the Haemophilus influenzae type b capsular polysaccharide. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1993; 15:247-58. [PMID: 8256201 DOI: 10.1007/bf00201105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C C Peeters
- Department of Immunology, University Children's Hospital Het Wilhelmina Kinderziekenhuis, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Peeters CC, Tenbergen-Meekes AM, Heijnen CJ, Poolman JT, Zegers BJ, Rijkers GT. In Vitro Activation of Human T Lymphocytes by Haemophilus influenzae Type b Capsular Polysaccharides. Scand J Immunol 1992; 35:137-48. [PMID: 1346727 DOI: 10.1111/j.1365-3083.1992.tb02844.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyribosilribitolphosphate (PRP), the capsular polysaccharide from Haemophilus influenzae type b, is a T-cell-independent type 2 antigen. In vitro culture of adult peripheral blood T cells with 15 micrograms/ml PRP leads to induction of interleukin-2 receptor (IL-2R) expression on up to 10% of T cells. These cells are CD4+ and carry the alpha beta T-cell receptor. PRP, at concentrations above 1-5 micrograms/ml, can also induce in vitro proliferation of both adult and neonatal T cells. We conclude that PRP acts as a human T-cell mitogen. The in vitro proliferative response as well as IL-2R expression was studied in T cells derived from adults after vaccination with native PRP, with PRP conjugated to a carrier protein, or with diphtheria toxoid. Vaccination with conjugated PRP decreased the doses of PRP required for in vitro induction of IL-2R expression and T-cell proliferation. This indicates that vaccination with PRP conjugated to a carrier protein improves the in vitro T-cell response to PRP activation.
Collapse
Affiliation(s)
- C C Peeters
- Department of Immunology, University Hospital for Children and Youth, Het Wilhelmina Kinderziekenhuis, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Syntheses of oligomers of the capsular polysaccharide of the Haemophilus influenzae type b bacteria. Tetrahedron 1990. [DOI: 10.1016/s0040-4020(01)97590-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|