1
|
Yang J, Zhang JN, Chen WL, Wang GS, Mao Q, Li SQ, Xiong WH, Lin YY, Ge JW, Li XX, Gu Z, Zhao CR. Effects of AQP5 gene silencing on proliferation, migration and apoptosis of human glioma cells through regulating EGFR/ERK/ p38 MAPK signaling pathway. Oncotarget 2018; 8:38444-38455. [PMID: 28404978 PMCID: PMC5503544 DOI: 10.18632/oncotarget.16461] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
We investigated the effects of aquaporin 5 (AQP5) gene silencing on the proliferation, migration and apoptosis of human glioma cells through regulating the EGFR/ERK/p38MAPK signaling pathway. qRT-PCR was applied to examine the mRNA expressions of AQP5 in five human glioma cell lines. U87-MG, U251 and LN229 cells were selected and assigned into blank, vector, AQP5 siRNA and FlagAQP5 groups. MTT assay was used to measure cell proliferation. Flow cytometry (FCM) with AnnexinV-FITC/PI double staining and PI staining were employed to analyze cell apoptosis and cell cycle respectively. Scratch test was used to detect cell migration. Western blotting was performed to determine the EGFR/ERK/p38 MAPK signaling pathway-related proteins. Results showed that the positive expression of AQP5 in primary glioblastoma was associated with the tumor size and whether complete excision was performed. The mRNA expressions of AQP5 in cell lines of U87-MG, U251 and LN229 were significantly higher than in U373 and T98G. The proliferation rates of U87-MG, U251 and LN229 cells in the AQP5 siRNA group were lower than in the vector and blank groups. The apoptosis rate increased in the AQP5 siRNA group compared with the vector group. Scratch test demonstrated that AQP5 gene silencing could suppress cell migration. Compared with the vector and blank groups, the AQP5 siRNA group showed decreased expressions of the ERK1/2, p38 MAPK, p-ERK1/2 and p-p38 MAPK proteins. AQP5 gene silencing could inhibit the cell proliferation, reduce cell migration and promote the cell apoptosis of U87-MG, U251 and LN229 by suppressing EGFR/ERK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Jian-Nan Zhang
- Operation Room, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Wei-Lin Chen
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Gui-Song Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Shan-Quan Li
- Operation Room, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Wen-Hao Xiong
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Ying-Ying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Jian-Wei Ge
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Xiao-Xiong Li
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Zhao Gu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Chun-Run Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| |
Collapse
|
2
|
Lai YH, Lin SY, Wu YS, Chen HW, Chen JJW. AC-93253 iodide, a novel Src inhibitor, suppresses NSCLC progression by modulating multiple Src-related signaling pathways. J Hematol Oncol 2017; 10:172. [PMID: 29132432 PMCID: PMC5683468 DOI: 10.1186/s13045-017-0539-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Background The tyrosine kinase Src is involved in the progression of many cancers. Moreover, inhibiting Src activity has been shown to obstruct several signaling pathways regulated by the EGFR. Thus, Src is a valuable target molecule in drug development. The purpose of this study was to identify compounds that directly or indirectly modulate Src to suppress lung cancer cell growth and motility and to investigate the molecular mechanisms underlying the effects of these compounds. Methods Human non-small cell lung cancer (NSCLC) cell lines (PC9, PC9/gef, A549, and H1975) with different EGFR statuses were tested by cytotoxicity and proliferation assays after AC-93253 iodide treatment. Src and Src-related protein expression in AC-93253 iodide-treated PC9, PC9/gef, and A549 cells were assessed by western blotting. The effects of AC-93253 iodide on cancer cell colony formation, invasion, and migration were assessed in PC9 and PC9/gef cells. The synergistic effects of gefitinib and AC-93253 iodide were evaluated by combination index (CI)-isobologram analysis in gefitinib-resistant cell lines. The efficacy of AC-93253 iodide in vivo was determined using nude mice treated with either the compound or the vehicle. Results Among the compounds, AC-93253 iodide exhibited the most potent dose-independent inhibitory effects on the activity of Src as well as on that of the Src-related proteins EGFR, STAT3, and FAK. Furthermore, AC-93253 iodide significantly suppressed cancer cell proliferation, colony formation, invasion, and migration in vitro and tumor growth in vivo. AC-93253 iodide sensitized tumor cells to gefitinib treatment regardless of whether the cells were gefitinib-sensitive (PC9) or resistant (H1975 and PC9/gef), indicating that it may exert synergistic effects when used in combination with established therapeutic agents. Our findings also suggested that the inhibitory effects of AC-93253 iodide on lung cancer progression may be attributable to its ability to modulate multiple proteins, including Src, PI3K, JNK, Paxillin, p130cas, MEK, ERK, and EGFR. Conclusions Our data suggest that AC-93253 iodide inhibits NSCLC cell growth and motility by regulating multiple Src-related pathways. Our findings may facilitate the development of therapeutic strategies and anti-tumor drugs that may be useful for treating lung cancer in the future. Electronic supplementary material The online version of this article (10.1186/s13045-017-0539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Hua Lai
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China
| | - Sih-Yin Lin
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
3
|
Wei X, Dong J. Aquaporin 1 promotes the proliferation and migration of lung cancer cell in vitro. Oncol Rep 2015; 34:1440-8. [PMID: 26151179 DOI: 10.3892/or.2015.4107] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 11/05/2022] Open
Abstract
To examine the potential role of aquaporin 1 (AQP1) in lung cancer progression, the effects of AQP1 expression and underlying mechanisms on cell proliferation and migration were investigated on LLC and LTEP-A2 cell lines in vitro. LLC and LTEP-A2 lung cancer cells with a discrepant AQP1 expression level were used to determine the role of AQP1 in cancer cell proliferation and migration potential. An immuno-fluorescence assay was used to detect AQP1 expression levels in the LLC and LTEP-A2 cell lines. The method targeting the knockdown of AQP1 on lung cancer cell lines by siRNA was established and validated by RT-PCR and western blot analysis. The proliferation and migration abilities of AQP1 knockdown cell lines were detected by MTT, invasion and wound-healing assays. Moreover, the alteration of MMP-2, MMP-9, TGF-β and epidermal growth factor receptor (EGFR) expression, associated with the migration and metastasis potential of lung cancer cell lines, was identified by western blot analysis in transfected cells. In the tumor cell migration and invasion test, AQP1 knockdown significantly decreased the migration and invasion of AQP1-siRNA cells. Additionally, the expression levels of MMPs were markedly decreased after AQP1-siRNA treatment in the two cell lines. Moreover, the decrease of MMP-2/-9 expression on lung cancer cell lines was associated with AQP1-siRNA doses. However, AQP1 knockdown did not have a significant effect on TGF-β and EGFR. The results suggest that AQP1 may facilitate lung cancer cell proliferation and migration in an MMP-2 and-9-dependent manner.
Collapse
Affiliation(s)
- Xiaobai Wei
- Department of Chinese Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Chinese Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
4
|
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013; 280:5350-70. [DOI: 10.1111/febs.12393] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Hui K. Gan
- Tumour Targeting Program; Ludwig Institute for Cancer Research; Heidelberg Victoria Australia
| | - Anna N. Cvrljevic
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory; Monash University; Clayton Victoria Australia
| |
Collapse
|
5
|
Nam HJ, Im SA, Oh DY, Elvin P, Kim HP, Yoon YK, Min A, Song SH, Han SW, Kim TY, Bang YJ. Antitumor activity of saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancer. Mol Cancer Ther 2012; 12:16-26. [PMID: 23144237 DOI: 10.1158/1535-7163.mct-12-0109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Src is a nonreceptor tyrosine kinase involved in the cross-talk and mediation of many signaling pathways that promote cell proliferation, adhesion, invasion, migration, and tumorigenesis. Increased Src activity has been reported in many types of human cancer, including gastric cancer. Therefore, this factor has been identified as a promising therapeutic target for cancer treatments, and targeting Src in gastric cancer is predicted to have potent effects. We evaluated the antitumor effect of a c-Src/Abl kinase inhibitor, saracatinib (AZD0530), alone or combined with chemotherapeutic agents in gastric cancer cell lines and a NCI-N87 xenograft model. Among 10 gastric cancer cell lines, saracatinib specifically inhibited the growth and migration/invasion of SNU216 and NCI-N87 cells. Saracatinib blocked the Src/FAK, HER family, and oncogenic signaling pathways, and it induced G(1) arrest and apoptosis in SNU216 and NCI-N87 cells. Apoptosis required induction of the proapoptotic BCL2 family member Bim. Knockdown of Bim using siRNA decreased apoptosis induced by treatment with saracatinib, suggesting that Bim has an important role in saracatinib-induced apoptosis. Saracatinib enhanced the effects of lapatinib, an EGFR/HER2 dual inhibitor, in SNU216 and NCI-N87 cells. Furthermore, combined treatment with saracatinib and 5-fluorouracil (5-FU) or cisplatin exerted synergistic effects in both saracatinib-sensitive and saracatinib-resistant cells. Consistent with our in vitro findings, cotreatment with saracatinib and 5-FU resulted in enhanced antitumor activity in the NCI-N87 xenografts. These data indicate that the inhibition of Src kinase activity by saracatinib alone or in combination with other agents can be a strategy to target gastric cancer.
Collapse
Affiliation(s)
- Hyun-Jin Nam
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Irwin ME, Bohin N, Boerner JL. Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther 2011; 12:718-26. [PMID: 21775822 DOI: 10.4161/cbt.12.8.16907] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) regulates cellular proliferation, survival, and migration of breast cancer cells. In particular, EGFR recruits signaling proteins to the cell membrane leading to their phosphorylation and activation. However, EGFR also localizes to other cellular structures, including endosomes, mitochondrion, and nuclei. Recently, we demonstrated that lipid raft localization of EGFR in triple-negative breast cancer cell lines promotes EGFR protein-dependent, EGFR kinase-independent activation of Akt. Here, we further define the mechanism by which lipid rafts regulate EGFR signaling to Akt. Specifically, we show that the non-receptor tyrosine kinase c-Src co-localizes and co-associates with EGFR and lipid rafts. Breast cancer cells resistant to treatment with EGFR inhibitors, were also resistant to treatment with Src family kinase (SFK) inhibitors; however, the combination of EGFR and SFK inhibitors synergistically decreases cell viability. We found that this decrease in cell viability observed with EGFR and SFK inhibitor co-treatment correlates with loss of Akt phosphorylation. In addition, we found that in breast cancer cell lines with EGFR and c-Src co-localized to lipid rafts, phospho-inositide 3 kinase (PI3K) was also associated with lipid rafts. Together, the data herein suggest that lipid rafts provide a platform for the interaction of EGFR, c-Src, and PI3K, leading to activation of cellular survival signaling in breast cancer cells.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pharmacology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | |
Collapse
|
7
|
Wang X, Dong Y, Jiwani AJ, Zou Y, Pastor J, Kuro-O M, Habib AA, Ruan M, Boothman DA, Yang CR. Improved protein arrays for quantitative systems analysis of the dynamics of signaling pathway interactions. Proteome Sci 2011; 9:53. [PMID: 21917185 PMCID: PMC3182966 DOI: 10.1186/1477-5956-9-53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/15/2011] [Indexed: 12/02/2022] Open
Abstract
An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states is presented. The signals are amplified linearly by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots, but are not linear by the enzyme-based amplification. Software is developed to facilitate the quantitative readouts of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Harold C, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia 2010; 12:599-607. [PMID: 20689754 PMCID: PMC2915404 DOI: 10.1593/neo.10328] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
Abstract
The SRC family kinases are the largest family of nonreceptor tyrosine kinases and one of the best-studied targets for cancer therapy. SRC, arguably the oldest oncogene, has been implicated in pathways regulating proliferation, angiogenesis, invasion and metastasis, and bone metabolism. More recently, researchers have proposed that the transforming ability of SRC is linked to its ability to activate key signaling molecules in these pathways, rather than through direct activity. It has been hypothesized that blocking SRC activation may inhibit these pathways, resulting in antitumor activity. However, successfully targeting SRC in a clinical setting remains a challenge, and SRC inhibitors have only recently begun to move through clinical development. Preclinical studies have identified specific molecular "subgroups" and histologies that may be more sensitive to SRC inhibition. In addition, other studies have demonstrated synergistic interactions between SRC inhibitors and other targeted therapies and cytotoxics. In this review, we summarize SRC biology and how it has been applied to the clinical development of SRC inhibitors. The status of SRC inhibitors, including dasatinib, saracatinib, and bosutinib, which are in phase 1, 2, and 3 trials, is highlighted.
Collapse
Affiliation(s)
- Alexey Aleshin
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
9
|
Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol 2010; 221:210-20. [DOI: 10.1002/path.2702] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Larsen AB, Stockhausen MT, Poulsen HS. Cell adhesion and EGFR activation regulate EphA2 expression in cancer. Cell Signal 2009; 22:636-44. [PMID: 19948216 DOI: 10.1016/j.cellsig.2009.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/13/2009] [Indexed: 11/16/2022]
Abstract
EphA2 is frequently overexpressed in cancer, and increasing amounts of evidence show that EphA2 contributes to multiple aspects of the malignant character including angiogenesis and metastasis. Several aspects of the regulation and functional significance of EphA2 expression in cancer are still largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability. These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated reduction in cell viability by inhibiting EphA2 expression is overruled by activated EGFR in human cancer cells.
Collapse
|