1
|
Liu C, Liu C, Liu GJ, Wang MM, Jiao Y, Sun YJ, Guo H, Wang L, Lu YX, Chen Y, Ding YH. BE-43547A 2 exerts hypoxia-selective inhibition on human pancreatic cancer cells through targeting eEF1A1 and disrupting its association with FoxO1. Acta Pharmacol Sin 2025:10.1038/s41401-024-01461-y. [PMID: 39837983 DOI: 10.1038/s41401-024-01461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Hypoxia is a key feature of the tumor microenvironment that leads to the failure of many chemotherapies and induces more aggressive and resistant cancer phenotypes. Up to date, there are very few compounds and treatments that can target hypoxia. BE-43547A2 from Streptomyces sp. was one of the most hypoxia-selective compounds against PANC-1, MCF-7, and K562 cell lines. In this study, we investigated the molecular mechanism underlying the hypoxia selectivity of BE-43547A2 in human pancreatic cancer cells. We showed that BE-43547A2 displayed hypoxia-selective cytotoxicity in five pancreatic cancer cells (PANC-1, Capan-2, MIA PaCa-2, AsPC-1, and PaTu8988T) with IC50 values under hypoxia considerably lower than those under normoxia. We demonstrated that BE-43547A2 is directly bound to eEF1A1 protein in PaTu8988T cells under hypoxia. Furthermore, we revealed that hypoxia significantly elevated the expression levels of HIF1α, FoxO1, and eEF1A1 in the five pancreatic cancer cells; eEF1A1 interacted with FoxO1 in the cytoplasm, which was disrupted by BE-43547A2 followed by the nuclear translocation of FoxO1 and ultimate inhibition of JAK/STAT3 signaling pathway under hypoxia. This study reveals that BE-43547A2, targeting eEF1A1, disrupts its interaction with FoxO1 in human pancreatic cancer cells under hypoxia. This compound could serve as a potential hypoxia-selective therapy.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Can Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Guang-Ju Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | | | - Yan Jiao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Yuan-Jun Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Hui Guo
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Ya-Xin Lu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| | - Ya-Hui Ding
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Georgiou N, Chontzopoulou E, Routsi EA, Stavrakaki IG, Petsas E, Zoupanou N, Kakava MG, Tzeli D, Mavromoustakos T, Kiriakidi S. Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers. ACS OMEGA 2024; 9:44876-44890. [PMID: 39554401 PMCID: PMC11561769 DOI: 10.1021/acsomega.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
The rational design of AT1 receptor antagonists represents a pivotal approach in the development of therapeutic agents targeting cardiovascular pathophysiology. Sartans, a class of compounds engineered to inhibit the binding and activation of Angiotensin II on the AT1 receptor, have demonstrated significant clinical efficacy. This review explores the multifaceted role of sartans in mitigating hypertension and related complications. We highlight the integration of crystallography, computational simulations, and NMR spectroscopy to elucidate sartan-AT1 receptor interactions, providing a foundation for the next-generation antagonist design. The review also delves into the challenges posed by the high lipophilicity and suboptimal bioavailability of sartans, emphasizing advancements in nanotechnology and novel drug delivery systems. Additionally, we discuss the impact of lipid bilayers on the AT1 receptor conformation and drug binding, underscoring the importance of the lipidic environment in receptor-drug interactions. We suggest that optimizing drug design to account for these factors could enhance the therapeutic potential of AT1 receptor antagonists, paving the way for improved cardiovascular health outcomes.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleni Chontzopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efthymios Alexandros Routsi
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Irene Georgia Stavrakaki
- Industrial
Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Errikos Petsas
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikoletta Zoupanou
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Margarita Georgia Kakava
- Laboratory
of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Sofia Kiriakidi
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Departamento
de Quimica Orgánica, Facultade de
Quimica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
3
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Diaz MJ, Quach J, Song J, Milanovic S, Tran JT, Ladehoff LC, Batchu S, Whitman P, Kaffenberger BH, Montanez-Wiscovich ME. Hypoxic transcriptomes predict survival and tumor-infiltrating immune cell composition in cutaneous melanoma. Melanoma Res 2024; 34:118-124. [PMID: 38329217 DOI: 10.1097/cmr.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Hypoxia has established associations with aggressive tumor phenotypes in many cancers. However, it is not currently understood whether tumor hypoxia levels map to distinct immune infiltrates in cutaneous melanoma, potentially unveiling novel therapeutic targets. To this end, we leveraged a previously identified seven-gene hypoxia signature to grade hypoxia levels of 460 cutaneous melanomas obtained from the Broad Institute GDAC Firehose portal. CIBERSORTx ( https://cibersortx.stanford.edu/ ) was employed to calculate the relative abundance of 22 mature human hematopoietic populations. Clinical outcomes and immune cell associations were assessed by computational means. Results indicated that patients with high-hypoxia tumors reported significantly worse overall survival and correlated with greater Breslow depth, validating the in-silico methodology. High-hypoxia tumors demonstrated increased infiltration of activated and resting dendritic cells, resting mast cells, neutrophils, and resting NK cells, but lower infiltration of gamma-delta T cells. These data suggest that high tumor hypoxia correlates with lower survival probability and distinct population differences of several tumor-infiltrating leukocytes in cutaneous melanomas.
Collapse
Affiliation(s)
| | - Jessica Quach
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Joanna Song
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | - Jasmine T Tran
- School of Medicine, Indiana University, Indianapolis, Indiana
| | - Lauren C Ladehoff
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, New Jersey
| | | | | | | |
Collapse
|
5
|
Shenoy G, Slagle-Webb B, Khunsriraksakul C, Pandya Shesh B, Luo J, Khristov V, Smith N, Mansouri A, Zacharia BE, Holder S, Lathia JD, Barnholtz-Sloan JS, Connor JR. Analysis of anemia and iron supplementation among glioblastoma patients reveals sex-biased association between anemia and survival. Sci Rep 2024; 14:2389. [PMID: 38287054 PMCID: PMC10825121 DOI: 10.1038/s41598-024-52492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
The association between anemia and outcomes in glioblastoma patients is unclear. We analyzed data from 1346 histologically confirmed adult glioblastoma patients in the TriNetX Research Network. Median hemoglobin and hematocrit levels were quantified for 6 months following diagnosis and used to classify patients as anemic or non-anemic. Associations of anemia and iron supplementation of anemic patients with median overall survival (median-OS) were then studied. Among 1346 glioblastoma patients, 35.9% of male and 40.5% of female patients were classified as anemic using hemoglobin-based WHO guidelines. Among males, anemia was associated with reduced median-OS compared to matched non-anemic males using hemoglobin (HR 1.24; 95% CI 1.00-1.53) or hematocrit-based cutoffs (HR 1.28; 95% CI 1.03-1.59). Among females, anemia was not associated with median-OS using hemoglobin (HR 1.00; 95% CI 0.78-1.27) or hematocrit-based cutoffs (HR: 1.10; 95% CI 0.85-1.41). Iron supplementation of anemic females trended toward increased median-OS (HR 0.61; 95% CI 0.32-1.19) although failing to reach statistical significance whereas no significant association was found in anemic males (HR 0.85; 95% CI 0.41-1.75). Functional transferrin-binding assays confirmed sexually dimorphic binding in resected patient samples indicating underlying differences in iron biology. Anemia among glioblastoma patients exhibits a sex-specific association with survival.
Collapse
Affiliation(s)
- Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | | | | | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery and Siteman Cancer Center Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, MO, USA
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Nataliya Smith
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Sheldon Holder
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jill S Barnholtz-Sloan
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
6
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Chamani FK, Etebari A, Hajivalili M, Mosaffa N, Jalali SA. Hypoxia and programmed cell death-ligand 1 expression in the tumor microenvironment: a review of the effects of hypoxia-induced factor-1 on immunotherapy. Mol Biol Rep 2024; 51:88. [PMID: 38183512 DOI: 10.1007/s11033-023-08947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/08/2024]
Abstract
One useful cancer treatment approach is activating the patient's immune response against the tumor. In this regard, immunotherapy (IT) based on immune checkpoint blockers (ICBs) has made great progress in the last two decades. Although ITs are considered a novel approach to cancer treatment and have had good results in preclinical studies, their clinical success has shown that only a small proportion of treated patients (about 20%) benefited from them. Moreover, in highly progressed tumors, almost no acceptable response could be expected. In this regard finding the key molecules that are the main players of tumor immunosuppression might be helpful in overcoming the possible burdens. Hypoxia is one of the main components of the tumor microenvironment (TME), which can create an immunosuppressive microenvironment in various ways. For example, hypoxia is one of the main factors of programmed cell death ligand-1 (PD-L1) upregulation in tumor-infiltrating Myeloid-Derived Suppressor Cells (MDSCs). Therefore, hypoxia can be targeted to increase the efficiency of Anti-PD-L1 IT and has become one of the important issues in cancer treatment strategy. In this review, we described the effect of hypoxia in the TME, on tumor progression and immune responses and the challenges created by it for IT.
Collapse
Affiliation(s)
- Fateme Khani Chamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Etebari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wang G, Sun Y, Xu Q. The development and experimental validation of hypoxia-related long noncoding RNAs prognostic signature in predicting prognosis and immunotherapy of cutaneous melanoma. Aging (Albany NY) 2023; 15:11918-11939. [PMID: 37921852 PMCID: PMC10683585 DOI: 10.18632/aging.205157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Cutaneous melanoma (CM) is widely acknowledged as a highly aggressive form of malignancy that is associated with a considerable degree of morbidity and poor prognosis. Despite this recognition, the precise role of hypoxia-related long noncoding RNAs (HRLs) in the pathogenesis of CM remains an area of active research. This study sought to elucidate the contribution of HRLs in CM by conducting a thorough screening and extraction of hypoxia-related genes (HRGs). In particular, we conducted univariate and multivariate Cox regression analyses to assess the independence of the prognostic signature of HRLs. Our results demonstrated that a novel risk model could be established based on five prognostic HRLs. Remarkably, patients with low-risk scores exhibited significantly higher overall survival rates compared to their high-risk counterparts, as confirmed by Kaplan-Meier survival analysis. Furthermore, we utilized consensus clustering analysis to categorize CM patients into two distinct subtypes, which revealed marked differences in their prognosis and immune infiltration landscapes. Our nomogram results confirmed that the HRLs prognostic signature served as an independent prognostic indicator, offering an accurate evaluation of the survival probability of CM patients. Notably, our findings from ESTIMATE and ssGSEA analyses highlighted significant disparities in the immune infiltration landscape between low- and high-risk groups of CM patients. Additionally, IPS and TIDE results suggested that CM patients in different risk subtypes may exhibit favorable responses to immunotherapy. Enrichment analysis and GSVA results indicated that immune-related signaling pathways may mediate the role of HRLs in CM. Finally, our tumor mutation burden (TMB) results indicated that patients with low-risk scores had a higher TMB status. In summary, the establishment of a risk model based on HRLs in this study provided an accurate prognostic prediction and correlated with the immune infiltration landscape of CM, thereby providing novel insights for the future clinical management of this disease.
Collapse
Affiliation(s)
- Gang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuliang Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Qingjia Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Liu J, Zhu Y, Fan Y, Gong L, Zhu X, Zhang Y, Liu M, Yao S. The pH-dependent multiple nanozyme activities of copper-cerium dioxide and its application in regulating intracellular oxygen and hydrogen peroxide levels. J Colloid Interface Sci 2023; 654:1054-1062. [PMID: 39491063 DOI: 10.1016/j.jcis.2023.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2024]
Abstract
Cu doped CeO2 (Cu-CeO2) nanoparticles were synthesized via the hydrothermal method, exhibiting multiple nanozyme activities such as good oxidase-like (OXD), peroxidase-like (POD) and catalase-like (CAT) activities. These Cu-CeO2 nanoparticles were successfully utilized to modulate the levels of oxygen and hydrogen peroxide in cells. The OXD and POD mimics showed optimal at pH of 3.5 and 4.0, but their activities significantly decreased under neutral or slightly acidic conditions. On the other hand, the CAT activity was excellent at pH 6.5, while the OXD and POD mimics were less effective. These findings demonstrated that nanozyme activity of Cu-CeO2 nanoparticles is pH-dependent. Consequently, within the microenvironment of tumor cells, the CAT can efficiently catalyze the conversion of H2O2 into O2, unaffected by H2O2/O2 consuming mimics. Both oxygen indicator and oxygen tester measurements confirmed a significant increase in O2 levels in phosphate-buffered saline (PBS). Furthermore, confocal microscopic imagings using fluorescence probes for H2O2 and O2 validated the variations of H2O2/O2 in cells. This study highlights the ability of Cu-CeO2 to regulate intracellular reactive oxygen levels and its tremendous potential in nanotherapy and alleviating tumor hypoxia.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yu Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - You Fan
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Lin Gong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
10
|
Cui Z, Ruan Z, Li M, Ren R, Ma Y, Zeng J, Sun J, Ye W, Xu W, Guo X, Xu D, Zhang L. Intermittent hypoxia inhibits anti-tumor immune response via regulating PD-L1 expression in lung cancer cells and tumor-associated macrophages. Int Immunopharmacol 2023; 122:110652. [PMID: 37478668 DOI: 10.1016/j.intimp.2023.110652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Accumulating evidence has shown an increased tumor incidence and reduced survival rate in cancer patients with obstructive sleep apnea (OSA). Although intermittent hypoxia is known to play a crucial role, the molecular mechanism by which intermittent hypoxia accelerates lung cancer progression remains to be elucidated.A lung cancer xenograft mouse model was established by subcutaneously injecting LLC cells into C57BL/6 mice. The tumor-bearing mice were exposed to either normoxia or intermittent hypoxia and received either IgG2a, anti-programmed death ligand-1 (PD-L1), PX-478, or anti-PD-L1 + PX-478 treatment.A significant upregulation of tumor associated macrophages (TAMs) papulation and PD-L1 levels was observed in lung adenocarcinoma patients with OSA. We further confirmed that hypoxia-inducible factor-1 alpha (HIF-1α) regulates PD-L1 at transcriptional levels, mainly through binding to the hypoxia response element 4. Using a lung cancer xenograft mouse model, we observed that intermittent hypoxia exposed tumors grew faster and bigger with upregulated HIF-1α and PD-L1 expression, enhanced TAMs and Treg populations, and reduced cytotoxic T cells and cytokine secretion. Finally, we found a combination of PX-478 and anti-PD-L1 exerted an encouraging tumor inhibition effect compared to single treatment. Combination therapies based on HIF-1α and PD-L1 blockade might serve as a promising strategy to treat lung cancer patients with OSA.
Collapse
Affiliation(s)
- Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhengshang Ruan
- Department of Infectious Disease, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meigui Li
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rongrong Ren
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yizong Ma
- Pharmacy Management Department, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Junxiang Zeng
- Department of Laboratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jinyuan Sun
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjing Ye
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weiguo Xu
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xuejun Guo
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dengfei Xu
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People's Hospital, Zhengzhou 450000, Henan, China; Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450000, Henan, China.
| | - Linlin Zhang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
11
|
Sin SQ, Mohan CD, Goh RMWJ, You M, Nayak SC, Chen L, Sethi G, Rangappa KS, Wang L. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities. Cancer Metastasis Rev 2023; 42:741-764. [PMID: 36547748 DOI: 10.1007/s10555-022-10071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.
Collapse
Affiliation(s)
- Shant Qinxiang Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Institute, Hangzhou, 31002, China
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 31002, China
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Smith V, Lee D, Reardon M, Shabbir R, Sahoo S, Hoskin P, Choudhury A, Illidge T, West CML. Hypoxia Is Associated with Increased Immune Infiltrates and Both Anti-Tumour and Immune Suppressive Signalling in Muscle-Invasive Bladder Cancer. Int J Mol Sci 2023; 24:ijms24108956. [PMID: 37240301 DOI: 10.3390/ijms24108956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Hypoxia and a suppressive tumour microenvironment (TME) are both independent negative prognostic factors for muscle-invasive bladder cancer (MIBC) that contribute to treatment resistance. Hypoxia has been shown to induce an immune suppressive TME by recruiting myeloid cells that inhibit anti-tumour T cell responses. Recent transcriptomic analyses show hypoxia increases suppressive and anti-tumour immune signalling and infiltrates in bladder cancer. This study sought to investigate the relationship between hypoxia-inducible factor (HIF)-1 and -2, hypoxia, and immune signalling and infiltrates in MIBC. ChIP-seq was performed to identify HIF1α, HIF2α, and HIF1β binding in the genome of the MIBC cell line T24 cultured in 1% and 0.1% oxygen for 24 h. Microarray data from four MIBC cell lines (T24, J82, UMUC3, and HT1376) cultured under 1%, 0.2%, and 0.1% oxygen for 24 h were used. Differences in the immune contexture between high- and low-hypoxia tumours were investigated using in silico analyses of two bladder cancer cohorts (BCON and TCGA) filtered to only include MIBC cases. GO and GSEA were used with the R packages "limma" and "fgsea". Immune deconvolution was performed using ImSig and TIMER algorithms. RStudio was used for all analyses. Under hypoxia, HIF1α and HIF2α bound to ~11.5-13.5% and ~4.5-7.5% of immune-related genes, respectively (1-0.1% O2). HIF1α and HIF2α both bound to genes associated with T cell activation and differentiation signalling pathways. HIF1α and HIF2α had distinct roles in immune-related signalling. HIF1 was associated with interferon production specifically, whilst HIF2 was associated with generic cytokine signalling as well as humoral and toll-like receptor immune responses. Neutrophil and myeloid cell signalling was enriched under hypoxia, alongside hallmark pathways associated with Tregs and macrophages. High-hypoxia MIBC tumours had increased expression of both suppressive and anti-tumour immune gene signatures and were associated with increased immune infiltrates. Overall, hypoxia is associated with increased inflammation for both suppressive and anti-tumour-related immune signalling and immune infiltrates, as seen in vitro and in situ using MIBC patient tumours.
Collapse
Affiliation(s)
- Vicky Smith
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Dave Lee
- Computational Biology Support, CRUK Manchester Institute, Alderley Park SK10 4TG, UK
| | - Mark Reardon
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Rekaya Shabbir
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Sudhakar Sahoo
- Computational Biology Support, CRUK Manchester Institute, Alderley Park SK10 4TG, UK
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
- The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
- The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
- Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
| | - Timothy Illidge
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
- The Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
- Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
| | - Catharine M L West
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
14
|
Sitte ZR, Larson TS, McIntosh JC, Sinanian M, Lockett MR. Selecting the appropriate indirect viability assay for 3D paper-based cultures: a data-driven study. Analyst 2023; 148:2245-2255. [PMID: 37073480 PMCID: PMC10192127 DOI: 10.1039/d3an00283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Cellular viability measurements quantify decreased proliferation or increased cytotoxicity caused by drug candidates or potential environmental toxins. Direct viability measures count each cell to provide an accurate readout. This approach can prove analytically challenging and time-consuming when cells are maintained in 3D structures akin to tissues or solid tumors. While less labor-intensive, indirect viability measures can be less accurate due to the heterogeneous structural and chemical microenvironment that arises when cells are maintained in tissue-like architectures and in contact with extracellular matrices. Here we determine the analytical figures of merit of five indirect viability assays in the paper-based cell culture platform we continue to develop in our laboratory: calcein-AM staining, the CellTiter-Glo assay, imaging fluorescent protein expression, propidium iodide staining, and the resazurin assay. We also determined the compatibility of each indirect assay with hypoxic conditions, intra-experimental repeatability, inter-experimental reproducibility, and ability to predict a potency value for a known antineoplastic drug. Our results show that each assay has benefits and drawbacks to consider when choosing the appropriate readout to answer a particular research question. We also highlight that only one indirect readout is unaffected by hypoxia, a commonly overlooked variable in cell culture that likely yields inaccurate viability measures.
Collapse
Affiliation(s)
- Zachary R Sitte
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Tyler S Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Julie C McIntosh
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Melanie Sinanian
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, NC 27599-3290, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Davis Drive, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
15
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma. Eur Radiol 2023; 33:2171-2184. [PMID: 36355201 DOI: 10.1007/s00330-022-09201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To establish an effective dynamic nomogram combining magnetic resonance imaging (MRI) findings of primary tumor and regional lymph nodes with tumor stage for the pretreatment prediction of induction chemotherapy (IC) response in locoregionally advanced nasopharyngeal carcinoma (LANPC). METHODS A total of 498 LANPC patients (372 in the training and 126 in the validation cohort) with MRI information were enrolled. All patients were classified as "favorable responders" and "unfavorable responders" according to tumor response to IC. A nomogram for IC response was built based on the results of the logistic regression model. Also, the Cox regression analysis was used to identify the independent prognostic factors of disease-free survival (DFS). RESULTS After two cycles of IC, 340 patients were classified as "favorable responders" and 158 patients as "unfavorable responders." Calibration curves revealed satisfactory agreement between the predicted and the observed probabilities. The nomogram achieved an AUC of 0.855 (95% CI, 0.781-0.930) for predicting IC response, which outperformed TNM staging (AUC, 0.661; 95% CI 0.565-0.758) and the MRI feature-based model alone (AUC, 0.744; 95% CI 0.650-0.839) in the validation cohort. The nomogram was used to categorize patients into high- and low-response groups. An online dynamic model was built ( https://nomogram-for-icresponse-prediction.shinyapps.io/DynNomapp/ ) to facilitate the application of the nomogram. In the Cox multivariate analysis, clinical stage, tumor necrosis, EBV DNA levels, and cervical lymph node numbers were independently associated with DFS. CONCLUSIONS The comprehensive nomogram incorporating MRI features and tumor stage could assist physicians in predicting IC response and formulating personalized treatment strategies for LANPC patients. KEY POINTS • The nomogram can predict IC response in endemic LANPC. • The nomogram combining tumor stage with MRI-based tumor features showed very good predictive performance. • The nomogram was transformed into a web-based dynamic model to optimize clinical application.
Collapse
|
17
|
Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
The tumor microenvironment (TME) is a very cunning system that enables tumor cells to escape death post-traditional antitumor treatments through the comprehensive effect of different factors, thereby leading to drug resistance. Deep insights into TME characteristics and tumor resistance encourage the construction of nanomedicines that can remodel the TME against drug resistance. Tremendous interest in combining TME-regulation measurement with traditional tumor treatment to fight multidrug-resistant tumors has been inspired by the increasing understanding of the role of TME reconstruction in improving the antitumor efficiency of drug-resistant tumor therapy. This review focuses on the underlying relationships between specific TME characteristics (such as hypoxia, acidity, immunity, microorganisms, and metabolism) and drug resistance in tumor treatments. The exciting antitumor activities strengthened by TME regulation are also discussed in-depth, providing solutions from the perspective of nanomedicine design. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Qinqin Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xinyue Lan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Huimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiye Xi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Manchun Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaolong Quan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiqiang Yu
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Yongxia Wang
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, People's Republic of China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Muller AJ, Mondal A, Dey S, Prendergast GC. IDO1 and inflammatory neovascularization: bringing new blood to tumor-promoting inflammation. Front Oncol 2023; 13:1165298. [PMID: 37182174 PMCID: PMC10172587 DOI: 10.3389/fonc.2023.1165298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
In parallel with the genetic and epigenetic changes that accumulate in tumor cells, chronic tumor-promoting inflammation establishes a local microenvironment that fosters the development of malignancy. While knowledge of the specific factors that distinguish tumor-promoting from non-tumor-promoting inflammation remains inchoate, nevertheless, as highlighted in this series on the 'Hallmarks of Cancer', it is clear that tumor-promoting inflammation is essential to neoplasia and metastatic progression making identification of specific factors critical. Studies of immunometabolism and inflamometabolism have revealed a role for the tryptophan catabolizing enzyme IDO1 as a core element in tumor-promoting inflammation. At one level, IDO1 expression promotes immune tolerance to tumor antigens, thereby helping tumors evade adaptive immune control. Additionally, recent findings indicate that IDO1 also promotes tumor neovascularization by subverting local innate immunity. This newly recognized function for IDO1 is mediated by a unique myeloid cell population termed IDVCs (IDO1-dependent vascularizing cells). Initially identified in metastatic lesions, IDVCs may exert broader effects on pathologic neovascularization in various disease settings. Mechanistically, induction of IDO1 expression in IDVCs by the inflammatory cytokine IFNγ blocks the antagonistic effect of IFNγ on neovascularization by stimulating the expression of IL6, a powerful pro-angiogenic cytokine. By contributing to vascular access, this newly ascribed function for IDO1 aligns with its involvement in other cancer hallmark functionalities, (tumor-promoting inflammation, immune escape, altered cellular metabolism, metastasis), which may stem from an underlying role in normal physiological functions such as wound healing and pregnancy. Understanding the nuances of how IDO1 involvement in these cancer hallmark functionalities varies between different tumor settings will be crucial to the future development of successful IDO1-directed therapies.
Collapse
Affiliation(s)
- Alexander J. Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Alexander J. Muller,
| | - Arpita Mondal
- Arbutus Biopharma, Inc., Warminster, PA, United States
| | - Souvik Dey
- Wuxi Advanced Therapeutics, Inc., Philadelphia, PA, United States
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, Lu Y, Dai J, Li J, Xiao S, Fu S. Bacteria-Driven Tumor Microenvironment-Sensitive Nanoparticles Targeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine 2023; 18:1299-1315. [PMID: 36945255 PMCID: PMC10024911 DOI: 10.2147/ijn.s396863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 03/17/2023] Open
Abstract
Background Chemotherapy still plays a dominant role in cancer treatment. However, the inability of conventional chemotherapeutic drugs to reach the hypoxic zone of solid tumors significantly weakens their efficacy. Bacteria-mediated drug delivery systems can be an effective targeting strategy for improving the therapeutic outcomes in cancer. Anaerobic bacteria have the unique ability to selectively transport drug loads to the hypoxic regions of tumors. Methods We designed a Bifidobacterium infantis (Bif)-based biohybrid (Bif@PDA-PTX-NPs) to deliver polydopamine (PDA)-coated paclitaxel nanoparticles (PTX-NPs) to tumor tissues. Results The self-driven Bif@PDA-PTX-NPs maintained the toxicity of PTX as well as the hypoxic homing tendency of Bif. Furthermore, Bif@PDA-PTX-NPs significantly inhibited the growth of A549 xenografts in nude mice, and prolonged the survival of the tumor-bearing mice compared to the other PTX formulations without any systemic or localized toxicity. Conclusion The Bif@PDA-PTX-NPs biohybrids provide a new therapeutic strategy for targeted chemotherapy to solid tumors.
Collapse
Affiliation(s)
- Huan Shi
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Lan Chen
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yanlin Liu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Sheng Lin
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jianmei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Susu Xiao
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Shaozhi Fu, Tel +86 830-3165698, Fax +86 830-3165690, Email
| |
Collapse
|
20
|
Li Y, Zhao L, Huo Y, Yang X, Li Y, Xu H, Li XF. Visualization of hypoxia in cancer cells from effusions in animals and cancer patients. Front Oncol 2022; 12:1019360. [PMID: 36620569 PMCID: PMC9820139 DOI: 10.3389/fonc.2022.1019360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Tumor hypoxia is frequently observed in primary solid malignancies, but the hypoxic status of tumor cells floating in body cavity effusions is largely unknown, especially in patients. This study was to observe the hypoxia and proliferation status of cancer cells floating in effusions in mice and patients. Methods The distribution of hypoxia in cancer cells floating in ascites was first studied in nude mice. Hypoxia was detected by immunofluorescent visualization of pimonidazole and GLUT-1. For cancer patients, we retrospectively collected 21 ascites and 7 pleural effusion sample blocks of cancer patients, which were confirmed to contain tumor cells. Immunohistochemistry was performed to detect the expression of endogenous hypoxic markers HIF-1α and GLUT-1, proliferation index Ki-67. 18F-FDG PET/CT was performed to detect the glucose metabolism status of tumor cells in effusions. Results The tumor cells collected from ascites were positive for pimonidazole and GLUT-1, which suggesting that the cancer cells floating in ascites were hypoxic. Patterns of tumor hypoxia in human patients are similar to those observed in animal. HIF-1α and GLUT-1 were expressed by tumor cells in nearly all 28 cytological cases. For Ki-67 index, ascites tumor cells had a relatively low expression level compared with their corresponding primary or its metastatic lesions. Tumor cells in effusions showed high 18F-FDG uptake indicated the enhanced activity of glucose metabolism. Conclusion Tumor cells in body cavity effusions, as a unique subgroup of tumor, are in a state of hypoxia and low proliferation, which would be one of the driven causes of chemo-radiotherapy resistance. Novel therapeutic interventions are urgently needed to overcome tumor hypoxia.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,The First Affiliated Hospital, Jinan University, Guangzhou, China,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yunlong Huo
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Li
- Department of Nuclear Medicine, Shenzhen Hospital of Southern Medical University, Bao’an, Shenzhen, China
| | - Hao Xu
- Department of Nuclear Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Xiao-Feng Li, ; Hao Xu,
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, United States,*Correspondence: Xiao-Feng Li, ; Hao Xu,
| |
Collapse
|
21
|
Bin Y, Meng Z, Huang LL, Hu XY, Song JM, Xie YT, Kang M, Wang RS. Prognostic value of the cervical lymph node necrosis ratio in nasopharyngeal carcinoma. Radiother Oncol 2022; 177:185-190. [PMID: 36375560 DOI: 10.1016/j.radonc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Whether cervical lymph node necrosis (CNN) is an independent adverse prognostic factor in nasopharyngeal carcinoma (NPC) has not been determined. In this study, the CNN ratio was graded quantitatively to explore the prognostic value in NPC. PARTICIPANTS AND METHODS We retrospectively reviewed a total of 648 pathologically confirmed as NPC. We outlined metastatic lymph nodes and necrotic area of lymph nodes slice by slice on the magneticresonanceimages (MRI) cross section, and calculated the corresponding CNN ratio. RESULTS The median CNN ratio (17.37 %) was taken as the cut-off point, 256 (39.51 %) patients were divided into CNN1 group (<17.37 %, n = 128) and CNN2 group (≥17.37 %, n = 128), 392 (60.49 %) patients without lymph nodes necrosis were CNN0. Among the CNN0, CNN1 and CNN2 groups, five-year overall survival (OS) was 82.4 %, 76.6 % and 71.1 %, locoregional recurrence-free survival (LRRFS) was 91.3 %, 91.1 % and 90.5 %, distant metastasis-free survival (DMFS) was 83.7 %, 78.5 % and 68.7 %, progression-free survival (PFS) was 78.3 %, 71.7 % and 61.6 % respectively. By multivariate analysis, CNN was an independent prognostic factor for OS (P = 0.003), DMFS (P = 0.019) and PFS (P = 0.007). More than 3 cycles of chemotherapy significantly increased OS (P = 0.024) and DMFS (P = 0.015) in the CNN1 group. CONCLUSIONS This study indicated that CNN is one of the factors with the negative prognosis of NPC. The CNN ratio might be used as one of the reference factors in the formulation of individualized treatment plan.
Collapse
Affiliation(s)
- Ying Bin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhen Meng
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China; Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China
| | - Lu-Lu Huang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Xue-Ying Hu
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Jun-Mei Song
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yi-Ting Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China; Department of Radiation Oncology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Min Kang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China.
| |
Collapse
|
22
|
Cao D, Li S, Li H, Liu L, Wang X, Quan T. Integrating Postradiotherapy
MRI
‐Detected Lymph Node Necrosis and Pre‐ and Posttreatment Epstein–Barr
Virus‐DNA
for Risk Stratification in Nasopharyngeal Carcinoma. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Di Cao
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| | - Shaolong Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| | - Haojiang Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| | - Lizhi Liu
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat‐sen University Cancer Center Guangzhou People's Republic of China
- Department of Radiology The Third People's Hospital of Shenzhen Shenzhen People's Republic of China
| | - Xiaoyi Wang
- Department of Radiology Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou People's Republic of China
| | - Tingting Quan
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat‐sen University Cancer Center Guangzhou People's Republic of China
| |
Collapse
|
23
|
Ding YN, Xue M, Tang QS, Wang LJ, Ding HY, Li H, Gao CC, Yu WP. Immunotherapy-based novel nanoparticles in the treatment of gastrointestinal cancer: Trends and challenges. World J Gastroenterol 2022; 28:5403-5419. [PMID: 36312831 PMCID: PMC9611702 DOI: 10.3748/wjg.v28.i37.5403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer (GIC) is the most common cancer with a poor prognosis. Currently, surgery is the main treatment for GIC. However, the high rate of postoperative recurrence leads to a low five-year survival rate. In recent years, immunotherapy has received much attention. As the only immunotherapy drugs approved by the Food and Drug Administration (FDA), immune checkpoint blockade (ICB) drugs have great potential in cancer therapy. Nevertheless, the efficacy of ICB treatment is greatly limited by the low immunogenicity and immunosuppressive microenvironment of GIC. Therefore, the targets of immunotherapy have expanded from ICB to increasing tumor immunogenicity, increasing the recruitment and maturation of immune cells and reducing the proportion of inhibitory immune cells, such as M2-like macrophages, regulatory T cells and myeloid-derived suppressor cells. Moreover, with the development of nanotechnology, a variety of nanoparticles have been approved by the FDA for clinical therapy, so novel nanodrug delivery systems have become a research focus for anticancer therapy. In this review, we summarize recent advances in the application of immunotherapy-based nanoparticles in GICs, such as gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic cancer, and described the existing challenges and future trends.
Collapse
Affiliation(s)
- Yi-Nan Ding
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Ming Xue
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Qiu-Sha Tang
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Li-Jun Wang
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Hui-Yan Ding
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Han Li
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Cheng-Cheng Gao
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Ping Yu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
24
|
Im J, Kwon HY, Kim IK, Yeo CD, Kim SW, Lee H, Kang HS, Lee SH. Normobaric hyperoxia re-sensitizes paclitaxel-resistant lung cancer cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
26
|
Roy C, Avril S, Legendre C, Lelièvre B, Vellenriter H, Boni S, Cayon J, Guillet C, Guilloux Y, Chérel M, Hindré F, Garcion E. A role for ceruloplasmin in the control of human glioblastoma cell responses to radiation. BMC Cancer 2022; 22:843. [PMID: 35918659 PMCID: PMC9347084 DOI: 10.1186/s12885-022-09808-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background Glioblastoma (GB) is the most common and most aggressive malignant brain tumor. In understanding its resistance to conventional treatments, iron metabolism and related pathways may represent a novel avenue. As for many cancer cells, GB cell growth is dependent on iron, which is tightly involved in red-ox reactions related to radiotherapy effectiveness. From new observations indicating an impact of RX radiations on the expression of ceruloplasmin (CP), an important regulator of iron metabolism, the aim of the present work was to study the functional effects of constitutive expression of CP within GB lines in response to beam radiation depending on the oxygen status (21% O2 versus 3% O2). Methods and results After analysis of radiation responses (Hoechst staining, LDH release, Caspase 3 activation) in U251-MG and U87-MG human GB cell lines, described as radiosensitive and radioresistant respectively, the expression of 9 iron partners (TFR1, DMT1, FTH1, FTL, MFRN1, MFRN2, FXN, FPN1, CP) were tested by RTqPCR and western blots at 3 and 8 days following 4 Gy irradiation. Among those, only CP was significantly downregulated, both at transcript and protein levels in the two lines, with however, a weaker effect in the U87-MG, observable at 3% O2. To investigate specific role of CP in GB radioresistance, U251-MG and U87-MG cells were modified genetically to obtain CP depleted and overexpressing cells, respectively. Manipulation of CP expression in GB lines demonstrated impact both on cell survival and on activation of DNA repair/damage machinery (γH2AX); specifically high levels of CP led to increased production of reactive oxygen species, as shown by elevated levels of superoxide anion, SOD1 synthesis and cellular Fe2 + . Conclusions Taken together, these in vitro results indicate for the first time that CP plays a positive role in the efficiency of radiotherapy on GB cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09808-6.
Collapse
Affiliation(s)
- Charlotte Roy
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sylvie Avril
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Claire Legendre
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100, Angers, France
| | - Honorine Vellenriter
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sébastien Boni
- Université d'Angers, SFR ICAT, Lentivec, F-49000, Angers, France
| | - Jérôme Cayon
- Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France
| | | | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France.,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France. .,GLIAD - Design and Application of Innovative Local Treatments in Glioblastoma, CRCI2NA, Team 5, Inserm UMR 1307, CNRS UMR 6075, Institut de Biologie en Santé (IBS) - CHU, 4 rue Larrey, Angers, France.
| |
Collapse
|
27
|
Xu H, Liu H, Li Z, Xu Q, Lin N, Li X. BIRC7 is Beneficial for Melanoma Progression and Hypoxic Response. Clin Cosmet Investig Dermatol 2022; 15:1109-1117. [PMID: 35747741 PMCID: PMC9212797 DOI: 10.2147/ccid.s370969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022]
Abstract
Background Cutaneous melanoma (CM) accounts for about 90% of all melanoma cases. HIF-1α overexpression is associated with poor prognosis in many cancers including CM. Hence, we characterized differentially expressed genes (DEGs) in the response of CM cells to normoxia and hypoxia. Methods We first successfully constructed cell hypoxia model and then performed RNA-seq to explore the changes of gene transcription in CM cells during hypoxia. The highest expression of the six genes was detected using qRT-PCR and Western blot assays. The binding sites between BIRC7 promoter and HIF-1α was explored by luciferase assay. Cellular function assays were used to observe the role of BIRC7 in the effect of hypoxia on tumor progression. Results Compared with the transcriptome data of the control group, a total of 2601 DEGs were identified in the hypoxic group. There were 1517 genes with significantly higher expression and 1084 genes with lower expression in the hypoxic group. Among them, OSCAR, BIRC7, HBA1, SFN, GOLT1A, and BEX2 were significantly up-regulated in the hypoxic group. BIRC7 expression was most significantly up-regulated and a downstream factor of HIF-1α. We highlighted that knockdown of BIRC7 reversed the positive effects of HIF-1α on A875 and M14 cells. Conclusion Our findings demonstrated that BIRC7 was a downstream factor of HIF-1α and reversed the effect of hypoxia on promoting tumor progression of CM cells.
Collapse
Affiliation(s)
- Haiting Xu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Huazhen Liu
- Department of Burn, Changhai Hospital Affiliated Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Zi Li
- Department of Dermatology, the Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Qin Xu
- Department of Dermatology, the Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Nan Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Xiaoyang Li
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
28
|
Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14122829. [PMID: 35740495 PMCID: PMC9221493 DOI: 10.3390/cancers14122829] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/24/2022] Open
Abstract
Survival in unresectable locally advanced stage non-small cell lung cancer (NSCLC) patients remains poor despite chemoradiotherapy. Recently, adjuvant immunotherapy improved survival for these patients but we are still far from curing most of the patients with only a 57% survival remaining at 3 years. This poor survival is due to the resistance to chemoradiotherapy, local relapses, and distant relapses. Several biological mechanisms have been found to be involved in the chemoradioresistance such as cancer stem cells, cancer mutation status, or the immune system. New drugs to overcome this radioresistance in NSCLCs have been investigated such as radiosensitizer treatments or immunotherapies. Different modalities of radiotherapy have also been investigated to improve efficacity such as dose escalation or proton irradiations. In this review, we focused on biological mechanisms such as the cancer stem cells, the cancer mutations, the antitumor immune response in the first part, then we explored some strategies to overcome this radioresistance in stage III NSCLCs with new drugs or radiotherapy modalities.
Collapse
|
29
|
Xiang L, Wang Y, Lan J, Na F, Wu S, Gong Y, Du H, Shao B, Xie G. HIF-1-dependent heme synthesis promotes gemcitabine resistance in human non-small cell lung cancers via enhanced ABCB6 expression. Cell Mol Life Sci 2022; 79:343. [PMID: 35661930 PMCID: PMC11072486 DOI: 10.1007/s00018-022-04360-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Gemcitabine is commonly used to treat various cancer types, including human non-small cell lung cancer (NSCLC). However, even cases that initially respond rapidly commonly develop acquired resistance, limiting our ability to effectively treat advanced NSCLC. To gain insight for developing a strategy to overcome gemcitabine resistance, the present study investigated the mechanism of gemcitabine resistance in NSCLC according to the involvement of ATP-binding cassette subfamily B member 6 (ABCB6) and heme biosynthesis. First, an analysis of ABCB6 expression in human NSCLCs was found to be associated with poor prognosis and gemcitabine resistance in a hypoxia-inducible factor (HIF)-1-dependent manner. Further experiments showed that activation of HIF-1α/ABCB6 signaling led to intracellular heme metabolic reprogramming and a corresponding increase in heme biosynthesis to enhance the activation and accumulation of catalase. Increased catalase levels diminished the effective levels of reactive oxygen species, thereby promoting gemcitabine-based resistance. In a mouse NSCLC model, inhibition of HIF-1α or ABCB6, in combination with gemcitabine, strongly restrained tumor proliferation, increased tumor cell apoptosis, and prolonged animal survival. These results suggest that, in combination with gemcitabine-based chemotherapy, targeting HIF-1α/ABCB6 signaling could result in enhanced tumor chemosensitivity and, thus, may improve outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Lisha Xiang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongsheng Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feifei Na
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Wu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Yuzhu Gong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Hanjian Du
- Department of Neurosurgery, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Renmin south road 3 section, Chengdu, 610041, China.
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
30
|
Jing X, Du L, Shi S, Niu A, Wu J, Wang Y, Wang C. Hypoxia-Induced Upregulation of lncRNA ELFN1-AS1 Promotes Colon Cancer Growth and Metastasis Through Targeting TRIM14 via Sponging miR-191-5p. Front Pharmacol 2022; 13:806682. [PMID: 35652045 PMCID: PMC9149248 DOI: 10.3389/fphar.2022.806682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is identified as one of the microenvironmental features of most solid tumors and is involved in tumor progression. In the present research, we demonstrate that lncRNA extracellular leucine rich repeat and fibronectin type III domain-containing 1-antisense RNA 1 (ELFN1-AS1) is upregulated by hypoxia in colon cancer cells. Knockdown of ELFN1-AS1 in hypoxic colon cancer cells can reduce cell proliferation and restore the invasion to non-hypoxic levels. Fluorescence in situ hybridization results show that ELFN1-AS1 is distributed in the cytoplasm of colon cancer cells, so we further analyze the potential targets for ELFN1-AS1 as a competing endogenous RNA (ceRNA). MiR-191-5p contains a binding sequence with ELFN1-AS1 and is downregulated by ELFN1-AS1 in colon cancer cells. Then, there is a binding site between miR-191-5p and the 3′ untranslated region of tripartite motif TRIM 14 (TRIM14). The expression of TRIM14 is inhibited by ELFN1-AS1 siRNA or miR-191-5p mimics in LoVo and HT29 cells. The treatment of the miR-191-5p inhibitor in ELFN1-AS1 knockdown cells can significantly increase cell proliferation and invasion ability. Overexpression of TRIM14 in miR-191-5p-mimic-treated cells can rescue the inhibition of proliferation and invasion caused by miR-191-5p mimics. In conclusion, ELFN1-AS1 operates as a downstream target of hypoxia, promotes proliferation and invasion, and inhibits apoptosis through upregulating TRIM14 by sponging miR-191-5p in the colon cancer cells. Our results enrich our understanding of colon cancer progression and provide potential targets for clinical treatment of colon cancer.
Collapse
Affiliation(s)
- Xu Jing
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuang Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Aijun Niu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
31
|
Zhao X, Liu W, Liu B, Zeng Q, Cui Z, Wang Y, Cao J, Gao Q, Zhao C, Dou J. Exploring the underlying molecular mechanism of liver cancer cells under hypoxia based on RNA sequencing. BMC Genom Data 2022; 23:38. [PMID: 35590240 PMCID: PMC9121577 DOI: 10.1186/s12863-022-01055-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Background The aim of our study was to use the differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) to illustrate the underlying mechanism of hypoxia in liver cancer. Methods In this study, a cell model of hypoxia was established, and autophagy activity was measured with western blotting and transmission electron microscopy. The effect of hypoxia conditions on the invasion of liver cancer cell was evaluated. RNA sequencing was used to identify DEmRNAs and DEmiRNAs to explore the mechanism of hypoxia in liver cancer cells. Results We found that autophagy activation was triggered by hypoxia stress and hypoxia might promote liver cancer cell invasion. In addition, a total of 407 shared DEmRNAs and 57 shared DEmiRNAs were identified in both HCCLM3 hypoxia group and SMMC-7721 hypoxia group compared with control group. Furthermore, 278 DEmRNAs and 24 DEmiRNAs were identified as cancer hypoxia-specific DEmRNAs and DEmiRNAs. Finally, we obtained 19 DEmiRNAs with high degree based on the DEmiRNA-DEmRNA interaction network. Among them, hsa-miR-483-5p, hsa-miR-4739, hsa-miR-214-3p and hsa-miR-296-5p may be potential gene signatures related to liver cancer hypoxia. Conclusions Our study may help to understand the potential molecular mechanism of hypoxia in liver cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01055-9.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Baowang Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Ziqiang Cui
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Qingjun Gao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Caiyan Zhao
- Department of Infectious Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang City, 050051, Hebei Province, China.
| |
Collapse
|
32
|
Tu H, Wang W, Feng Y, Zhang L, Zhou H, Cheng C, Ji L, Cai Q, Feng Y. β-Patchoulene represses hypoxia-induced proliferation and epithelial-mesenchymal transition of liver cancer cells. Bioengineered 2022; 13:11907-11922. [PMID: 35546067 PMCID: PMC9275994 DOI: 10.1080/21655979.2022.2065945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating from liver epithelial cells with a high clinical mortality rate. β-Patchoulene (β-PAE) is a compound extracted from patchouli, which has analgesic, anti-inflammatory and antioxidant effects. This research aims to probe the impacts of β-PAE on hypoxia-induced HCC cell proliferation and epithelial-mesenchymal transition (EMT). Firstly, hypoxic injury models were constructed in HCC Huh-7 and MHCC97 cells, and the hypoxic injury cell models were then treated with different concentrations of β-PAE. The cell viability, proliferation, migration, invasion and apoptosis were checked by the cell counting kit-8 (CCK-8) assay, colony formation assay, Transwell assay, flow cytometry and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. The expression of Survivin protein, EMT markers and the NF-κB/HIF-1α pathway was gauged by Western blot (WB) or cellular immunofluorescence or reverse transcription-polymerase chain reaction (RT-PCR). The in-vivo experiment was conducted to confirm the anti-tumor role of β-PAE. As a result, β-PAE abated hypoxia-induced HCC cell growth, proliferation, migration, invasion and EMT and facilitated apoptosis in vitro and in vivo dose-dependently. Further mechanism studies displayed that β-PAE inactivated the NF-κB/HIF-1α pathway, and HIF-1α activation significantly reversed the β-PAE-mediated tumor inhibition. β-PAE repressed the proliferation and EMT of hypoxia-induced HCC cells by choking the NF-κB/HIF-1α pathway, suggesting that β-PAE was a potential drug for HCC treatment.
Collapse
Affiliation(s)
- Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| |
Collapse
|
33
|
Detailed resume of RNA m 6A demethylases. Acta Pharm Sin B 2022; 12:2193-2205. [PMID: 35646549 PMCID: PMC9136571 DOI: 10.1016/j.apsb.2022.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA, playing critical role in various bioprocesses. Like other epigenetic modifications, m6A modification can be catalyzed by the methyltransferase complex and erased dynamically to maintain cells homeostasis. Up to now, only two m6A demethylases have been reported, fat mass and obesity-associated protein (FTO) and alkylation protein AlkB homolog 5 (ALKBH5), involving in a wide range of mRNA biological progress, including mRNA shearing, export, metabolism and stability. Furthermore, they participate in many significantly biological signaling pathway, and contribute to the progress and development of cancer along with other diseases. In this review, we focus on the studies about structure, inhibitors development and biological function of FTO and ALKBH5.
Collapse
|
34
|
Novel Carbon Ion and Proton Partial Irradiation of Recurrent Unresectable Bulky Tumors (Particle-PATHY): Early Indication of Effectiveness and Safety. Cancers (Basel) 2022; 14:cancers14092232. [PMID: 35565361 PMCID: PMC9101845 DOI: 10.3390/cancers14092232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Background: We present the early results of a novel partial bulky-tumor irradiation using particles for patients with recurrent unresectable bulky tumors who failed previous state-of-the-art treatments. Methods: First, eleven consecutive patients were treated from March 2020 until December 2021. The targeted Bystander Tumor Volume (BTV) was created by subtracting 1 cm from Gross Tumor Volume (GTV) surface. It reflected approximately 30% of the central GTV volume and was irradiated with 30–45 Gy RBE (Relative Biological Effectiveness) in three consecutive fractions. The Peritumoral Immune Microenvironment (PIM) surrounding the GTV, containing nearby tissues, blood-lymphatic vessels and lymph nodes, was considered an organ at risk (OAR) and protected by highly conservative constraints. Results: With the median follow up of 6.3 months, overall survival was 64% with a median survival of 6.7 months; 46% of patients were progression-free. The average tumor volume regression was 61% from the initial size. The symptom control rate was 91%, with an average increase of the Karnofsky Index of 20%. The abscopal effect has been observed in 60% of patients. Conclusions: Partial bulky-tumor irradiation is an effective, safe and well tolerated treatment for patients with unresectable recurrent bulky disease. Abscopal effects elucidate an immunogenic pathway contribution. Extensive tumor shrinkage in some patients might permit definitive treatment—otherwise previously impossible.
Collapse
|
35
|
Chen M, Li J, Shu G, Shen L, Qiao E, Zhang N, Fang S, Chen X, Zhao Z, Tu J, Song J, Du Y, Ji J. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization. J Nanobiotechnology 2022; 20:179. [PMID: 35366904 PMCID: PMC8976998 DOI: 10.1186/s12951-022-01385-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.
Collapse
|
36
|
Wu G, Zhu Z, Yang Z, He M, Ren K, Dong Y, Xue Q. A Hypoxia-Related Signature for Predicting Prognosis, Cellular Processes, Immune Microenvironment and Targeted Compounds in Lung Squamous Cell Carcinoma. Int J Gen Med 2022; 15:3991-4006. [PMID: 35437352 PMCID: PMC9013258 DOI: 10.2147/ijgm.s344228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a malignant tumour of the lung epithelium. A hypoxic environment can promote tumour cell proliferation and invasion. Therefore, this study aims to explore hypoxia-related genes and construct reliable models to predict the prognosis, cellular processes, immune microenvironment and target compounds of lung squamous carcinoma. Methods The transcriptome data and matched clinical information of LUSC were retrieved from The Cancer Genome Atlas (TCGA) database. The GSVA algorithm calculated each LUSC patient’s hypoxia score, and all LUSC patients were divided into the high hypoxia score group and low hypoxia score group. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to screen out differentially expressed hypoxia-related genes (DE-HRGs) in LUSC microenvironment, and the underlying regulatory mechanism of DE-HRGs in LUSC was explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Hereafter, we established a prognosis-related genetic signature for DE-HRGs using univariate and multivariate Cox regression analyses. The relationship between gene signature and immune cells was further evaluated. Finally, the Comparative Toxicogenomics Database (CTD) was utilized to predict the targeted drugs for the prognostic genes. Results We obtained 376 DE-HRGs. Functional enrichment analysis indicated that the DE-HRGs were involved in the cell cycle-related regulatory processes. Next, we developed and validated 3 HRGs-based prognostic signature for LUSC, including HELLS, GPRIN1, and FAM83A. Risk score is an independent prognostic factor for LUSC. Functional enrichment analysis and immune landscape analysis suggested that the risk scoring system might be involved in altering the immune microenvironment of LUSC patients to influence patient outcomes. Ultimately, a total of 92 potential compounds were predicted for the three prognostic genes. Conclusion In summary, we developed and validated a hypoxia-related model for LUSC, reflecting the cellular processes and immune microenvironment characteristics and predicting the prognostic outcomes and targeted compounds.
Collapse
Affiliation(s)
- Gujie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Zhenyu Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Zheng Yang
- Department of Respiratory medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Kuan Ren
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Yipeng Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
- Correspondence: Qun Xue, Email
| |
Collapse
|
37
|
Du Z, Liu H, Bai L, Yan D, Li H, Peng S, Cao J, Liu SB, Tang Z. A Radiosensitivity Prediction Model Developed Based on Weighted Correlation Network Analysis of Hypoxia Genes for Lower-Grade Glioma. Front Oncol 2022; 12:757686. [PMID: 35280808 PMCID: PMC8916576 DOI: 10.3389/fonc.2022.757686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeHypoxia is one of the basic characteristics of the physical microenvironment of solid tumors. The relationship between radiotherapy and hypoxia is complex. However, there is no radiosensitivity prediction model based on hypoxia genes. We attempted to construct a radiosensitivity prediction model developed based on hypoxia genes for lower-grade glioma (LGG) by using weighted correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (Lasso).MethodsIn this research, radiotherapy-related module genes were selected after WGCNA. Then, Lasso was performed to select genes in patients who received radiotherapy. Finally, 12 genes (AGK, ETV4, PARD6A, PTP4A2, RIOK3, SIGMAR1, SLC34A2, SMURF1, STK33, TCEAL1, TFPI, and UROS) were included in the model. A radiosensitivity-related risk score model was established based on the overall rate of The Cancer Genome Atlas (TCGA) dataset in patients who received radiotherapy. The model was validated in TCGA dataset and two Chinese Glioma Genome Atlas (CGGA) datasets. A novel nomogram was developed to predict the overall survival of LGG patients.ResultsWe developed and verified a radiosensitivity-related risk score model based on hypoxia genes. The radiosensitivity-related risk score served as an independent prognostic indicator. This radiosensitivity-related risk score model has prognostic prediction ability. Moreover, a nomogram integrating risk score with age and tumor grade was established to perform better for predicting 1-, 3-, and 5-year survival rates.ConclusionsWe developed and validated a radiosensitivity prediction model that can be used by clinicians and researchers to predict patient survival rates and achieve personalized treatment of LGG.
Collapse
Affiliation(s)
- Zixuan Du
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Hanshan Liu
- Department of Medical Oncology, Jiangsu Provincial Corps Hospital, Chinese People’s Armed Police Forces, Yangzhou City, China
| | - Lu Bai
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Derui Yan
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Sun Peng
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - JianPing Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| | - Zaixiang Tang
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| |
Collapse
|
38
|
Elucidating minimal residual disease of paediatric B-cell acute lymphoblastic leukaemia by single-cell analysis. Nat Cell Biol 2022; 24:242-252. [PMID: 35145224 DOI: 10.1038/s41556-021-00814-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022]
Abstract
Minimal residual disease that persists after chemotherapy is the most valuable prognostic marker for haematological malignancies and solid cancers. Unfortunately, our understanding of the resistance elicited in minimal residual disease is limited due to the rarity and heterogeneity of the residual cells. Here we generated 161,986 single-cell transcriptomes to analyse the dynamic changes of B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis, residual and relapse by combining single-cell RNA sequencing and B-cell-receptor sequencing. In contrast to those at diagnosis, the leukaemic cells at relapse tended to shift to poorly differentiated states, whereas the changes in the residual cells were more complicated. Differential analyses highlighted the activation of the hypoxia pathway in residual cells, resistant clones and B-ALL with MLL rearrangement. Both in vitro and in vivo models demonstrated that inhibition of the hypoxia pathway sensitized leukaemic cells to chemotherapy. This single-cell analysis of minimal residual disease opens up an avenue for the identification of potent treatment opportunities for B-ALL.
Collapse
|
39
|
Ma C, Wang J, Zhao N, Pan Z, Lu Y, Cheng M, Deng M. Network Pharmacology-Based Study on the Active Component and Mechanism of the Anti-Non-Invasive and Invasive Bladder Urothelial Carcinoma Effects of Zhuling Jisheng Decoction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7667707. [PMID: 35003325 PMCID: PMC8741376 DOI: 10.1155/2021/7667707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022]
Abstract
Zhuling Jisheng decoction is employed for the treatment of bladder urothelial cancer in clinical practice of traditional Chinese medicine. However, there are few studies on its precise mechanism. For the antibladder cancer action of Zhuling Jisheng decoction, a network pharmacological technique was used to design a component/target/pathway molecular regulatory network. The TCMSP dataset was used to identify the chemical makeup of Zhuling Jisheng decoction, which was then analyzed and assessed for oral bioavailability and pharmacological similarity. The chemical composition of Zhuling Jisheng decoction was identified through the TCMSP database, and it was evaluated and screened based on oral bioavailability and drug similarity. The GEO database was searched for genes associated with urothelial bladder carcinoma, and gene targets associated with bladder urothelial cancer resistance were chosen by comparison. The function and linked pathways of the target genes were examined and screened using annotation, visualization, and a comprehensive discovery database. The impact of Zhuling Jisheng decoction on urothelial bladder cancer was studied using Cytoscape software to create a component/target/pathway network. Finally, 69 and 55 target genes were discovered for noninvasive bladder urothelial cancer and invasive bladder urothelial cancer, respectively. In noninvasive urothelial cancer, 118 pathways were highly enriched, including the TNF signaling pathway and the IL-17 signaling route. 103 pathways were highly enriched in invasive urothelial cancer, including the p53 signaling route, bladder cancer route, and calcium signaling route. There were 18 and 15 drug targets associated with noninvasive and invasive bladder urothelial carcinoma prognoses. Many signaling pathways directly act on tumours, and indirect pathways inhibit the development of bladder urothelial carcinoma. This research establishes a scientific foundation for further research into the framework of action of Zhuling Jisheng decoction in the therapy of bladder urothelial cancer.
Collapse
Affiliation(s)
- Chenyu Ma
- Third People's Hospital, Ningbo City, Zhejiang Province, No. 51-139, Zhouxi Highway, Cixi, China
| | | | - Na Zhao
- Emergency Medicine Department, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Zhenya Pan
- Emergency Medicine Department, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Yi Lu
- Yiwu Fuyuan Private Hospital, China
| | - Miao Cheng
- Department of Oncology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Min Deng
- Emergency Medicine Department, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, China
| |
Collapse
|
40
|
Cheng W, Li S, Wen X, Han S, Wang S, Wei H, Song Z, Wang Y, Tian X, Zhang X. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun (Camb) 2021; 57:12852-12855. [PMID: 34788776 DOI: 10.1039/d1cc05715d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of many solid tumors, and it causes the overexpression of a variety of proteins including the epidermal growth factor receptor (EGFR). Many antitumor prodrugs have been designed to target hypoxia. Here we report the identification of a kind of hypoxia-activated proteolysis targeting chimera (ha-PROTAC) by introducing the hypoxia-activated leaving group (1-methyl-2-nitro-1H-imidazol-5-yl)methyl or 4-nitrobenzyl into the structure of an EGFRDel19-based PROTAC. Among the obtained molecules, ha-PROTAC 13 exhibits a more potent degradation activity for EGFRDel19 in hypoxia than in normoxia in HCC4006 cells. This is the first example of identifying a PROTAC to selectively act on tumors utilizing the characteristic of tumor hypoxia and provides a new approach for PROTAC development.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueqian Wen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhizhen Song
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
41
|
Smith V, Mukherjee D, Lunj S, Choudhury A, Hoskin P, West C, Illidge T. The effect of hypoxia on PD-L1 expression in bladder cancer. BMC Cancer 2021; 21:1271. [PMID: 34819027 PMCID: PMC8613983 DOI: 10.1186/s12885-021-09009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Recent data has demonstrated that hypoxia drives an immunosuppressive tumour microenvironment (TME) via various mechanisms including hypoxia inducible factor (HIF)-dependent upregulation of programmed death ligand 1 (PD-L1). Both hypoxia and an immunosuppressive TME are targetable independent negative prognostic factors for bladder cancer. Therefore we sought to investigate whether hypoxia is associated with upregulation of PD-L1 in the disease. MATERIALS AND METHODS Three human muscle-invasive bladder cancer cell lines (T24, J82, UMUC3) were cultured in normoxia (20% oxygen) or hypoxia (1 and 0.1% oxygen) for 24 h. Differences in PD-L1 expression were measured using Western blotting, quantitative polymerase chain reaction (qPCR) and flow cytometry (≥3 independent experiments). Statistical tests performed were unpaired t tests and ANOVA. For in silico work an hypoxia signature was used to apply hypoxia scores to muscle-invasive bladder cancers from a clinical trial (BCON; n = 142) and TCGA (n = 404). Analyses were carried out using R and RStudio and statistical tests performed were linear models and one-way ANOVA. RESULTS When T24 cells were seeded at < 70% confluence, there was decreased PD-L1 protein (p = 0.009) and mRNA (p < 0.001) expression after culture in 0.1% oxygen. PD-L1 protein expression decreased in both 0.1% oxygen and 1% oxygen in a panel of muscle-invasive bladder cancer cells: T24 (p = 0.009 and 0.001), J82 (p = 0.008 and 0.013) and UMUC3 (p = 0.003 and 0.289). Increasing seeding density decreased PD-L1 protein (p < 0.001) and mRNA (p = 0.001) expression in T24 cells grown in both 20 and 1% oxygen. Only when cells were 100% confluent, were PD-L1 protein and mRNA levels higher in 1% versus 20% oxygen (p = 0.056 and p = 0.037). In silico analyses showed a positive correlation between hypoxia signature scores and PD-L1 expression in both BCON (p = 0.003) and TCGA (p < 0.001) cohorts, and between hypoxia and IFNγ signature scores (p < 0.001 for both). CONCLUSION Tumour hypoxia correlates with increased PD-L1 expression in patient derived bladder cancer tumours. In vitro PD-L1 expression was affected by cell density and decreased PD-L1 expression was observed after culture in hypoxia in muscle-invasive bladder cancer cell lines. As cell density has such an important effect on PD-L1 expression, it should be considered when investigating PD-L1 expression in vitro.
Collapse
Affiliation(s)
- Vicky Smith
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK.
| | - Debayan Mukherjee
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Catharine West
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
| | - Tim Illidge
- Division of Cancer Sciences, University of Manchester, M20 4BX, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
42
|
Lv X, Xu G. Regulatory role of the transforming growth factor-β signaling pathway in the drug resistance of gastrointestinal cancers. World J Gastrointest Oncol 2021; 13:1648-1667. [PMID: 34853641 PMCID: PMC8603464 DOI: 10.4251/wjgo.v13.i11.1648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, is one of the most prevalent types of malignant carcinoma and the leading cause of cancer-related deaths. Despite significant advances in therapeutic strategies for GI cancers in recent decades, drug resistance with various mechanisms remains the prevailing cause of therapy failure in GI cancers. Accumulating evidence has demonstrated that the transforming growth factor (TGF)-β signaling pathway has crucial, complex roles in many cellular functions related to drug resistance. This review summarizes current knowledge regarding the role of the TGF-β signaling pathway in the resistance of GI cancers to conventional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. Various processes, including epithelial-mesenchymal transition, cancer stem cell development, tumor microenvironment alteration, and microRNA biogenesis, are proposed as the main mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies have already indicated the benefit of combining antitumor drugs with agents that suppress the TGF-β signaling pathway, but this approach needs to be verified in additional clinical studies. Moreover, the identification of potential biological markers that can be used to predict the response to TGF-β signaling pathway inhibitors during anticancer treatments will have important clinical implications in the future.
Collapse
Affiliation(s)
- Xiaoqun Lv
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Zhang J, Yang L, Huang F, Zhao C, Liu J, Zhang Y, Liu J. Multifunctional Hybrid Hydrogel Enhanced Antitumor Therapy through Multiple Destroying DNA Functions by a Triple-Combination Synergistic Therapy. Adv Healthc Mater 2021; 10:e2101190. [PMID: 34382378 DOI: 10.1002/adhm.202101190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Indexed: 11/06/2022]
Abstract
Brachytherapy, as an effective setting for precise cancer therapy in clinic, can lead to serious DNA damage. However, its therapeutic efficacy is always limited by the DNA self-repair property, tumor hypoxia-associated radiation resistance as well as inhomogeneous distribution of the radioactive material. Herein, a multifunctional hybrid hydrogel (131 I-hydrogel/DOX/GNPs aggregates) is developed by loading gold nanoparticle aggregates (GNPs aggregates) and DOX into a radionuclide iodine-131 (131 I) labelled polymeric hydrogels (131 I-PEG-P(Tyr)8 ) for tumor destruction by completely damaging DNA self-repair functions. This hybrid hydrogel exhibits excellent photothermal/radiolabel stability, biocompatibility, and fluorescence/photothermal /SPECT imaging properties. After local injection, the sustained releasing DOX within tumor greatly inhibits the DNA replication. Meanwhile, GNPs aggregates as a radiosensitizer and photosensitizer show a significant improvement of brachytherapeutic efficacy and cause serious DNA damage. Simultaneously, GNPs aggregates induce mild photothermal therapy under 808 nm laser irradiation, which not only inhibits self-repair of the damaged DNA but also effectively relieves tumor hypoxic condition to enhance the therapeutic effects of brachytherapy, leading to a triple-synergistic destruction of DNA functions. Therefore, this study provides a highly efficient tumor synergistic therapy platform and insight into the synergistic antitumor mechanism in DNA level.
Collapse
Affiliation(s)
- Jiamin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs Chinese Academy of Medical Sciences and Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 P. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs Chinese Academy of Medical Sciences and Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 P. R. China
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs Chinese Academy of Medical Sciences and Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 P. R. China
| | - Cuicui Zhao
- Department of VIP Ward Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Tianjin's Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Key Laboratory of Breast Cancer Prevention and Therapy Tianjin Medical University Ministry of Education Tianjin 300060 P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs Chinese Academy of Medical Sciences and Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 P. R. China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs Chinese Academy of Medical Sciences and Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs Chinese Academy of Medical Sciences and Institute of Radiation Medicine Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin 300192 P. R. China
| |
Collapse
|
44
|
Wei G, Chen J, Jing Z, Li Y, Li Z, Zheng W, Sun X, Zhao W, Zhang Z, Wang X, Han H, Li C, Zhang Y, Ma P. Glucose transporter 1 (GLUT1)-targeting and hypoxia-activated mitochondria-specific chemo-thermal therapy via a glycosylated poly(amido amine)/celastrol (PAMAM/Cel) complex. J Colloid Interface Sci 2021; 608:1355-1365. [PMID: 34742058 DOI: 10.1016/j.jcis.2021.10.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
Mitochondria are appealing targets in cancer therapy for providing a suitable microenvironment and energy supply. Herein, we constructed a glycosylated poly(amido amine)/celastrol (PAMAM/Cel) complex for hypoxia-activated mitochondria-specific drug delivery and chemothermal therapy to inhibit tumor growth and metastasis. The complex was characterized by high photothermal conversion efficiency, hypoxia-sensitive polyethylene glycol (PEG) outer layer detachment, and alkaline-sensitive drug release. The complex showed specific cellular uptake in glucose transporter 1 (GLUT1)-overexpressing tumor cells and mitochondrial accumulation in a hypoxic environment. Combined with near-infrared (NIR) laser irradiation, the complex exhibited higher cytotoxicity, apoptosis induction, and metastasis inhibition rates due to the synergistic chemothermal effect. Similarly, the complex also targeted tumors and accumulated in mitochondria in tumor-bearing nude mice, resulting in superior inhibitory effects on tumor growth and metastasis as well as low systematic toxicity. Further mechanistic studies discovered that the complex impaired the mitochondrial membrane, reduced adenosine triphosphate (ATP) content, and regulated metastasis-related protein expression. Thus, the present study provides a promising nanomedicine for tumor therapy.
Collapse
Affiliation(s)
- Guijie Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianhua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Jing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiurui Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhe Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongcui Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yujie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Pengkai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
45
|
Jiang L, Li Y, He Y, Wei D, Yan L, Wen H. Knockdown of m6A Reader IGF2BP3 Inhibited Hypoxia-Induced Cell Migration and Angiogenesis by Regulating Hypoxia Inducible Factor-1α in Stomach Cancer. Front Oncol 2021; 11:711207. [PMID: 34621671 PMCID: PMC8490730 DOI: 10.3389/fonc.2021.711207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hypoxia is a common feature of solid tumors including stomach cancer (SC) and is closely associated with cancer malignant progression. N6-methyladenosine (m6A), a common modification on RNA, is involved in the regulation of RNA fate and hypoxic responses in cancers. However, the interaction between m6A reader insulin-like growth factor-II mRNA-binding protein 3 (IGF2BP3) and SC hypoxic microenvironment is poorly defined. In the present study, expression levels of IGF2BP3 and hypoxia inducible factor-1α (HIF1A) were examined by bioinformatics analysis and RT-qPCR and western blot assays. Cell migratory ability was assessed through Transwell and wound healing assays. The angiogenic potential was evaluated by VEGF secretion, tube formation, and chick embryo chorioallantoic membrane (CAM) assays. The interaction between IGF2BP3 and HIF1A was explored using bioinformatics analysis and RIP and luciferase reporter assays. The results showed that IGF2BP3 and HIF1A were highly expressed in SC tissues and hypoxia-treated SC cells. IGF2BP3 knockdown inhibited hypoxia-induced cell migration and angiogenesis in SC. IGF2BP3 positively regulated HIF1A expression by directly binding to a specific m6A site in the coding region of HIF1A mRNA in SC cells. HIF1A overexpression abrogated the effects of IGF2BP3 knockdown on hypoxia-induced cell migration and angiogenesis in SC. In conclusion, IGF2BP3 knockdown inhibited hypoxia-induced cell migration and angiogenesis by down-regulating HIF1A in SC.
Collapse
Affiliation(s)
- Libin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixin He
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dapeng Wei
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lvyin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongtao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, Zhan S, Chen D, Bu X, Liu P, Chen C, He W, Lu X, Wan G. Loss-of-Function Genetic Screening Identifies Aldolase A as an Essential Driver for Liver Cancer Cell Growth Under Hypoxia. Hepatology 2021; 74:1461-1479. [PMID: 33813748 PMCID: PMC8518375 DOI: 10.1002/hep.31846] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Hypoxia is a common feature of the tumor microenvironment (TME), which promotes tumor progression, metastasis, and therapeutic drug resistance through a myriad of cell activities in tumor and stroma cells. While targeting hypoxic TME is emerging as a promising strategy for treating solid tumors, preclinical development of this approach is lacking in the study of HCC. APPROACH AND RESULTS From a genome-wide CRISPR/CRISPR-associated 9 gene knockout screening, we identified aldolase A (ALDOA), a key enzyme in glycolysis and gluconeogenesis, as an essential driver for HCC cell growth under hypoxia. Knockdown of ALDOA in HCC cells leads to lactate depletion and consequently inhibits tumor growth. Supplementation with lactate partly rescues the inhibitory effects mediated by ALDOA knockdown. Upon hypoxia, ALDOA is induced by hypoxia-inducible factor-1α and fat mass and obesity-associated protein-mediated N6 -methyladenosine modification through transcriptional and posttranscriptional regulation, respectively. Analysis of The Cancer Genome Atlas shows that elevated levels of ALDOA are significantly correlated with poor prognosis of patients with HCC. In a screen of Food and Drug Administration-approved drugs based on structured hierarchical virtual platforms, we identified the sulfamonomethoxine derivative compound 5 (cpd-5) as a potential inhibitor to target ALDOA, evidenced by the antitumor activity of cpd-5 in preclinical patient-derived xenograft models of HCC. CONCLUSIONS Our work identifies ALDOA as an essential driver for HCC cell growth under hypoxia, and we demonstrate that inhibition of ALDOA in the hypoxic TME is a promising therapeutic strategy for treating HCC.
Collapse
Affiliation(s)
- Yi Niu
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Ziyou Lin
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Arabella Wan
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Lei Sun
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Shijia Yan
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Heng Liang
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Siyue Zhan
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Dongshi Chen
- Division of Pulmonary, Allergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPA
| | - Xianzhang Bu
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Peiqing Liu
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Ceshi Chen
- Key Laboratory of Animal Models and HumanDisease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina,Center for Precision MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Xiongbin Lu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN,Indiana University Melvin and Bren Simon Cancer CenterIndianapolisIN
| | - Guohui Wan
- National‐Local Joint Engineering Laboratory of Druggability and New Drug EvaluationNational Engineering Research Center for New Drug and Druggability (cultivation)Guangdong Province Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
47
|
Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Saidijam M. Identification of Key Gene Targets for Sensitizing Colorectal Cancer to Chemoradiation: an Integrative Network Analysis on Multiple Transcriptomics Data. J Gastrointest Cancer 2021; 53:649-668. [PMID: 34432208 DOI: 10.1007/s12029-021-00690-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is a main cause of morbidity and mortality in the world. Chemoradioresistance is a major problem in CRC treatment. Identification of novel therapeutic targets in order to overcome treatment resistance in CRC is necessary. METHODS In this study, gene expression omnibus (GEO) database was searched to find microarray datasets. Data normalization/analyzing was performed using ExAtlas. The gene ontology (GO) and pathway enrichment analysis was performed using g:Profiler. Protein-protein interaction network (PPIN) was constructed by Search Tool for the Retrieval of Interacting Genes (STRING) and analyzed using Cytoscape. Survival analysis was done using Kaplan-Meier curve method. RESULTS Forty-one eligible datasets were included in study. A total of 12,244 differentially expressed genes (DEGs) and 7337 unique DEGs were identified. Among them, 1187 DEGs were overlapped in ≥ 3 datasets. Fifty-five overlapped genes were considered as hub genes. Common hub genes in chemo/radiation/chemoradiation datasets were chosen as the essential candidate genes (n = 13). Forty-one hub gene and 7 essential candidate genes were contributed in the significant modules. The modules were mainly enriched in the signaling pathways of senescence, autophagy, NF-κB, HIF-1, stem cell pluripotency, notch, neovascularization, cell cycle, p53, chemokine, and PI3K-Akt. NGFR, FGF2, and PROM1 genes were significantly predictors of CRC patient's survival. CONCLUSION Our study revealed three-gene signatures as potential therapeutic targets and also candidate molecular markers in CRC chemoradioresistance.
Collapse
Affiliation(s)
- Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
48
|
Hwang SJ, Jung Y, Song Y, Park S, Park Y, Lee H. Enhanced anti-angiogenic activity of novel melatonin-like agents. J Pineal Res 2021; 71:e12739. [PMID: 33955074 PMCID: PMC8365647 DOI: 10.1111/jpi.12739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays an important role in cellular responses to hypoxia, including the transcriptional activation of several genes involved in tumor angiogenesis. Melatonin, also known as N-acetyl-5-methopxytryptamine, is produced naturally by the pineal gland and has anti-angiogenic effects in cancer through its ability to modulate HIF-1α activity. However, the use of melatonin as a therapeutic is limited by its low oral bioavailability and short half-life. Here, we synthesized melatonin-like molecules with enhanced HIF-1α targeting activity and less toxicity and investigated their effects on tumor growth and angiogenesis, as well as the underlying molecular mechanisms. Among melatonin derivatives, N-butyryl-5-methoxytryptamine (NB-5-MT) showed the most potent HIF-1α targeting activity. This molecule was able to (a) reduce the expression of HIF-1α at the protein level, (b) reduce the transcription of HIF-1α target genes, (c) reduce reactive oxygen species (ROS) generation, (d) decrease angiogenesis in vitro and in vivo, and (e) suppress tumor size and metastasis. In addition, NB-5-MT showed improved anti-angiogenic activity compared with melatonin due to its enhanced cellular uptake. NB-5-MT is thus a promising lead for the future development of anticancer compounds with HIF-1α targeting activity. Given that HIF-1α is overexpressed in the majority of human cancers, the melatonin derivative NB-5-MT could represent a novel potent therapeutic agent for cancer.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doKorea
| | - Yeonghun Jung
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeGyungnamKorea
| | - Ye‐Seul Song
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doKorea
| | - Suryeon Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeGyungnamKorea
| | - Yohan Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeGyungnamKorea
| | - Hyo‐Jong Lee
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doKorea
| |
Collapse
|
49
|
Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: Interfering with the crosstalk between "seed and soil". Acta Pharm Sin B 2021; 11:2286-2305. [PMID: 34522588 PMCID: PMC8424221 DOI: 10.1016/j.apsb.2020.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Despite considerable progresses in cancer treatment, tumor metastasis is still a thorny issue, which leads to majority of cancer-related deaths. In hematogenous metastasis, the concept of “seed and soil” suggests that the crosstalk between cancer cells (seeds) and premetastatic niche (soil) facilitates tumor metastasis. Considerable efforts have been dedicated to inhibit the tumor metastatic cascade, which is a highly complicated process involving various pathways and biological events. Nonetheless, satisfactory therapeutic outcomes are rarely observed, since it is a great challenge to thwart this multi-phase process. Recent advances in nanotechnology-based drug delivery systems have shown great potential in the field of anti-metastasis, especially compared with conventional treatment methods, which are limited by serious side effects and poor efficacy. In this review, we summarized various factors involved in each phase of the metastatic cascade ranging from the metastasis initiation to colonization. Then we reviewed current approaches of targeting these factors to stifle the metastatic cascade, including modulating primary tumor microenvironment, targeting circulating tumor cells, regulating premetastatic niche and eliminating established metastasis. Additionally, we highlighted the multi-phase targeted drug delivery systems, which hold a better chance to inhibit metastasis. Besides, we demonstrated the limitation and future perspectives of nanomedicine-based anti-metastasis strategies.
Collapse
|
50
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|