1
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
2
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
3
|
Jiang FH, Huang Y, Yu XY, Cui LF, Shi Y, Song XR, Zhao Z. Identification and characterization of an L-type lectin from obscure puffer Takifugu obscurus in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109283. [PMID: 38092094 DOI: 10.1016/j.fsi.2023.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
L-type lectins (LTLs) contain a carbohydrate recognition domain homologous to leguminous lectins, and have functions in selective protein trafficking, sorting and targeting in the secretory pathway of animals. In this study, a novel LTL, designated as ToERGIC-53, was cloned and identified from obscure puffer Takifugu obscurus. The open reading frame of ToERGIC-53 contained 1554 nucleotides encoding 517 amino acid residues. The deduced ToERGIC-53 protein consisted of a signal peptide, a leguminous lectin domain (LTLD), a coiled-coil region, and a transmembrane region. Quantitative real-time PCR showed that ToERGIC-53 was expressed in all examined tissues, with the highest expression level in the liver. The expression of ToERGIC-53 was significantly upregulated after infection with Vibrio harveyi and Staphylococcus aureus. Recombinant ToERGIC-53-LTLD (rToERGIC-53-LTLD) protein could not only agglutinate and bind to one Gram-positive bacterium (S. aureus) and three Gram-negative bacteria (V. harveyi, V. parahaemolyticus and Aeromonas hydrophila), but also bind to glycoconjugates on the surface of bacteria such as lipopolysaccharide, peptidoglycan, mannose and galactose. In addition, rToERGIC-53-LTLD inhibited the growth of bacteria in vitro. All these results suggested that ToERGIC-53 might be a pattern recognition receptor involved in antibacterial immune response of T. obscurus.
Collapse
Affiliation(s)
- Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xin-Yue Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
4
|
Zhang L, Yan M, Liu C. A comprehensive review of secondary metabolites from the genus Agrocybe: Biological activities and pharmacological implications. Mycology 2023; 15:162-179. [PMID: 38813473 PMCID: PMC11132692 DOI: 10.1080/21501203.2023.2292994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 05/31/2024] Open
Abstract
The genus Agrocybe, situated within the Strophariaceae family, class Agaricomycetes, and phylum Basidiomycota, encompasses a myriad of species exhibiting significant biological activities. This review presents an integrative overview of the secondary metabolites derived from Agrocybe species, elucidating their respective biological activities and potential pharmacological applications. The metabolites under scrutiny encompass a diverse array of biological macromolecules, specifically polysaccharides and lectins, as well as a diverse group of 80 documented small molecular chemical constituents, classified into sterols, sesquiterpenes, volatile compounds, polyenes, and other compounds, their manifesting anti-inflammatory, anticancer, antioxidant, hepatoprotective, antimicrobial, and antidiabetic activities, these metabolites, in which polysaccharides exhibit abundant activities, underscore the potential of the Agrocybe genus as a valuable source of biologically active natural products. The present review emphasises the need for escalated research into Agrocybe, including investigations into the biosynthetic pathways of these metabolites, which could foster the development of novel pharmaceutical therapies to address various health challenges.
Collapse
Affiliation(s)
- Liqiu Zhang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Li Y, Wang P, Zhang Z, Liu Q. A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Wang Y, Xu Y, Wei J, Zhang J, Wu M, Li G, Yang L. Sclerotinia sclerotiorum Agglutinin Modulates Sclerotial Development, Pathogenicity and Response to Abiotic and Biotic Stresses in Different Manners. J Fungi (Basel) 2023; 9:737. [PMID: 37504726 PMCID: PMC10381867 DOI: 10.3390/jof9070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Sclerotinia sclerotiorum is an important plant pathogenic fungus of many crops. Our previous study identified the S. sclerotiorum agglutinin (SSA) that can be partially degraded by the serine protease CmSp1 from the mycoparasite Coniothyrium minitans. However, the biological functions of SSA in the pathogenicity of S. sclerotiorum and in its response to infection by C. minitans, as well as to environmental stresses, remain unknown. In this study, SSA disruption and complementary mutants were generated for characterization of its biological functions. Both the wild-type (WT) of S. sclerotiorum and the mutants were compared for growth and sclerotial formation on potato dextrose agar (PDA) and autoclaved carrot slices (ACS), for pathogenicity on oilseed rape, as well as for susceptibility to chemical stresses (NaCl, KCl, CaCl2, sorbitol, mannitol, sucrose, sodium dodecyl sulfate, H2O2) and to the mycoparasitism of C. minitans. The disruption mutants (ΔSSA-175, ΔSSA-178, ΔSSA-225) did not differ from the WT and the complementary mutant ΔSSA-178C in mycelial growth. However, compared to the WT and ΔSSA-178C, the disruption mutants formed immature sclerotia on PDA, and produced less but larger sclerotia on ACS; they became less sensitive to the eight investigated chemical stresses, but more aggressive in infecting leaves of oilseed rape, and more susceptible to mycoparasitism by C. minitans. These results suggest that SSA positively regulates sclerotial development and resistance to C. minitans mycoparasitism, but negatively regulates pathogenicity and resistance to chemical stresses.
Collapse
Affiliation(s)
- Yongchun Wang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuping Xu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
de Sousa GF, Lund RG, da Silva Pinto L. The Role of Plant Lectins in the Cellular and Molecular Processes of Skin Wound Repair: An Overview. Curr Pharm Des 2023; 29:2618-2625. [PMID: 37933218 DOI: 10.2174/0113816128264103231030093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
There is increasing pressure for innovative methods to treat compromised and difficult-to-heal wounds. Consequently, new strategies are needed for faster healing, reducing infection, hydrating the wound, stimulating healing mechanisms, accelerating wound closure, and reducing scar formation. In this scenario, lectins present as good candidates for healing agents. Lectins are a structurally heterogeneous group of glycosylated or non-glycosylated proteins of non-immune origin, which can recognize at least one specific monosaccharide or oligosaccharide specific for the reversible binding site. Cell surfaces are rich in glycoproteins (glycosidic receptors) that potentially interact with lectins through the number of carbohydrates reached. This lectin-cell interaction is the molecular basis for triggering various changes in biological organisms, including healing mechanisms. In this context, this review aimed to (i) provide a comprehensive overview of relevant research on the potential of vegetable lectins for wound healing and tissue regeneration processes and (ii) discuss future perspectives.
Collapse
Affiliation(s)
- Guilherme Feijó de Sousa
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Rafael Guerra Lund
- School of Dentistry, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Luciano da Silva Pinto
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|
8
|
Murugesan AK, Gunasagaran KS. Purification and characterization of a synergistic bioactive lectin from Pleurotus flabellatus (PFL-L) with potent antibacterial and in-vitro radical scavenging activity. Anal Biochem 2021; 635:114450. [PMID: 34767809 DOI: 10.1016/j.ab.2021.114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Lectin is a carbohydrate-binding protein, which exhibits a plethora of biological properties such as antimicrobial, antifungal, and anticancer activities. In the present study, lectin, with an antibacterial and antioxidant potential, was purified from the oyster mushroom Pleurotus flabellatus. The P. flabellatus Lectin (PFL-L) was purified by using a DEAE - cellulose anion exchange chromatography followed by gel-filtration chromatography. The PFL-L was characterized by CD, HPLC, and MALDI-TOF/MS. The purity of PFL-L increased to 62.40% with the recovery of hemagglutinating activity (HA) by 12.12%. On SDS - PAGE, the PFL-L gave a single band of 18 kDa. PFL-L, consisting of d-galactose, exhibits a strong hemagglutinating activity. It was stable at pH (6.0-7.5) and temperature (10-20 °C) in addition to having extensive hemagglutinating activity. PFL-L enhanced the HA with the use of different metal ions namely Mg2+, Ca2+, and Fe2+. The study of bacterial growth inhibition led to the inference that the PFL-L was more potent against gram-negative bacteria. PFL-L showed the highest radical scavenging activity for the DPPH assay at 100 μg/mL (89.9 ± 2.53%). The highest antioxidant activities with IC50 values (for DPPH assay) of 53.96 μg/mL were determined for PFL-L and the present study shows that lectin from P. flabellatus manifested distinctive character and potentially exploitable activities.
Collapse
Affiliation(s)
- Arul Kumar Murugesan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, Pin Code - 600025, India; Department of Botany, Bharathidasan University, Tiruchrappalli, Pin Code - 620024, India.
| | - Karuna Sagaran Gunasagaran
- Environment Information System (ENVIS-Centre), Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, Pin Code - 600025, India
| |
Collapse
|
9
|
Farshi P, Kaya EC, Hashempour-Baltork F, Khosravi-Darani K. The effect of plant metabolites on coronaviruses: A comprehensive review focusing on their IC50 values and molecular docking scores. Mini Rev Med Chem 2021; 22:457-483. [PMID: 34488609 DOI: 10.2174/1389557521666210831152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/10/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome), was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we did a review of 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.
Collapse
Affiliation(s)
- Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan, Kansas. United States
| | - Eda Ceren Kaya
- Food Science Institute, Kansas State University, Manhattan, Kansas. United States
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Kianoush Khosravi-Darani
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
10
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Mukhammadiev RS, Mukhammadiev RS, Skvortsov EV, Valiullin LR, Glinushkin AP, Bagaeva TV. Isolation, Purification, and Characterization of a Lectin from the Fungus Fusarium solani 4. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2020; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt.,Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
14
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
15
|
Singh RS, Thakur SR, Kennedy JF. Purification and characterisation of a xylose-specific mitogenic lectin from Fusarium sambucinum. Int J Biol Macromol 2020; 152:393-402. [PMID: 32084487 DOI: 10.1016/j.ijbiomac.2020.02.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
A xylose-specific intracellular lectin, showing hemagglutination only with rabbit erythrocytes was purified from mycelium of Fusarium sambucinum which was designated as FSL. An array of anion exchange chromatography on Q-Sepharose and gel-exclusion chromatography on Sephadex G-100 resulted in 84.21% yield and 53.99-fold purification of lectin with specific activity of 169.53 titre/mg. Molecular weight of FSL determined by SDS-PAGE was 70.7 kDa, which was further confirmed by gel-exclusion chromatography. Native-PAGE analysis of FSL showed its monomeric nature. FSL was observed to be a glycoprotein containing 2.9% carbohydrate. Hapten inhibition profile of FSL displayed its strong affinity towards D-xylose (MIC 1.562 mM), L-fucose (MIC 6.25 mM), D-mannose (MIC 3.125 mM), fetuin (MIC 15.62 μg/mL), asialofetuin (MIC 125 μg/mL) and BSM (MIC 3.125 μg/mL). Affinity of FSL towards xylose is rare. FSL was found stable over a pH range 6.0-7.5 and upto 40 °C temperature. Hemagglutination activity of FSL remained unaffected by divalent ions. Lectin concentration of 5 μg/mL was found sufficient to stimulate proliferation of murine spleen cells and its concentration 75 μg/mL exhibited highest mitogenic potential. FSL exhibited maximum mitogenic stimulatory index of 14.35. The purification, characterisation and mitogenicity of F. sambucinum lectin has been reported first time.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, 147 002 Patiala, India.
| | - Shivani Rani Thakur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, 147 002 Patiala, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
16
|
Singh RS, Walia AK. Purification of a potent mitogenic homodimeric Penicillium griseoroseum lectin and its characterisation. J Basic Microbiol 2019; 59:1238-1247. [PMID: 31613018 DOI: 10.1002/jobm.201900428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022]
Abstract
Penicillium griseoroseum lectin was 80-fold purified by successive DEAE Sepharose anion exchange and Sephadex G-100 gel permeation chromatography. P. griseoroseum lectin exhibited haemagglutination activity towards protease-treated rabbit erythrocytes. It showed specificity towards various carbohydrates such as d-mannose, N-acetyl-d-glucosamine, mucins, and so forth. P. griseoroseum lectin was found as a glycoprotein with glycan content of 4.33%. Purified P. griseoroseum lectin is homodimeric having a molecular mass of 57 kDa with subunit molecular mass of 28.6 kDa. Haemagglutination activity of purified P. griseoroseum lectin was completely stable from 25°C to 35°C at a pH range of 6-7.5. Lectin activity was not influenced by divalent metal ions and denaturants. P. griseoroseum lectin manifested mitogenicity towards mice splenocytes and activity reached a peak at 75 μg/ml of lectin concentration. P. griseoroseum lectin in microgram concentrations stimulated proliferation of mice splenocytes. Thus, P. griseoroseum lectin exhibits potential mitogenicity, which can be exploited for further biomedical applications.
Collapse
Affiliation(s)
- Ram S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| | - Amandeep K Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| |
Collapse
|
17
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
18
|
An L-fucose specific lectin from Aspergillus niger isolated from mycotic keratitis patient and its interaction with human pancreatic adenocarcinoma PANC-1 cells. Int J Biol Macromol 2019; 134:487-497. [DOI: 10.1016/j.ijbiomac.2019.04.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
|
19
|
Cheong P, Yong Y, Fatima A, Ng S, Tan C, Kong B, Tan N, Rajarajeswaran J, Fung S. Cloning, overexpression, purification, and modeling of a lectin (Rhinocelectin) with antiproliferative activity from Tiger Milk Mushroom,
Lignosus rhinocerus. IUBMB Life 2019; 71:1579-1594. [DOI: 10.1002/iub.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- P.C.H. Cheong
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - Y.S. Yong
- Faculty of Applied SciencesUCSI Heights Kuala Lumpur Malaysia
| | - A. Fatima
- Faculty of PharmacyQuest International University Perak (QUIP) Ipoh Perak Darul Ridzuan Malaysia
| | - S.T. Ng
- Ligno Biotech Sdn. Bhd Taman Perindustrian Balakong Jaya Selangor Malaysia
| | - C.S. Tan
- Ligno Biotech Sdn. Bhd Taman Perindustrian Balakong Jaya Selangor Malaysia
| | - B.H. Kong
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - N.H. Tan
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - J. Rajarajeswaran
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - S.Y. Fung
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR)University of Malaya Kuala Lumpur Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR)University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
20
|
Smith SN, Armstrong RA, Bird RA, Chohan R, Hartell NA, Poyner DA. Characterization of FITC-conjugated lectin binding toCandida albicans. Mycologia 2019. [DOI: 10.1080/00275514.2001.12063174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Stephen N. Smith
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, U.K
| | | | - Roger A. Bird
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, U.K
| | - Rita Chohan
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, U.K
| | - Nick A. Hartell
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, U.K
| | - David A. Poyner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, U.K
| |
Collapse
|
21
|
Purification and characterization of a heterodimeric mycelial lectin from Penicillium proteolyticum with potent mitogenic activity. Int J Biol Macromol 2019; 128:124-131. [DOI: 10.1016/j.ijbiomac.2019.01.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
|
22
|
Singh RS, Walia AK, Kennedy JF. Purification and characterization of a mitogenic lectin from Penicillium duclauxii. Int J Biol Macromol 2018; 116:426-433. [DOI: 10.1016/j.ijbiomac.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 02/03/2023]
|
23
|
Feng Y, Song J, Zhao Z, Zhao F, Yang L, Jiao C. A rapid and effective method for purification of a heat-resistant lectin from potato (Solanum tuberosum) tubers. Glycoconj J 2018; 35:403-409. [PMID: 30088206 DOI: 10.1007/s10719-018-9836-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022]
Abstract
The potato lectin has been identified to consist of two chitin-binding modules, each containing twin hevein domains. Based on the thermotolerance of the hevein polypeptide, a simple, rapid, and effective protocol for the small-scale purification of the potato lectin has been developed in this study. The method involves only one anion exchange chromatographic step beyond the ammonium sulfate precipitation and the heating treatment. With this method, the potato lectin, a glycoprotein with molecular mass of approximately 60 kDa was found and purified to homogeneity with 9513.3 u/mg of specific hemagglutination (HA) activity in 76.8% yield. The homogeneity was confirmed by SDS-PAGE electrophoresis and reverse-phase HPLC analysis. The purified lectin was identified using MS-based peptide sequencing (MALDI-TOF/TOF) and showed a 100% Confidence Interval as being homologous to hevein domains in potato lectin. The periodic acid-Schiff staining and ferric-orcinol assay for pentose, as well as its HA activity inhibition by chitosan oligomers further confirmed the purified lectin as a potato chitin-binding lectin. It is noteworthy that the purified potato lectin exhibited heat resistance, by which, together with a short time precipitation by ammonium sulfate, more than 96% of the total proteins in the crude extract were removed. The lectin therefore was easily resolved from the other remining proteins on a DEAE-methyl polyacrylate column.
Collapse
Affiliation(s)
- Yun Feng
- School of Bioengineering and Biotechnology, Tianshui Normal University, Bin He Road, Qinzhou District, 741001, Tianshui, Gansu Province, People's Republic of China
- Institute of Sulfur Biotechnology, Tianshui Normal University, Tianshui, 741001, People's Republic of China
| | - Jintian Song
- School of Bioengineering and Biotechnology, Tianshui Normal University, Bin He Road, Qinzhou District, 741001, Tianshui, Gansu Province, People's Republic of China
- Institute of Sulfur Biotechnology, Tianshui Normal University, Tianshui, 741001, People's Republic of China
| | - Zixuan Zhao
- School of Bioengineering and Biotechnology, Tianshui Normal University, Bin He Road, Qinzhou District, 741001, Tianshui, Gansu Province, People's Republic of China
- Institute of Sulfur Biotechnology, Tianshui Normal University, Tianshui, 741001, People's Republic of China
| | - Feiyi Zhao
- School of Bioengineering and Biotechnology, Tianshui Normal University, Bin He Road, Qinzhou District, 741001, Tianshui, Gansu Province, People's Republic of China
- Institute of Sulfur Biotechnology, Tianshui Normal University, Tianshui, 741001, People's Republic of China
| | - Lingjuan Yang
- Institute of Sulfur Biotechnology, Tianshui Normal University, Tianshui, 741001, People's Republic of China
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, People's Republic of China
| | - Chengjin Jiao
- School of Bioengineering and Biotechnology, Tianshui Normal University, Bin He Road, Qinzhou District, 741001, Tianshui, Gansu Province, People's Republic of China.
- Institute of Sulfur Biotechnology, Tianshui Normal University, Tianshui, 741001, People's Republic of China.
| |
Collapse
|
24
|
Lu Z, Ren Z, Mu C, Li R, Ye Y, Song W, Shi C, Liu L, Wang C. Characterisation and functional analysis of an L-type lectin from the swimming crab Portunus trituberculatus. Gene 2018; 664:27-36. [PMID: 29689348 DOI: 10.1016/j.gene.2018.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
L-type lectins are involved in glycoprotein secretion and are associated with immune responses. Herein, an L-type lectin was identified in swimming crab (Portunus trituberculatus). The 1347 bp PtLTL cDNA includes a 26 bp 5'-untranslated region (UTR), a 547 bp 3'-UTR with a poly(A) tail, and a 774 bp open reading frame encoding a 257 amino acid protein with a putative 21 residue signalling peptide. The protein includes an L-type lectin carbohydrate recognition domain containing four conserved cysteines. The 714 bp cDNA fragment encoding the mature peptide of PtLTL1 was recombined into pET-21a (+) with a C-terminally hexa-histidine tag fused in-frame and expressed in Escherichia coli Origami (DE3). Recombinant PtLTL1 caused agglutination of all three Gram-positive and Gram-negative bacterial strains tested. In addition, erythrocyte agglutination and LPS-binding activity were observed. PtLTL1 mRNA transcripts were most abundant in P. trituberculatus hepatopancreas and hemocytes, and expression was up-regulated in hemocytes challenged with Vibrio alginolyticus, suggesting PtLTL functions in the immune response against bacterial pathogens.
Collapse
Affiliation(s)
- Zhibin Lu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
25
|
Itoh H, Tago K, Hayatsu M, Kikuchi Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 2018; 35:434-454. [DOI: 10.1039/c7np00051k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Symbiotic microorganisms degrade natural and artificial toxic compounds, and confer toxin resistance on insect hosts.
Collapse
Affiliation(s)
- Hideomi Itoh
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
| | - Kanako Tago
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Masahito Hayatsu
- Institute for Agro-Environmental Sciences
- National Agriculture and Food Research Organization (NARO)
- Tsukuba 305-8604
- Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido
- Sapporo 062-8517
- Japan
- Graduate School of Agriculture
| |
Collapse
|
26
|
Singh RS, Walia AK. Lectins from red algae and their biomedical potential. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1833-1858. [PMID: 32214665 PMCID: PMC7088393 DOI: 10.1007/s10811-017-1338-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 05/08/2023]
Abstract
Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
27
|
Singh RS, Walia AK, Khattar JS, Singh DP, Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. Int J Biol Macromol 2017; 102:475-496. [PMID: 28437766 DOI: 10.1016/j.ijbiomac.2017.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Lectins are ubiquitous proteins/glycoproteins of non-immune origin that bind reversibly to carbohydrates in non-covalent and highly specific manner. These lectin-glycan interactions could be exploited for establishment of novel therapeutics, targeting the adherence stage of viruses and thus helpful in eliminating wide spread viral infections. Here the review focuses on the haemagglutination activity, carbohydrate specificity and characteristics of cyanobacterial lectins. Cyanobacterial lectins exhibiting high specificity towards mannose or complex glycans have potential role as anti-viral agents. Prospective role of cyanobacterial lectins in targeting various diseases of worldwide concern such as HIV, hepatitis, herpes, influenza and ebola viruses has been discussed extensively. The review also lays emphasis on recent studies involving structural analysis of glycan-lectin interactions which in turn influence their mechanism of action. Altogether, the promising approach of these cyanobacterial lectins provides insight into their use as antiviral agents.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India.
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India
| | | | - Davinder Pal Singh
- Department of Botany, Punjabi University, Patiala 147 002, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science & Technology Institute, Kyrewood House, Tenbury Wells, Worcestershire WR1 8SG, UK
| |
Collapse
|
28
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
29
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
30
|
Singh RS, Walia AK, Kanwar JR. Protozoa lectins and their role in host–pathogen interactions. Biotechnol Adv 2016; 34:1018-1029. [DOI: 10.1016/j.biotechadv.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
|
31
|
Lectin activity in mycelial extracts of Fusarium species. Braz J Microbiol 2016; 47:775-80. [PMID: 27237111 PMCID: PMC4927685 DOI: 10.1016/j.bjm.2016.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age.
Collapse
|
32
|
Singh RS, Kaur HP, Singh J. Purification and characterization of a mycelial mucin specific lectin from Aspergillus panamensis with potent mitogenic and antibacterial activity. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 2015; 16:7802-38. [PMID: 25856678 PMCID: PMC4425051 DOI: 10.3390/ijms16047802] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity.
Collapse
|
34
|
Singh RS, Bhari R, Kaur R. Purification, characterization, and mitogenic potential of a mucin-specific mycelial lectin from Aspergillus sparsus. Appl Biochem Biotechnol 2014; 175:1938-47. [PMID: 25432347 DOI: 10.1007/s12010-014-1419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which is responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Due to their carbohydrate specificity, lectins have been used for purification and characterization of glycoproteins like antibodies, cytokines, tumor-associated glycoproteins, hormones, inhibitors, growth factors, various enzymes, membrane proteins (receptors), or even toxins and viruses. In the present study, a mycelial lectin from Aspergillus sparsus was purified, characterized, and evaluated for its mitogenic potential. Lectin could be effectively purified 17.8-fold in a single-step using affinity chromatography on mucin-sepharose column. Lectin migrated as a single band in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular mass of 100.2 kDa. Lectin showed pH optima of 6.5-8.0, and optimum temperature was determined to be 20-30 °C. Lectin was stable within a pH range of 5.5-10.0 and showed fairly good thermostability. Lectin activity was unaffected in the presence of EDTA, while activity reduced upon interaction with denaturants. MTT assay revealed strong mitogenic potential of A. sparsus lectin at a concentration up to 100 μg/ml.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002, Punjab, India,
| | | | | |
Collapse
|
35
|
Antimicrobial activity and carbohydrate specificity of new mycelial lectins from Fusarium sp. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0449-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Cordara G, Winter HC, Goldstein IJ, Krengel U, Sandvig K. The fungal chimerolectin MOA inhibits protein and DNA synthesis in NIH/3T3 cells and may induce BAX-mediated apoptosis. Biochem Biophys Res Commun 2014; 447:586-9. [PMID: 24747075 DOI: 10.1016/j.bbrc.2014.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 01/23/2023]
Abstract
The Marasmius oreades mushroom agglutinin (MOA) is a blood group B-specific lectin carrying an active proteolytic domain. Its enzymatic activity has recently been shown to be critical for toxicity of MOA toward the fungivorous soil nematode Caenorhabditis elegans. Here we present evidence that MOA also induces cytotoxicity in a cellular model system (murine NIH/3T3 cells), by inhibiting protein synthesis, and that cytotoxicity correlates, at least in part, with proteolytic activity. A peptide-array screen identified the apoptosis mediator BAX as a potential proteolytic substrate and further suggests a variety of bacterial and fungal peptides as potential substrates. These findings are in line with the suggestion that MOA and related proteases may play a role for host defense.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Harry C Winter
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | - Irwin J Goldstein
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | - Ute Krengel
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway; Centre for Cancer Biomedicine, University of Oslo, Norway.
| |
Collapse
|
37
|
|
38
|
Purification and characterization of a thermostable mycelial lectin from basidiomycete Lentinus squarrosulus. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0273-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Abstract
Lectins are natural bioactive ubiquitous proteins or glycoproteins of non-immune response that bind reversibly to glycans of glycoproteins, glycolipids and polysaccharides possessing at least one non-catalytic domain causing agglutination. Some of them consist of several carbohydrate-binding domains which endow them with the properties of cell agglutination or precipitation of glycoconjugates. Lectins are rampant in nature from plants, animals and microorganisms. Among microorganisms, algae are the potent source of lectins with unique properties specifically from red algae. The demand of peculiar and neoteric biologically active substances has intensified the developments on isolation and biomedical applications of new algal lectins. Comprehensively, algal lectins are used in biomedical research for antiviral, antinociceptive, anti-inflammatory, anti-tumor activities, etc. and in pharmaceutics for the fabrication of cost-effective protein expression systems and nutraceutics. In this review, an attempt has been made to collate the information on various biomedical applications of algal lectins.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University , Patiala, Punjab , India and
| | | | | |
Collapse
|
40
|
Singh RS, Walia AK. Microbial lectins and their prospective mitogenic potential. Crit Rev Microbiol 2012; 40:329-47. [DOI: 10.3109/1040841x.2012.733680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Dresch RR, Zanetti GD, Irazoqui FJ, Sendra VG, Zlocowski N, Bernardi A, Rosa RM, Battastini AMO, Henriques AT, Vozári-Hampe MM. Staining tumor cells with biotinylated ACL-I, a lectin isolated from the marine sponge, Axinella corrugata. Biotech Histochem 2012; 88:1-9. [PMID: 22954064 DOI: 10.3109/10520295.2012.717304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Axinella corrugata lectin 1 (ACL-1) was purified from aqueous extracts of the marine sponge, Axinella corrugata. ACL-1 strongly agglutinates native rabbit erythrocytes. The hemagglutination is inhibited by N-acetyl derivatives, particularly N, N', N"-triacetylchitotriose, N-acetyl-D-glucosamine, N-acetyl-D-mannosamine and N-acetyl-D-galactosamine. We investigated the capacity of biotinylated ACL-1 to stain several transformed cell lines including breast (T-47D, MCF7), colon (HT-29), lung (H460), ovary (OVCAR-3) and bladder (T24). ACL-I may bind to both monosaccharides and oligosaccharides of tumor cells, N-acetyl-D-galactosamine, and N-acetyl-D- glucosamine glycan types. The lectins are useful, not only as markers and diagnostic parameters, but also for tissue mapping in suspicious neoplasms. In addition, they provide a better understanding of neoplasms at the cytological and molecular levels. Furthermore, the use of potential metastatic markers such as lectins is crucial for developing successful tools for therapy against cancer. We observed that biotinylated ACL-I stains tumor cells and may hold potential as a probe for identifying transformed cells and for studying glycan structures synthesized by such cells.
Collapse
Affiliation(s)
- R R Dresch
- Postgraduation Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pallarola D, Bildering CV, Pietrasanta LI, Queralto N, Knoll W, Battaglini F, Azzaroni O. Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces. Phys Chem Chem Phys 2012; 14:11027-39. [DOI: 10.1039/c2cp41225j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Singh R, Bhari R, Kaur HP. Characteristics of yeast lectins and their role in cell–cell interactions. Biotechnol Adv 2011; 29:726-31. [DOI: 10.1016/j.biotechadv.2011.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
44
|
Cordara G, Egge-Jacobsen W, Johansen HT, Winter HC, Goldstein IJ, Sandvig K, Krengel U. Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity. Biochem Biophys Res Commun 2011; 408:405-10. [PMID: 21513701 DOI: 10.1016/j.bbrc.2011.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The Marasmius oreades mushroom lectin (MOA) is well known for its exquisite binding specificity for blood group B antigens. In addition to its N-terminal carbohydrate-binding domain, MOA possesses a C-terminal domain with unknown function, which structurally resembles hydrolytic enzymes. Here we show that MOA indeed has catalytic activity. It is a calcium-dependent cysteine protease resembling papain-like cysteine proteases, with Cys215 being the catalytic nucleophile. The possible importance of MOA's proteolytic activity for mushroom defense against pathogens is discussed.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
45
|
Pallarola D, Queralto N, Knoll W, Azzaroni O, Battaglini F. Facile Glycoenzyme Wiring to Electrode Supports by Redox-Active Biosupramolecular Glue. Chemistry 2010; 16:13970-5. [DOI: 10.1002/chem.201001407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
|
47
|
Konkumnerd W, Karnchanatat A, Sangvanich P. A thermostable lectin from the rhizomes of Kaempferia parviflora. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1920-1925. [PMID: 20549650 DOI: 10.1002/jsfa.4033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Kaempferia parviflora, or black galingale (Kra-Chai-Dam), belongs to the Zingiberaceae family and is used as both a food ingredient and a medicinal plant. There are diverse reports on the biological activities of compounds extracted from the plant, such as antimalarial, antifungal and an effective sexual-enhancing role, but not on the lectins. RESULTS A lectin was isolated from the rhizomes of Kaempferia parviflora using affinity chromatography on Concanavalin A followed by gel filtration chromatography on Sephacryl S-100. The molecular weight of the purified lectin was about 41.7 kDa. This lectin showed haemagglutinating activity against erythrocytes from several sources, with the highest level being against those from rabbits. Moreover, the lectin was thermostable, with significant haemagglutinating activity detectable up to 75 degrees C. The results of trypsin digestion and liquid chromatography/tandem mass spectrometry analysis suggested that this protein could be a member of the lectin/endochitnase1 family. CONCLUSION A lectin that showed thermotolerant haemagglutinating activity against erythrocytes from several sources was successfully purified from K. paviflora rhizomes. Peptide sequence analysis indicated that this lectin is similar to lectin/endochitinase 1 (Urtica dioica) or Hevein-like protein (Hevea brasiliensis).
Collapse
Affiliation(s)
- Wichchulada Konkumnerd
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
48
|
Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 2010; 30:99-126. [PMID: 20105049 DOI: 10.3109/07388550903365048] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide-protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immune stimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | |
Collapse
|
49
|
Singh RS, Bhari R, Singh J, Tiwary AK. Purification and characterization of a mucin-binding mycelial lectin from Aspergillus nidulans with potent mitogenic activity. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0488-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Singh RS, Bhari R, Rai J. Further screening of Aspergillus
species for occurrence of lectins and their partial characterization. J Basic Microbiol 2010; 50:90-7. [DOI: 10.1002/jobm.200900299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|