1
|
Li J, Rohs R. Deep DNAshape webserver: prediction and real-time visualization of DNA shape considering extended k-mers. Nucleic Acids Res 2024; 52:W7-W12. [PMID: 38801070 PMCID: PMC11223853 DOI: 10.1093/nar/gkae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Sequence-dependent DNA shape plays an important role in understanding protein-DNA binding mechanisms. High-throughput prediction of DNA shape features has become a valuable tool in the field of protein-DNA recognition, transcription factor-DNA binding specificity, and gene regulation. However, our widely used webserver, DNAshape, relies on statistically summarized pentamer query tables to query DNA shape features. These query tables do not consider flanking regions longer than two base pairs, and acquiring a query table for hexamers or higher-order k-mers is currently still unrealistic due to limitations in achieving sufficient statistical coverage in molecular simulations or structural biology experiments. A recent deep-learning method, Deep DNAshape, can predict DNA shape features at the core of a DNA fragment considering flanking regions of up to seven base pairs, trained on limited simulation data. However, Deep DNAshape is rather complicated to install, and it must run locally compared to the pentamer-based DNAshape webserver, creating a barrier for users. Here, we present the Deep DNAshape webserver, which has the benefits of both methods while being accurate, fast, and accessible to all users. Additional improvements of the webserver include the detection of user input in real time, the ability of interactive visualization tools and different modes of analyses. URL: https://deepdnashape.usc.edu.
Collapse
Affiliation(s)
- Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Li J, Chiu TP, Rohs R. Predicting DNA structure using a deep learning method. Nat Commun 2024; 15:1243. [PMID: 38336958 PMCID: PMC10858265 DOI: 10.1038/s41467-024-45191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA structure, also described as DNA shape, plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k-mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, DNA structural features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing an understanding of the effects of flanking regions on DNA structure in a target region of a sequence. The Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as versatile and powerful tool for diverse DNA structure-related studies.
Collapse
Affiliation(s)
- Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
3
|
Jiang Y, Chiu TP, Mitra R, Rohs R. Probing the role of the protonation state of a minor groove-linker histidine in Exd-Hox-DNA binding. Biophys J 2024; 123:248-259. [PMID: 38130056 PMCID: PMC10808038 DOI: 10.1016/j.bpj.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
DNA recognition and targeting by transcription factors (TFs) through specific binding are fundamental in biological processes. Furthermore, the histidine protonation state at the TF-DNA binding interface can significantly influence the binding mechanism of TF-DNA complexes. Nevertheless, the role of histidine in TF-DNA complexes remains underexplored. Here, we employed all-atom molecular dynamics simulations using AlphaFold2-modeled complexes based on previously solved co-crystal structures to probe the role of the His-12 residue in the Extradenticle (Exd)-Sex combs reduced (Scr)-DNA complex when binding to Scr and Ultrabithorax (Ubx) target sites. Our results demonstrate that the protonation state of histidine notably affected the DNA minor-groove width profile and binding free energy. Examining flanking sequences of various binding affinities derived from SELEX-seq experiments, we analyzed the relationship between binding affinity and specificity. We uncovered how histidine protonation leads to increased binding affinity but can lower specificity. Our findings provide new mechanistic insights into the role of histidine in modulating TF-DNA binding.
Collapse
Affiliation(s)
- Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California; Department of Chemistry, University of Southern California, Los Angeles, California; Department of Physics and Astronomy, University of Southern California, Los Angeles, California; Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, California.
| |
Collapse
|
4
|
Lucia-Tamudo J, Alcamí M, Díaz-Tendero S, Nogueira JJ. One-Electron Oxidation Potentials and Hole Delocalization in Heterogeneous Single-Stranded DNA. Biochemistry 2023; 62:3312-3322. [PMID: 37923303 PMCID: PMC10666269 DOI: 10.1021/acs.biochem.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The study of DNA processes is essential to understand not only its intrinsic biological functions but also its role in many innovative applications. The use of DNA as a nanowire or electrochemical biosensor leads to the need for a deep investigation of the charge transfer process along the strand as well as of the redox properties. In this contribution, the one-electron oxidation potential and the charge delocalization of the hole formed after oxidation are computationally investigated for different heterogeneous single-stranded DNA strands. We have established a two-step protocol: (i) molecular dynamics simulations in the frame of quantum mechanics/molecular mechanics (QM/MM) were performed to sample the conformational space; (ii) energetic properties were then obtained within a QM1/QM2/continuum approach in combination with the Marcus theory over an ensemble of selected geometries. The results reveal that the one-electron oxidation potential in the heterogeneous strands can be seen as a linear combination of that property within the homogeneous strands. In addition, the hole delocalization between different nucleobases is, in general, small, supporting the conclusion of a hopping mechanism for charge transport along the strands. However, charge delocalization becomes more important, and so does the tunneling mechanism contribution, when the reducing power of the nucleobases forming the strand is similar. Moreover, charge delocalization is slightly enhanced when there is a correlation between pairs of some of the interbase coordinates of the strand: twist/shift, twist/slide, shift/slide, and rise/tilt. However, the internal structure of the strand is not the predominant factor for hole delocalization but the specific sequence of nucleotides that compose the strand.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Manuel Alcamí
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Sergio Díaz-Tendero
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
5
|
Li J, Chiu TP, Rohs R. Deep DNAshape: Predicting DNA shape considering extended flanking regions using a deep learning method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563383. [PMID: 37961633 PMCID: PMC10634709 DOI: 10.1101/2023.10.22.563383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA shape plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k -mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, refined DNA shape features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing a deeper understanding of the effects of flanking regions on DNA shape in a target region of a sequence. Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as a versatile and powerful tool for diverse DNA structure-related studies.
Collapse
|
6
|
Molecular dynamics simulation study of DNA conformation changes caused by the dinuclear platinum(II) complexes with the bisphosphonate group. J Inorg Biochem 2023; 243:112179. [PMID: 36989944 DOI: 10.1016/j.jinorgbio.2023.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Bisphosphonate (BP) has been widely used as a bone-targeting group, and the BP-modified platinum(II) complexes have shown potential to as anticancer drugs against bone-related diseases, such as osteosarcoma. DNA conformation changes induced by the BP-modified dinuclear platinum(II) complexes have been investigated using molecular dynamics simulations. The results indicated that the BP-modified dinuclear platinum(II) complexes coordinated to DNA results in DNA structural distortions, including twisting, unwinding and bending. Furthermore, the rigidity of the bridging linkers in the BP-modified platinum(II) complex may induce more significant DNA structural distortions with same spans. The results provide the detail information of DNA conformational changes induced by the BP-modified platinum(II) complexes with different flexibility of bridging linkers, and are helpful for exploring novel platinum-based antitumor drugs.
Collapse
|
7
|
Chiu TP, Li J, Jiang Y, Rohs R. It is in the flanks: Conformational flexibility of transcription factor binding sites. Biophys J 2022; 121:3765-3767. [PMID: 36182667 PMCID: PMC9674972 DOI: 10.1016/j.bpj.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California; Departments of Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, California.
| |
Collapse
|
8
|
Sequence-dependent structural properties of B-DNA: what have we learned in 40 years? Biophys Rev 2021; 13:995-1005. [DOI: 10.1007/s12551-021-00893-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022] Open
|
9
|
Dohnalová H, Lankaš F. Deciphering the mechanical properties of
B‐DNA
duplex. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry University of Chemistry and Technology Prague Praha 6 Czech Republic
| |
Collapse
|
10
|
Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int J Mol Sci 2021; 22:ijms22084093. [PMID: 33920991 PMCID: PMC8071422 DOI: 10.3390/ijms22084093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer–target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer–protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.
Collapse
|
11
|
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35:355-369. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.
Collapse
Affiliation(s)
- Christopher M Topham
- Molecular Forces Consulting, 24 Avenue Jacques Besse, 81500, Lavaur, France.
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| | - Jeremy C Smith
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| |
Collapse
|
12
|
Zheng H, Botos I, Clausse V, Nikolayevskiy H, Rastede E, Fouz M, Mazur S, Appella D. Conformational constraints of cyclopentane peptide nucleic acids facilitate tunable binding to DNA. Nucleic Acids Res 2021; 49:713-725. [PMID: 33406227 PMCID: PMC7826248 DOI: 10.1093/nar/gkaa1249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9-DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Elizabeth E Rastede
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Munira F Fouz
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Alenaizan A, Barnett JL, Hud NV, Sherrill CD, Petrov AS. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs. Nucleic Acids Res 2021; 49:79-89. [PMID: 33300028 PMCID: PMC7797056 DOI: 10.1093/nar/gkaa1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.
Collapse
Affiliation(s)
- Asem Alenaizan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Joshua L Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0765, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
14
|
Li C, Zhao X, Liu W, Yin F, Hu J, Zhang G, Chen G. DNA Structural Distortions Induced by a Monofunctional Trinuclear Platinum Complex with Various Cross-Links Using Molecular Dynamics Simulation. J Chem Inf Model 2020; 60:1700-1708. [PMID: 32096984 DOI: 10.1021/acs.jcim.0c00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The monofunctional trinuclear platinum complex (MTPC), as a promising antitumor agent, can form MTPC-DNA adducts via bifunctional and trifunctional cross-links. Molecular dynamics simulations were used to investigate DNA structural distortions of the MTPC-DNA adducts. MTPC coordinating to DNA results in the decrease of base-pair thermal stability and DNA structural distortions. It is found that there are more significant DNA structural distortions in the trifunctional cross-link than in the bifunctional cross-link, in the 1,4-GG than in the 1,3-GG cross-link, and in the intrastrand than in the interstrand cross-link with the same spans. The results provide a better understanding of DNA structural distortions induced by MTPC with various cross-links at the nucleotide level and are helpful for exploring novel Pt-based anticancer drugs.
Collapse
Affiliation(s)
- Chaoqun Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei province, China
| | - Xiaojia Zhao
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei province, China
| | - Wei Liu
- College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Beijing 100875, China
| | - Fangqian Yin
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei province, China
| | - Junping Hu
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei province, China
| | - Guangjie Zhang
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, 056005 Hebei province, China
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
15
|
Hall BM, Roberts SA, Cordes MHJ. Extreme divergence between one-to-one orthologs: the structure of N15 Cro bound to operator DNA and its relationship to the λ Cro complex. Nucleic Acids Res 2020; 47:7118-7129. [PMID: 31180482 PMCID: PMC6649833 DOI: 10.1093/nar/gkz507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/13/2022] Open
Abstract
The gene cro promotes lytic growth of phages through binding of Cro protein dimers to regulatory DNA sites. Most Cro proteins are one-to-one orthologs, yet their sequence, structure and binding site sequences are quite divergent across lambdoid phages. We report the cocrystal structure of bacteriophage N15 Cro with a symmetric consensus site. We contrast this complex with an orthologous structure from phage λ, which has a dissimilar binding site sequence and a Cro protein that is highly divergent in sequence, dimerization interface and protein fold. The N15 Cro complex has less DNA bending and smaller DNA-induced changes in protein structure. N15 Cro makes fewer direct contacts and hydrogen bonds to bases, relying mostly on water-mediated and Van der Waals contacts to recognize the sequence. The recognition helices of N15 Cro and λ Cro make mostly nonhomologous and nonanalogous contacts. Interface alignment scores show that half-site binding geometries of N15 Cro and λ Cro are less similar to each other than to distantly related CI repressors. Despite this divergence, the Cro family shows several code-like protein–DNA sequence covariations. In some cases, orthologous genes can achieve a similar biological function using very different specific molecular interactions.
Collapse
Affiliation(s)
- Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Sue A Roberts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
16
|
Hancock SP, Cascio D, Johnson RC. Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 2019; 47:8874-8887. [PMID: 31616952 PMCID: PMC7145599 DOI: 10.1093/nar/gkz642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023] Open
Abstract
Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis β-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.
Collapse
MESH Headings
- Allosteric Site
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Binding Sites
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- Crystallography, X-Ray
- DNA Nucleotidyltransferases/chemistry
- DNA Nucleotidyltransferases/genetics
- DNA Nucleotidyltransferases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Factor For Inversion Stimulation Protein/chemistry
- Factor For Inversion Stimulation Protein/genetics
- Factor For Inversion Stimulation Protein/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinational DNA Repair
- Sequence Alignment
- Thermodynamics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Department of Chemistry, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Duilio Cascio
- University of California at Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Lv WL, Arnesano F, Carloni P, Natile G, Rossetti G. Effect of in vivo post-translational modifications of the HMGB1 protein upon binding to platinated DNA: a molecular simulation study. Nucleic Acids Res 2019; 46:11687-11697. [PMID: 30407547 PMCID: PMC6294504 DOI: 10.1093/nar/gky1082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs. Its efficiency is unfortunately severely hampered by resistance. The High Mobility Group Box (HMGB) proteins may sensitize tumor cells to cisplatin by specifically binding to platinated DNA (PtDNA) lesions. In vivo, the HMGB/PtDNA binding is regulated by multisite post-translational modifications (PTMs). The impact of PTMs on the HMGB/PtDNA complex at atomistic level is here investigated by enhanced sampling molecular simulations. The PTMs turn out to affect the structure of the complex, the mobility of several regions (including the platinated site), and the nature of the protein/PtDNA non-covalent interactions. Overall, the multisite PTMs increase significantly the apparent synchrony of all the contacts between the protein and PtDNA. Consequently, the hydrophobic anchoring of the side chain of F37 between the two cross-linked guanines at the platinated site-a key element of the complexes formation - is more stable than in the complex without PTM. These differences can account for the experimentally measured greater affinity for PtDNA of the protein isoforms with PTMs. The collective behavior of multisite PTMs, as revealed here by the synchrony of contacts, may have a general significance for the modulation of intermolecular recognitions occurring in vivo.
Collapse
Affiliation(s)
- Wenping Lyu Lv
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University, 52056 Aachen, Germany.,Computation-Based Science and Technology Research Center, Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari "A. Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52062 Aachen, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Alcolea Palafox M. Effect of the sulfur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs. Biopolymers 2019; 110:e23247. [PMID: 30676643 DOI: 10.1002/bip.23247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
The effect of the sulphur atom on the uracil ring was analyzed in different DNA:RNA microhelixes with three nucleotide base-pairs, including uridine, 2-thiouridine, 4-thiouridine, 2,4-dithiouridine, cytidine, adenosine and guanosine. Distinct backbone and helical parameters were optimized at different density functional (DFT) levels. The Watson-Crick pair with 2-thiouridine appears weaker than with uridine, but its interaction with water molecules appears easier. Two types of microhelixes were found, depending on the H-bond of H2' hydroxyl atom: A-type appears with the ribose ring in 3 E-envelope C3' -endo, and B-type in 2 E-envelope C2' -endo. B-type is less common but it is more stable and with higher dipole-moment. The sulphur atoms significantly increase the dipole-moment of the microhelix, as well as the rise and propeller twist parameters. Simulations with four Na atoms H-bonded to the phosphate groups, and further hydration with explicit water molecules were carried out. A re-definition of the numerical value calculation of several base-pair and base-stacking parameters is suggested.
Collapse
Affiliation(s)
- Mauricio Alcolea Palafox
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Uppuladinne MVN, Sonavane UB, Deka RC, Joshi RR. Structural insight into antisense gapmer-RNA oligomer duplexes through molecular dynamics simulations. J Biomol Struct Dyn 2018; 37:2823-2836. [PMID: 30284504 DOI: 10.1080/07391102.2018.1498390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is an extensive research carrying out on antisense technology and the molecules entering into clinical trials are increasing rapidly. Phosphorothioate (PS) is a chemical modification in which nonbridged oxygen is replaced with a sulfur, consequently providing resistance against nuclease activity. The 2'-4' conformationally restricted nucleoside has the structural features of both 2'-O-methoxy ethyl RNA (MOE), which shows good toxicity profile, and locked nucleic acid (LNA), which shows good binding affinity towards the target RNA. These modifications have been studied and suggested that they can be a potential therapeutic agents in antisense therapy. Mipomersen (ISIS 301012), which contains the novel nucleoside modification has been used to target to apolipoprotein (Apo B), which reduces LDL cholesterol by 6-41%. In this study, classical molecular dynamics (MD) simulations were performed on six different antisense gapmer/target-RNA oligomer duplexes (LNA-PS-LNA/RNA, RcMOE-PS-RcMOE/RNA, ScMOE-PS-ScMOE/RNA, MOE-PS-MOE/RNA, PS-DNA/RNA and DNA/RNA) to investigate the structural dynamics, stability and solvation properties. The LNA, MOE nucleotides present in respective duplexes are showing the structure of A-form and the PS-DNA nucleotides resemble the structure of B-form helix with respect to some of the helical parameters. Free energy calculations suggest that the oligomer, which contains LNA binds to the RNA strongly than other modifications as shown in experimental results. The MOE modified nucleotide, which although had a lower binding affinity but higher solvent accessible surface area (SASA) compared to the other modifications, may be influencing the toxicity and hence may be used it in Mipomersen, the second antisense molecule which is approved by FDA. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mallikarjunachari V N Uppuladinne
- a High Performance Computing - Medical and Bioinformatics Applications Group , Centre for Development of Advanced Computing (C-DAC) , Pune , India
| | - Uddhavesh B Sonavane
- a High Performance Computing - Medical and Bioinformatics Applications Group , Centre for Development of Advanced Computing (C-DAC) , Pune , India
| | - Ramesh Ch Deka
- b Department of Chemical Sciences , Tezpur University , Napaam , Sonitpur , India
| | - Rajendra R Joshi
- a High Performance Computing - Medical and Bioinformatics Applications Group , Centre for Development of Advanced Computing (C-DAC) , Pune , India
| |
Collapse
|
20
|
Kanaan N, Imhof P. Interactions of the DNA Repair Enzyme Human Thymine DNA Glycosylase with Cognate and Noncognate DNA. Biochemistry 2018; 57:5654-5665. [PMID: 30067350 DOI: 10.1021/acs.biochem.8b00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosylases specifically recognize and flip their target base out of the DNA helix into the enzyme's active site. Our simulations show that a partially flipped state, already present in free DNA carrying a T:G mispair, becomes the more probable state compared to the closed state after binding of thymine DNA glycosylase (TDG). Paired thymine (T:A) or methyl-cytosine (mC:G) does not exhibit a partially flipped state in free or complexed DNA. Important enzyme-DNA interactions exhibit significant strength in the intrahelical and extrahelical TDG-DNA complexes. The computed binding free energy differences suggest these interactions account for the stabilization of the partially flipped state, thereby driving the T:G mispair toward base flip. In the fully flipped state, the cognate base thymine is significantly better accommodated in the enzyme's active site than noncognate bases are, suggesting the hydrolysis step as the last of several stages at which base recognition can be achieved.
Collapse
Affiliation(s)
- Natalia Kanaan
- Institute of Theoretical Physics , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| | - Petra Imhof
- Institute of Theoretical Physics , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
21
|
Peters JP, Kowal EA, Pallan PS, Egli M, Maher LJ. Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography. J Biomol Struct Dyn 2018; 36:2753-2772. [PMID: 28818035 PMCID: PMC6251417 DOI: 10.1080/07391102.2017.1369164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leveraging structural biology tools, we report the results of experiments seeking to determine if the different mechanical properties of DNA polymers with base analog substitutions can be attributed, at least in part, to induced changes from classical B-form DNA. The underlying hypothesis is that different inherent bending and twisting flexibilities may characterize non-canonical B-DNA, so that it is inappropriate to interpret mechanical changes caused by base analog substitution as resulting simply from 'electrostatic' or 'base stacking' influences without considering the larger context of altered helical geometry. Circular dichroism spectra of inosine-substituted oligonucleotides and longer base-substituted DNAs in solution indicated non-canonical helical conformations, with the degree of deviation from a standard B-form geometry depending on the number of I⋅C pairs. X-ray diffraction of a highly inosine-substituted DNA decamer crystal (eight I⋅C and two A⋅T pairs) revealed an A-tract-like conformation with a uniformly narrow minor groove, reduced helical rise, and the majority of sugars adopting a C1'-exo (southeastern) conformation. This contrasts with the standard B-DNA geometry with C2'-endo sugar puckers (south conformation). In contrast, the crystal structure of a decamer with only four I⋅C pairs has a geometry similar to that of the reference duplex with eight G⋅C and two A⋅T pairs. The unique crystal geometry of the inosine-rich duplex is noteworthy given its unusual CD signature in solution and the altered mechanical properties of some inosine-containing DNAs.
Collapse
Affiliation(s)
- Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Ewa A. Kowal
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - Pradeep S. Pallan
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, 607 Light Hall, Nashville, TN 37232, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA,To whom correspondence should be addressed at
| |
Collapse
|
22
|
Devi M, Chingbiaknem E, Lyngdoh RHD. A molecular mechanics study on GA codon box translation. J Theor Biol 2018; 441:28-43. [PMID: 29305181 DOI: 10.1016/j.jtbi.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
The GA codon box incorporates the two-fold degeneracy of aspartic acid and of glutamic acid. Using the molecular mechanics approach of the AMBER suite, the four codons of the GA box are paired via H-bonding with two aspartic acid anticodons and two glutamic acid anticodons to yield 8 cognate and 11 non-cognate codon-anticodon duplexes. In addition four select non-cognate duplexes between the GA box codons and three alanine anticodons are also studied. These 23 duplexes display a variety of base-pairing possibilities at the wobble position. Cognate duplexes are differentiated from non-cognate duplexes on the grounds of structure and stability (chiefly the former). The results are in line with Crick's wobble hypothesis, and corroborate the observed reading properties of the aspartic acid anticodons GUC and QUC and of the glutamic acid anticodons CUC and SmnUC.
Collapse
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Esther Chingbiaknem
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R H Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
23
|
Ramaswamy A, Smyrnova D, Froeyen M, Maiti M, Herdewijn P, Ceulemans A. Molecular Dynamics of Double Stranded Xylo-Nucleic Acid. J Chem Theory Comput 2017; 13:5028-5038. [PMID: 28742346 DOI: 10.1021/acs.jctc.7b00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Xylo-nucleic acid (XyloNA) is a synthetic analogue of ribo-nucleic acid (RNA), where the ribose sugar has been replaced by xylose. We present a molecular dynamics study of the conformational evolution of XyloNA double strand oligomers derived from A-RNA through the substitution of β-d-ribofuranose by β-d-xylofuranose and having lengths of 8, 16, and 29 base pairs, using a set of independent all-atom simulations performed at various time scales ranging from 55 to 100 ns, with one long 500 ns simulation of the 29-mer. In order to validate the robustness of XyloNA conformation, a set of simulations using various cutoff distances and solvation box dimensions has also been performed. These independent simulations reveal the uncoiling or elongation of the initial conformation to form an open ladder type transient state conformation and the subsequent formation of a highly flexible duplex with a tendency to coil in a left-handed fashion. The observed open ladder conformation is in line with recently obtained NMR data on the XyloNA 8-mer derived using 5'-d(GUGUACAC)-3'. The observed negative interbase pair twist leads to the observed highly flexible left-handed duplex, which is significantly less rigid than the stable left-handed dXyloNA duplex having a strong negative twist. A comparison between the xylo-analogues of DNA and RNA shows a clear distinction between the helical parameters, with implications for the pairing mechanism.
Collapse
Affiliation(s)
- Amutha Ramaswamy
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry 605014, India
| | - Daryna Smyrnova
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Mathy Froeyen
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Mohitosh Maiti
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Arnout Ceulemans
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
24
|
Pasi M, Zakrzewska K, Maddocks JH, Lavery R. Analyzing DNA curvature and its impact on the ionic environment: application to molecular dynamics simulations of minicircles. Nucleic Acids Res 2017; 45:4269-4277. [PMID: 28180333 PMCID: PMC5397150 DOI: 10.1093/nar/gkx092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
We propose a method for analyzing the magnitude and direction of curvature within nucleic acids, based on the curvilinear helical axis calculated by Curves+. The method is applied to analyzing curvature within minicircles constructed with varying degrees of over- or under-twisting. Using the molecular dynamics trajectories of three different minicircles, we are able to quantify how curvature varies locally both in space and in time. We also analyze how curvature influences the local environment of the minicircles, notably via increased heterogeneity in the ionic distributions surrounding the double helix. The approach we propose has been integrated into Curves+ and the utilities Canal (time trajectory analysis) and Canion (environmental analysis) and can be used to study a wide variety of static and dynamic structural data on nucleic acids.
Collapse
Affiliation(s)
- Marco Pasi
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, France
| | - Krystyna Zakrzewska
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, France
| | - John H Maddocks
- Section de Mathématiques, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Richard Lavery
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, France
| |
Collapse
|
25
|
Parity-dependent hairpin configurations of repetitive DNA sequence promote slippage associated with DNA expansion. Proc Natl Acad Sci U S A 2017; 114:9535-9540. [PMID: 28827328 DOI: 10.1073/pnas.1708691114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repetitive DNA sequences are ubiquitous in life, and changes in the number of repeats often have various physiological and pathological implications. DNA repeats are capable of interchanging between different noncanonical and canonical conformations in a dynamic fashion, causing configurational slippage that often leads to repeat expansion associated with neurological diseases. In this report, we used single-molecule spectroscopy together with biophysical analyses to demonstrate the parity-dependent hairpin structural polymorphism of TGGAA repeat DNA. We found that the DNA adopted two configurations depending on the repeat number parity (even or odd). Transitions between these two configurations were also observed for longer repeats. In addition, the ability to modulate this transition was found to be enhanced by divalent ions. Based on the atomic structure, we propose a local seeding model where the kinked GGA motifs in the stem region of TGGAA repeat DNA act as hot spots to facilitate the transition between the two configurations, which may give rise to disease-associated repeat expansion.
Collapse
|
26
|
Devi M, Lyngdoh RD. Favored and less favored codon–anticodon duplexes arising from the GC codon family box encoding for alanine: some computational perspectives. J Biomol Struct Dyn 2017; 36:1029-1049. [DOI: 10.1080/07391102.2017.1308886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R.H. Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
27
|
Raposo AN, Gomes AJP. Computational 3D Assembling Methods for DNA: A Survey. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:1068-1085. [PMID: 26701896 DOI: 10.1109/tcbb.2015.2510008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA encodes the genetic information of most living beings, except viruses that use RNA. Unlike other types of molecules, DNA is not usually described by its atomic structure being instead usually described by its base-pair sequence, i.e., the textual sequence of its subsidiary molecules known as nucleotides ( adenine (A), cytosine (C), guanine (G), and thymine (T)). The three-dimensional assembling of DNA molecules based on its base-pair sequence has been, for decades, a topic of interest for many research groups all over the world. In this paper, we survey the major methods found in the literature to assemble and visualize DNA molecules from their base-pair sequences. We divided these methods into three categories: predictive methods, adaptive methods, and thermodynamic methods . Predictive methods aim to predict a conformation of the DNA from its base pair sequence, while the goal of adaptive methods is to assemble DNA base-pairs sequences along previously known conformations, as needed in scenarios such as DNA Monte Carlo simulations. Unlike these two geometric methods, thermodynamic methods are energy-based and aim to predict secondary structural motifs of DNA in cases where hydrogen bonds between base pairs might be broken because of temperature changes. We also present the major software tools that implements predictive, adaptive, and thermodynamic methods.
Collapse
|
28
|
Abstract
DNA bending is critical for DNA packaging, recognition, and repair, and occurs toward either the major or the minor groove. The anisotropy of B-DNA groove bending was quantified for eight DNA sequences by free energy simulations employing a novel reaction coordinate. The simulations show that bending toward the major groove is preferred for non-A-tracts while the A-tract has a high tendency of bending toward the minor groove. Persistence lengths were generally larger for bending toward the minor groove, which is thought to originate from differences in groove hydration. While this difference in stiffness is one of the factors determining the overall preference of bending direction, the dominant contribution is shown to be a free energy offset between major and minor groove bending. The data suggests that, for the A-tract, this offset is largely determined by inherent structural properties, while differences in groove hydration play a large role for non-A-tracts. By quantifying the energetics of DNA groove bending and rationalizing the origins of the anisotropy, the calculations provide important new insights into a key biological process.
Collapse
Affiliation(s)
- Ning Ma
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
29
|
Waters JT, Lu XJ, Galindo-Murillo R, Gumbart JC, Kim HD, Cheatham TE, Harvey SC. Transitions of Double-Stranded DNA Between the A- and B-Forms. J Phys Chem B 2016; 120:8449-56. [PMID: 27135262 DOI: 10.1021/acs.jpcb.6b02155] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of double-stranded DNA (dsDNA) is sensitive to solvent conditions. In solution, B-DNA is the favored conformation under physiological conditions, while A-DNA is the form found under low water activity. The A-form is induced locally in some protein-DNA complexes, and repeated transitions between the B- and A-forms have been proposed to generate the forces used to drive dsDNA into viral capsids during genome packaging. Here, we report analyses on previous molecular dynamics (MD) simulations on B-DNA, along with new MD simulations on the transition from A-DNA to B-DNA in solution. We introduce the A-B Index (ABI), a new metric along the A-B continuum, to quantify our results. When A-DNA is placed in an equilibrated solution at physiological ionic strength, there is no energy barrier to the transition to the B-form, which begins within about 1 ns. The transition is essentially complete within 5 ns, although occasionally a stretch of a few base pairs will remain A-like for up to ∼10 ns. A comparison of four sequences with a range of predicted A-phobicities shows that more A-phobic sequences make the transition more rapidly than less A-phobic sequences. Simulations on dsDNA with a region of roughly one turn locked in the A-form allow us to characterize the A/B junction, which has an average bend angle of 20-30°. Fluctuations in this angle occur with characteristic times of about 10 ns.
Collapse
Affiliation(s)
- James T Waters
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah , Salt Lake City, Utah 84112, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, L.S. Skaggs Pharmacy Institute, University of Utah , Salt Lake City, Utah 84112, United States
| | - Stephen C Harvey
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Xue T, Song C, Wang Q, Wang Y, Chen G. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study. PLoS One 2016; 11:e0155105. [PMID: 27153104 PMCID: PMC4859532 DOI: 10.1371/journal.pone.0155105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/25/2016] [Indexed: 11/18/2022] Open
Abstract
The circadian locomotor output cycles kaput (CLOCK), and brain and muscle ARNT-like 1 (BMAL1) proteins are important transcriptional factors of the endogenous circadian clock. The CLOCK and BMAL1 proteins can regulate the transcription-translation activities of the clock-related genes through the DNA binding. The hetero-/homo-dimerization and DNA combination of the CLOCK and BMAL1 proteins play a key role in the positive and negative transcriptional feedback processes. In the present work, we constructed a series of binary and ternary models for the bHLH/bHLH-PAS domains of the CLOCK and BMAL1 proteins, and the DNA molecule, and carried out molecular dynamics simulations, free energy calculations and conformational analysis to explore the interaction properties of the CLOCK and BMAL1 proteins with DNA. The results show that the bHLH domains of CLOCK and BMAL1 can favorably form the heterodimer of the bHLH domains of CLOCK and BMAL1 and the homodimer of the bHLH domains of BMAL1. And both dimers could respectively bind to DNA at its H1-H1 interface. The DNA bindings of the H1 helices in the hetero- and homo-bHLH dimers present the rectangular and diagonal binding modes, respectively. Due to the function of the α-helical forceps in these dimers, the tight gripping of the H1 helices to the major groove of DNA would cause the decrease of interactions at the H1-H2 interfaces in the CLOCK and BMAL1 proteins. The additional PAS domains in the CLOCK and BMAL1 proteins affect insignificantly the interactions of the CLOCK and BMAL1 proteins with the DNA molecule due to the flexible and long loop linkers located at the middle of the PAS and bHLH domains. The present work theoretically explains the interaction mechanisms of the bHLH domains of the CLOCK and BMAL1 proteins with DNA.
Collapse
Affiliation(s)
- Tuo Xue
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Chunnian Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Qing Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Mitra SN, Biswas R, Shi K, Sundaralingam M. Crystal Structure of an RNA Duplex [r(gugcaca)dC](2) with 3'-Dinucleoside Overhangs Forming a Superhelix. J Biomol Struct Dyn 2016; 17 Suppl 1:189-94. [PMID: 22607423 DOI: 10.1080/07391102.2000.10506620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract Crystal structure of the RNA octamer duplex, [r(gugcaca)dC] (2), with space group I2(1)2(1)2(1) and the cell constants a=24.29, b=45.25 and c=73.68Å, has been determined and refined. The structural and packing architecture of the molecule consist of a highly bent six base paired duplex forming a right-handed superhelix stacked in tandem compared to an infinite pseudo- continuous column as is usually present in RNA crystal structures. The super helix could be formed by the head-to-head stacking (g1 over g1 and g9 over g9), the large bend and the twists at the junctions may also be responsible. The sugar-phosphate backbones of the 3'-end dinucleoside overhangs snuggly fit into the minor grooves of adjacent double helical stacks. The 3'-terminal deoxycytidines form antiparallel hemiprotonated trans (C·C)(+) pairs with symmetry related deoxycytidines, while the penultimate adenines form base triples (a*g·c) with the capping g·c base pairs of the hexamer duplex with the adenine (a7) at one end being syn and at the other anti. These triple interactions are the same as those found in the tetrahymena ribozyme and group I intron.
Collapse
Affiliation(s)
- S N Mitra
- a Biological Macromolecular Structure Center, Departments of Chemistry and Biochemistry , The Ohio State University , 012 Rightmire Hall, 1060 Carmack Road , Columbus , OH , 43210
| | | | | | | |
Collapse
|
32
|
Imeddourene AB, Xu X, Zargarian L, Oguey C, Foloppe N, Mauffret O, Hartmann B. The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Res 2016; 44:3432-47. [PMID: 26883628 PMCID: PMC4838374 DOI: 10.1093/nar/gkw084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Xiaoqian Xu
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Department of Life Sciences, East China Normal University, 200062 Shanghai, People's Republic of China
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| |
Collapse
|
33
|
Ben Imeddourene A, Elbahnsi A, Guéroult M, Oguey C, Foloppe N, Hartmann B. Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics. PLoS Comput Biol 2015; 11:e1004631. [PMID: 26657165 PMCID: PMC4689557 DOI: 10.1371/journal.pcbi.1004631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/30/2023] Open
Abstract
The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- Université Pierre et Marie Curie, Paris, France
| | - Ahmad Elbahnsi
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | - Marc Guéroult
- UMR S665, INSERM, Université Paris Diderot, INTS, Paris, France
| | - Christophe Oguey
- LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Brigitte Hartmann
- LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France
- * E-mail: (NF); (BH)
| |
Collapse
|
34
|
Yu H, Mu Y, Nordenskiöld L, Stock G. Influence of Nitroxide Spin Labels on RNA Structure: A Molecular Dynamics Simulation Study. J Chem Theory Comput 2015; 4:1781-7. [PMID: 26620180 DOI: 10.1021/ct800266e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulsed electron double resonance (PELDOR) experiments on oligonucleotides provide a distance ruler that allows the measurement of nanometer distances accurately. The technique requires attachment of nitroxide spin labels to the nucleotides, which may possibly perturb its conformation. To study to what extent nitroxide spin labels may affect RNA structure, all-atom molecular dynamics simulations in explicit solvent are performed for six double-labeled RNA duplexes. A new parametrization of the force field for the nitroxide spin label is developed, which leads to intramolecular distances that are in good agreement with experimental results. Comparison of the results for spin-labeled and unlabeled RNA reveals that the conformational effect of the spin label depends significantly on whether the spin label is attached to the major or the minor groove of RNA. While major-groove spin labeling may to some extent affect the conformation of nearby base pairs, minor-groove spin labeling has the advantage of mostly preserving the RNA conformation.
Collapse
Affiliation(s)
- Hang Yu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| | - Gerhard Stock
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, and Institute of Physical and Theoretical Chemistry, J. W. Goethe University, D-60438 Frankfurt, Germany
| |
Collapse
|
35
|
Zhang X, Tang M, Li F, Zhu Y, Liu C, Zhang W, Wei D. Theoretical study on binding models of copper nucleases containing pyridyl groups to DNA. Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1700-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Yang J, Ramsey SA. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites. Bioinformatics 2015; 31:3445-50. [PMID: 26130577 DOI: 10.1093/bioinformatics/btv391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION The position-weight matrix (PWM) is a useful representation of a transcription factor binding site (TFBS) sequence pattern because the PWM can be estimated from a small number of representative TFBS sequences. However, because the PWM probability model assumes independence between individual nucleotide positions, the PWMs for some TFs poorly discriminate binding sites from non-binding-sites that have similar sequence content. Since the local three-dimensional DNA structure ('shape') is a determinant of TF binding specificity and since DNA shape has a significant sequence-dependence, we combined DNA shape-derived features into a TF-generalized regulatory score and tested whether the score could improve PWM-based discrimination of TFBS from non-binding-sites. RESULTS We compared a traditional PWM model to a model that combines the PWM with a DNA shape feature-based regulatory potential score, for accuracy in detecting binding sites for 75 vertebrate transcription factors. The PWM+shape model was more accurate than the PWM-only model, for 45% of TFs tested, with no significant loss of accuracy for the remaining TFs. AVAILABILITY AND IMPLEMENTATION The shape-based model is available as an open-source R package at that is archived on the GitHub software repository at https://github.com/ramseylab/regshape/. CONTACT stephen.ramsey@oregonstate.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Stephen A Ramsey
- Department of Biomedical Sciences and School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
37
|
D'Alonzo D, Froeyen M, Schepers G, Di Fabio G, Van Aerschot A, Herdewijn P, Palumbo G, Guaragna A. 1',5'-Anhydro-L-ribo-hexitol Adenine Nucleic Acids (α-L-HNA-A): Synthesis and Chiral Selection Properties in the Mirror Image World. J Org Chem 2015; 80:5014-22. [PMID: 25853790 DOI: 10.1021/acs.joc.5b00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and a preliminary investigation of the base pairing properties of (6' → 4')-linked 1',5'-anhydro-L-ribo-hexitol nucleic acids (α-L-HNA) have herein been reported through the study of a model oligoadenylate system in the mirror image world. Despite its considerable preorganization due to the rigidity of the "all equatorial" pyranyl sugar backbone, α-L-HNA represents a versatile informational biopolymer, in view of its capability to cross-communicate with natural and unnatural complements in both enantiomeric forms. This seems the result of an inherent flexibility of the oligonucleotide system, as witnessed by the singular formation of iso- and heterochiral associations composed of regular, enantiomorphic helical structures. The peculiar properties of α-L-HNA (and most generally of the α-HNA system) provide new elements in our understanding of the structural prerequisites ruling the stereoselectivity of the hybridization processes of nucleic acids.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- †Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, 80126 Napoli, Italy
| | - Mathy Froeyen
- ‡Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Guy Schepers
- ‡Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Giovanni Di Fabio
- †Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, 80126 Napoli, Italy
| | - Arthur Van Aerschot
- ‡Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- ‡Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Giovanni Palumbo
- †Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, 80126 Napoli, Italy
| | - Annalisa Guaragna
- †Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia 21, 80126 Napoli, Italy
| |
Collapse
|
38
|
Zhou H, Hintze BJ, Kimsey IJ, Sathyamoorthy B, Yang S, Richardson JS, Al-Hashimi HM. New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey. Nucleic Acids Res 2015; 43:3420-33. [PMID: 25813047 PMCID: PMC4402545 DOI: 10.1093/nar/gkv241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/01/2015] [Indexed: 11/14/2022] Open
Abstract
Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson-Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1'-C1' distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1'-C1' distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5'-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.
Collapse
Affiliation(s)
- Huiqing Zhou
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Bradley J Hintze
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | - Shan Yang
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University, Durham, NC 27710, USA Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Base flip in DNA studied by molecular dynamics simulationsof differently-oxidized forms of methyl-Cytosine. Int J Mol Sci 2014; 15:11799-816. [PMID: 24995694 PMCID: PMC4139815 DOI: 10.3390/ijms150711799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023] Open
Abstract
Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme’s active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized) methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.
Collapse
|
40
|
Savelyev A, MacKerell AD. All-atom polarizable force field for DNA based on the classical Drude oscillator model. J Comput Chem 2014; 35:1219-39. [PMID: 24752978 PMCID: PMC4075971 DOI: 10.1002/jcc.23611] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Presented is a first generation atomistic force field (FF) for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages, and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting quantum mechanical (QM) data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude FF yields stable DNA duplexes on the 100-ns time scale and satisfactorily reproduce (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII substates of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive FF, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA.
Collapse
Affiliation(s)
- Alexey Savelyev
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
41
|
Li C, Wang Y, Wang Y, Chen G. Interaction investigations of HipA binding to HipB dimer and HipB dimer + DNA complex: a molecular dynamics simulation study. J Mol Recognit 2014; 26:556-67. [PMID: 24089363 DOI: 10.1002/jmr.2300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022]
Abstract
We carried out molecular dynamics simulations and free energy calculations for a series of ternary and diplex models for the HipA protein, HipB dimer, and DNA molecule to address the mechanism of HipA sequestration and the binding order of events from apo HipB/HipA to 2HipA + HipB dimer + DNA complex. The results revealed that the combination of DNA with the HipB dimer is energetically favorable for the combination of HipB dimer with HipA protein. The binding of DNA to HipB dimer induces a long-range allosteric communication from the HipB2 -DNA interface to the HipA-HipB2 interface, which involves the closeness of α1 helices of HipB dimer to HipA protein and formations of extra hydrogen bonds in the HipA-HipB2 interface through the extension of α2/3 helices in the HipB dimer. These simulated results suggested that the DNA molecule, as a regulative media, modulates the HipB dimer conformation, consequently increasing the interactions of HipB dimer with the HipA proteins, which explains the mechanism of HipA sequestration reported by the previous experiment. Simultaneously, these simulations also explored that the thermodynamic binding order in a simulated physiological environment, that is, the HipB dimer first bind to DNA to form HipB dimer + DNA complex, then capturing strongly the HipA proteins to form a ternary complex, 2HipA + HipB dimer + DNA, for sequestrating HipA in the nucleoid.
Collapse
Affiliation(s)
- Chaoqun Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | | | | | | |
Collapse
|
42
|
Nagy G, Oostenbrink C. Dihedral-based segment identification and classification of biopolymers II: polynucleotides. J Chem Inf Model 2014; 54:278-88. [PMID: 24364355 PMCID: PMC3904765 DOI: 10.1021/ci400542n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
In an accompanying paper (Nagy, G.;
Oostenbrink, C. Dihedral-based
segment identification and classification of biopolymers I: Proteins. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400541d), we introduce
a new algorithm for structure classification of biopolymeric structures
based on main-chain dihedral angles. The DISICL algorithm (short for
DIhedral-based Segment Identification and CLassification) classifies
segments of structures containing two central residues. Here, we introduce
the DISICL library for polynucleotides, which is based on the dihedral
angles ε, ζ, and χ for the two central residues
of a three-nucleotide segment of a single strand. Seventeen distinct
structural classes are defined for nucleotide structures, some of
which—to our knowledge—were not described previously
in other structure classification algorithms. In particular, DISICL
also classifies noncanonical single-stranded structural elements.
DISICL is applied to databases of DNA and RNA structures containing
80,000 and 180,000 segments, respectively. The classifications according
to DISICL are compared to those of another popular classification
scheme in terms of the amount of classified nucleotides, average occurrence
and length of structural elements, and pairwise matches of the classifications.
While the detailed classification of DISICL adds sensitivity to a
structure analysis, it can be readily reduced to eight simplified
classes providing a more general overview of the secondary structure
in polynucleotides.
Collapse
Affiliation(s)
- Gabor Nagy
- University of Natural Resources and Life Sciences , Institute for Molecular Modeling and Simulation , Muthgasse 18, 1190 Vienna, Austria
| | | |
Collapse
|
43
|
Brzezinska J, Gdaniec Z, Popenda L, Markiewicz WT. Polyaminooligonucleotide: NMR structure of duplex DNA containing a nucleoside with spermine residue, N-[4,9,13-triazatridecan-1-yl]-2'-deoxycytidine. Biochim Biophys Acta Gen Subj 2013; 1840:1163-70. [PMID: 24361616 DOI: 10.1016/j.bbagen.2013.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND The nature of the polyamine-DNA interactions at a molecular level is not clearly understood. METHODS In order to shed light on the binding preferences of polyamine with nucleic acids, the NMR solution structure of the DNA duplex containing covalently bound spermine was determined. RESULTS The structure of 4-N-[4,9,13-triazatridecan-1-yl]-2'-deoxycytidine (dCSp) modified duplex was compared to the structure of the reference duplex. Both duplexes are regular right-handed helices with all attributes of the B-DNA form. The spermine chain which is located in a major groove and points toward the 3' end of the modified strand does not perturb the DNA structure. CONCLUSION In our study the charged polyamine alkyl chain was found to interact with the DNA surface. In the majority of converged structures we identified the presumed hydrogen bonding interactions between O6 and N7 atoms of G4 and the first internal -NH2(+)- amino group. Additional interaction was found between the second internal -NH2(+)- amino group and the oxygen atom of the phosphate of C3 residue. GENERAL SIGNIFICANCE The knowledge of the location and nature of a structure-specific binding site for spermine in DNA should be valuable in understanding gene expression and in the design of new therapeutic drugs.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland.
| | - Lukasz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland
| | - Wojciech T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, PL-61704 Poznan, Poland.
| |
Collapse
|
44
|
Wang X, Li C, Wang Y, Chen G. Interaction of classical platinum agents with the monomeric and dimeric Atox1 proteins: a molecular dynamics simulation study. Int J Mol Sci 2013; 15:75-99. [PMID: 24362578 PMCID: PMC3907799 DOI: 10.3390/ijms15010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023] Open
Abstract
We carried out molecular dynamics simulations and free energy calculations for a series of binary and ternary models of the cisplatin, transplatin and oxaliplatin agents binding to a monomeric Atox1 protein and a dimeric Atox1 protein to investigate their interaction mechanisms. All three platinum agents could respectively combine with the monomeric Atox1 protein and the dimeric Atox1 protein to form a stable binary and ternary complex due to the covalent interaction of the platinum center with the Atox1 protein. The results suggested that the extra interaction from the oxaliplatin ligand-Atox1 protein interface increases its affinity only for the OxaliPt + Atox1 model. The binding of the oxaliplatin agent to the Atox1 protein might cause larger deformation of the protein than those of the cisplatin and transplatin agents due to the larger size of the oxaliplatin ligand. However, the extra interactions to facilitate the stabilities of the ternary CisPt + 2Atox1 and OxaliPt + 2Atox1 models come from the α1 helices and α2-β4 loops of the Atox1 protein-Atox1 protein interface due to the cis conformation of the platinum agents. The combinations of two Atox1 proteins in an asymmetric way in the three ternary models were analyzed. These investigations might provide detailed information for understanding the interaction mechanism of the platinum agents binding to the Atox1 protein in the cytoplasm.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; E-Mails: (X.W.); (C.L.)
| | - Chaoqun Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; E-Mails: (X.W.); (C.L.)
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; E-Mails: (X.W.); (C.L.)
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; E-Mails: (X.W.); (C.L.)
| |
Collapse
|
45
|
Shazman S, Lee H, Socol Y, Mann RS, Honig B. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites. Nucleic Acids Res 2013; 42:D167-71. [PMID: 24271386 PMCID: PMC3965123 DOI: 10.1093/nar/gkt1165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein–DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
Collapse
Affiliation(s)
- Shula Shazman
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA, Department of Life Science, Open University of Israel, Ra'anana 43107, Israel and Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
46
|
Afonso MQL, de Lima LHF, Bleicher L. Residue correlation networks in nuclear receptors reflect functional specialization and the formation of the nematode-specific P-box. BMC Genomics 2013; 14 Suppl 6:S1. [PMID: 24564869 PMCID: PMC3908500 DOI: 10.1186/1471-2164-14-s6-s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Nuclear receptors (NRs) are transcription factors which bind small hormones, whose evolutionary history and the presence of different functional surfaces makes them an interesting target for a correlation based analysis. Results Correlation analysis of ligand binding domains shows that correlated residue subsets arise from the differences between functional sites in different nuclear receptor subfamilies. For the DNA binding domain, particularly, the analysis shows that the main source of correlation comes from residues that regulate hormone response element specificity, and one of the conserved residue sub-sets arises due to the presence of an unusual sequence for the DNA binding motif known as P-box in nematodes, suggesting the existence of different DBD-DNA specificities in nuclear receptors. Conclusions We conclude that DNA specificity and functional surface specialization has independently driven nuclear receptor evolution, and suggest possible binding modes for the class of divergent nuclear receptors in nematodes.
Collapse
|
47
|
Yue H, Yang B, Wang Y, Chen G. Investigations of the binding of [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II) to DNA via various cross-linking modes. Int J Mol Sci 2013; 14:19556-86. [PMID: 24077126 PMCID: PMC3821573 DOI: 10.3390/ijms141019556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/14/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
We have constructed models for a series of platinum-DNA adducts that represent the binding of two agents, [Pt2(DTBPA)Cl2](II) and [Pt2(TPXA)Cl2](II), to DNA via inter- and intra-strand cross-linking, and carried out molecular dynamics simulations and DNA conformational dynamics calculations. The effects of trans- and cis-configurations of the centers of these di-nuclear platinum agents, and of different bridging linkers, have been investigated on the conformational distortions of platinum-DNA adducts formed via inter- and intra-strand cross-links. The results demonstrate that the DNA conformational distortions for the various platinum-DNA adducts with differing cross-linking modes are greatly influenced by the difference between the platinum-platinum distance for the platinum agent and the platinum-bound N7–N7 distance for the DNA molecule, and by the flexibility of the bridging linkers in the platinum agent. However, the effects of trans/cis-configurations of the platinum-centers on the DNA conformational distortions in the platinum-DNA adducts depend on the inter- and intra-strand cross-linking modes. In addition, we discuss the relevance of DNA base motions, including opening, shift and roll, to the changes in the parameters of the DNA major and minor grooves caused by binding of the platinum agent.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Authors to whom correspondence should be addressed; E-Mails: (Y.W.); (G.C.); Tel.: +86-10-5880-5247 (Y.W.); +86-10-5880-5424 (G.C.); Fax: +86-10-5880-2075 (Y.W. & G.C.)
| | - Guangju Chen
- Authors to whom correspondence should be addressed; E-Mails: (Y.W.); (G.C.); Tel.: +86-10-5880-5247 (Y.W.); +86-10-5880-5424 (G.C.); Fax: +86-10-5880-2075 (Y.W. & G.C.)
| |
Collapse
|
48
|
Gao X, Zou T, Mu Z, Qin B, Yang J, Waltersperger S, Wang M, Cui S, Jin Q. Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes. Nucleic Acids Res 2013; 41:10529-41. [PMID: 23985969 PMCID: PMC3905869 DOI: 10.1093/nar/gkt748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
VirB activates transcription of virulence genes in Shigella flexneri by alleviating heat-stable nucleoid-structuring protein-mediated promoter repression. VirB is unrelated to the conventional transcriptional regulators, but homologous to the plasmid partitioning proteins. We determined the crystal structures of VirB HTH domain bound by the cis-acting site containing the inverted repeat, revealing that the VirB-DNA complex is related to ParB-ParS-like complexes, presenting an example that a ParB-like protein acts exclusively in transcriptional regulation. The HTH domain of VirB docks DNA major groove and provides multiple contacts to backbone and bases, in which the only specific base readout is mediated by R167. VirB only recognizes one half site of the inverted repeats containing the most matches to the consensus for VirB binding. The binding of VirB induces DNA conformational changes and introduces a bend at an invariant A-tract segment in the cis-acting site, suggesting a role of DNA remodeling. VirB exhibits positive cooperativity in DNA binding that is contributed by the C-terminal domain facilitating VirB oligomerization. The isolated HTH domain only confers partial DNA specificity. Additional determinants for sequence specificity may reside in N- or C-terminal domains. Collectively, our findings support and extend a previously proposed model for relieving heat-stable nucleoid-structuring protein-mediated repression by VirB.
Collapse
Affiliation(s)
- Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.9 Dong Dan San Tiao, Beijing 100730, P.R. China and PX Beamlines Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mogurampelly S, Nandy B, Netz RR, Maiti PK. Elasticity of DNA and the effect of dendrimer binding. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:68. [PMID: 23807469 DOI: 10.1140/epje/i2013-13068-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 04/15/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double-stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and the end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus γ1 of dsDNA in quantitative agreement with the literature value. The bend angle distribution P(θ) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L(p) of 43nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a charged object such as a dendrimer or protein.
Collapse
Affiliation(s)
- Santosh Mogurampelly
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, 560012, Bangalore, India.
| | | | | | | |
Collapse
|
50
|
Salmon L, Bascom G, Andricioaei I, Al-Hashimi HM. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J Am Chem Soc 2013; 135:5457-66. [PMID: 23473378 DOI: 10.1021/ja400920w] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to modulate alignment and measure multiple independent sets of NMR residual dipolar couplings (RDCs) has made it possible to characterize internal motions in proteins at atomic resolution and with time scale sensitivity ranging from picoseconds up to milliseconds. The application of such methods to the study of RNA dynamics, however, remains fundamentally limited by the inability to modulate alignment and by strong couplings between internal and overall motions that complicate the quantitative interpretation of RDCs. Here, we address this problem by showing that RNA alignment can be generally modulated, in a controlled manner, by variable elongation of A-form helices and that the information contained within the measured RDCs can be extracted even in the presence of strong couplings between motions and overall alignment via structure-based prediction of alignment. Using this approach, four RDC data sets, and a broad conformational pool obtained from a 8.2 μs molecular dynamics simulation, we successfully construct and validate an atomic resolution ensemble of human immunodeficiency virus type I transactivation response element RNA. This ensemble reveals local motions in and around the bulge involving changes in stacking and hydrogen-bonding interactions, which are undetectable by traditional spin relaxation and drive global changes in interhelical orientation. This new approach broadens the scope of using RDCs in characterizing the dynamics of nucleic acids.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|