1
|
Cheng BC, Swink IR, Cheng CT, Corcoran OG, Wang VZ, McClain EJ, Vyas PS, Owen I, Xu C, Altman DT, Yu AK. Comparing the Immune Response to PEEK as an Implant Material with and without P-15 Peptide as Bone Graft Material in a Rabbit Long Bone Model. Bioengineering (Basel) 2024; 11:898. [PMID: 39329640 PMCID: PMC11429239 DOI: 10.3390/bioengineering11090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
P-15 is a 15-amino-acid-long biomimetic peptide widely demonstrated to enhance osteogenesis in vivo. Despite the prevalence of polyether-ether-ketone (PEEK) in interbody device manufacturing, a growing body of evidence suggests it may produce an unfavorable immune response. The purpose of this preliminary study was to characterize the immune response and new bone growth surrounding PEEK implants with and without a P-15 peptide-based osteobiologic. A bilateral femoral defect model was conducted using New Zealand white rabbits. A total of 17 test subjects received one implant in each distal femur, either with or without bone graft material. Animals were allowed to survive to 4 or 8 weeks, at which time the femurs were collected and subjected to micro-computer tomography (microCT) or cytokine analysis. MicroCT analysis included the quantification of bone growth and density surrounding each implant. The cytokine analysis of periprosthetic tissue homogenates included the quantification of interleukins (ILs) and TNF-α expression via ELISA kits. Improvements in bone volume were observed in the P-15 cohort for the regions of interest, 500-136 and 136-0 µm from the implant surface, at 8 weeks post-op. Concentrations of IL-1β, IL-4, and IL-6 cytokines were significantly higher in the P-15 cohort compared to the PEEK cohort at the 4-week timepoint. Significant reductions in the concentrations of IL-4 and IL-6 cytokines from the 4- to 8-week cohort were observed in the P-15 cohort only. The P-15 peptide has the potential to modulate the immune response to implanted materials. We observed improvements in bone growth and a more active micro-environment in the P-15 cohort relative to the PEEK control. This may indicate an earlier transition from the inflammatory to remodeling phase of healing.
Collapse
Affiliation(s)
- Boyle C Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Isaac R Swink
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Cooper T Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Owen G Corcoran
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Vicki Z Wang
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Edward J McClain
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Praveer S Vyas
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Izzy Owen
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Chen Xu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Daniel T Altman
- Department of Orthopedic Surgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Alexander K Yu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA
| |
Collapse
|
2
|
Cheng CT, Vyas PS, McClain EJ, Hoelen TCA, Arts JJC, McLaughlin C, Altman DT, Yu AK, Cheng BC. The Osteogenic Peptide P-15 for Bone Regeneration: A Narrative Review of the Evidence for a Mechanism of Action. Bioengineering (Basel) 2024; 11:599. [PMID: 38927835 PMCID: PMC11200470 DOI: 10.3390/bioengineering11060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration is a complex multicellular process involving the recruitment and attachment of osteoprogenitors and their subsequent differentiation into osteoblasts that deposit extracellular matrixes. There is a growing demand for synthetic bone graft materials that can be used to augment these processes to enhance the healing of bone defects resulting from trauma, disease or surgery. P-15 is a small synthetic peptide that is identical in sequence to the cell-binding domain of type I collagen and has been extensively demonstrated in vitro and in vivo to enhance the adhesion, differentiation and proliferation of stem cells involved in bone formation. These events can be categorized into three phases: attachment, activation and amplification. This narrative review summarizes the large body of preclinical research on P-15 in terms of these phases to describe the mechanism of action by which P-15 improves bone formation. Knowledge of this mechanism of action will help to inform the use of P-15 in clinical practice as well as the development of methods of delivering P-15 that optimize clinical outcomes.
Collapse
Affiliation(s)
- Cooper T. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Praveer S. Vyas
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Edward James McClain
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Thomáy-Claire Ayala Hoelen
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Jacobus Johannes Chris Arts
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Colin McLaughlin
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Daniel T. Altman
- Department of Orthopaedic Surgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Alexander K. Yu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Boyle C. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| |
Collapse
|
3
|
Arnold PM, Vaccaro AR, Sasso RC, Goulet B, Fehlings MG, Heary RF, Janssen ME, Kopjar B. Six-Year Follow-up of a Randomized Controlled Trial of i-FACTOR Peptide-Enhanced Bone Graft Versus Local Autograft in Single-Level Anterior Cervical Discectomy and Fusion. Neurosurgery 2023; 92:725-733. [PMID: 36700705 DOI: 10.1227/neu.0000000000002290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Previous analyses of the US Food and Drug Administration (FDA) Investigational Device Exemption study demonstrated the superiority of i-FACTOR compared with local autograft bone in single-level anterior cervical discectomy and fusion (ACDF) at 12 and 24 months postoperatively in a composite end point of overall success. OBJECTIVE To report the final, 6-year clinical and radiological outcomes of the FDA postapproval study. METHODS Of the original 319 subjects enrolled in the Investigational Device Exemption study, 220 participated in the postapproval study (106 i-FACTOR and 114 control). RESULTS The study met statistical noninferiority success for all 4 coprimary end points. Radiographic fusion was achieved in 99% (103/104) and 98.2% (109/111) in i-FACTOR and local autograft subjects, mean Neck Disability Index improvement from baseline was 28.6 (24.8, 32.3) in the i-FACTOR and 29.2 (25.6, 32.9) in the control group, respectively (noninferiority P < .0001). The neurological success rate at 6 years was 95.9% (70/73) in i-FACTOR subjects and 93.7% (70/75) in local autograft subjects (noninferiority P < .0001). Safety outcomes were similar between the 2 groups. Secondary surgery on the same or different cervical levels occurred in 20/106 (18.9%) i-FACTOR subjects and 23/114 (20.2%) local autograft subjects ( P = .866). Secondary outcomes (pain, SF-36 physical component score and mental component score) in i-FACTOR subjects were similar to those in local autograft subjects. CONCLUSION i-FACTOR met all 4 FDA-mandated noninferiority success criteria and demonstrated safety and efficacy in single-level anterior cervical discectomy and fusion for cervical radiculopathy through 6 years postoperatively. Safety outcomes are acceptable, and the clinical and functional outcomes observed at 12 and 24 months remained at 72 months.
Collapse
Affiliation(s)
| | - Alexander R Vaccaro
- Department of Orthopaedics, Thomas Jefferson University Hospital and Rothman Institute, Philadelphia, Pennsylvania, USA
| | - Rick C Sasso
- Indiana University School of Medicine, Indiana Spine Group, Carmel, Indiana, USA
| | - Benoit Goulet
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Michael G Fehlings
- University of Toronto, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Michael E Janssen
- Spine Education and Research Institute, Center for Spine and Orthopedics, Thornton, Colorado, USA
| | - Branko Kopjar
- Department of Health Services, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Loenen ACY, Connor J, Johnson S, Davis K, Hannigan N, Barnes T, Arts JJ, van Rietbergen B. Peptide Enhanced Bone Graft Substitute Presents Improved Short-Term Increase in Bone Volume and Construct Stiffness Compared to Iliac Crest Autologous Bone in an Ovine Lumbar Interbody Fusion Model. Global Spine J 2022; 12:1330-1337. [PMID: 33406899 PMCID: PMC9393976 DOI: 10.1177/2192568220979839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Preclinical ovine model. OBJECTIVE To assess the in vivo efficacy and safety of the P-15 L bone graft substitute and compare its performance to autologous iliac crest bone graft (ICBG) for lumbar interbody fusion indications. METHODS Thirty skeletally mature sheep underwent lumbar interbody fusion surgery. Half of the sheep received autologous ICBG and the other half the peptide enhanced bone graft substitute (P-15 L). Following termination at 1, 3, and 6 months after surgery, the operated segments were analyzed using micro computed tomography (µCT), histology, and destructive mechanical testing. Additional systemic health monitoring was performed for the P-15 L group. RESULTS One month after surgery, there was only minor evidence of bone remodeling and residual graft material could be clearly observed within the cage. There was active bone remodeling between 1 and 3 months after surgery. At 3 months after surgery significantly denser and stiffer bone was found in the P-15 L group, whereas at 6 months, P-15 L and ICBG gave similar fusion results. The P-15 L bone graft substitute did not have any adverse effects on systemic health. CONCLUSIONS The drug device combination P-15 L was demonstrated to be effective and save for lumbar interbody fusion as evidenced by this ovine model. Compared to autologous ICBG, P-15 L seems to expedite bone formation and remodeling but in the longer-term fusion results were similar.
Collapse
Affiliation(s)
- Arjan C. Y. Loenen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | | | - Jacobus J. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Bert van Rietbergen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Bert van Rietbergen, Department of Biomedical Engineering, Eindhoven University of Technology, Buidling 15, Gemini-Zuid (4.118), PO Box 513, 5600 MB Eindhoven, the Netherlands; Groene Loper, TU Eindhoven, De Rondom 70, 5612AP Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112466. [PMID: 34702541 PMCID: PMC8555702 DOI: 10.1016/j.msec.2021.112466] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/26/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
To induce bone regeneration there is a complex cascade of growth factors. Growth factors such as recombinant BMP-2, BMP-7, and PDGF are FDA-approved therapies in bone regeneration. Although, BMP shows promising results as being an alternative to autograft, it also has its own downfalls. BMP-2 has many adverse effects such as inflammatory complications such as massive soft-tissue swelling that can compromise a patient's airway, ectopic bone formation, and tumor formation. BMP-2 may also be advantageous for patients not willing to give up smoking as it shows bone regeneration success with smokers. BMP-7 is no longer an option for bone regeneration as it has withdrawn off the market. PDGF-BB grafts in studies have shown PDGF had similar fusion rates to autologous grafts and fewer adverse effects. There is also an FDA-approved bioactive molecule for bone regeneration, a peptide P-15. P-15 was found to be effective, safe, and have similar outcomes to autograft at 2 years post-op for cervical radiculopathy due to cervical degenerative disc disease. Growth factors and bioactive molecules show some promising results in bone regeneration, although more research is needed to avoid their adverse effects and learn about the long-term effects of these therapies. There is a need of a bone regeneration method of similar quality of an autograft that is osteoconductive, osteoinductive, and osteogenic. This review covers all FDA-approved bone regeneration therapies such as the "gold standard" autografts, allografts, synthetic bone grafts, and the newer growth factors/bioactive molecules. It also covers international bone grafts not yet approved in the United States and upcoming technologies in bone grafts.
Collapse
Affiliation(s)
- Cassidy E Gillman
- The Doctor of Medicine (M.D.) Program, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ambalangodage C Jayasuriya
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
7
|
Al-Shaer A, Lyons A, Ishikawa Y, Hudson BG, Boudko SP, Forde NR. Sequence-dependent mechanics of collagen reflect its structural and functional organization. Biophys J 2021; 120:4013-4028. [PMID: 34390685 DOI: 10.1016/j.bpj.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023] Open
Abstract
Extracellular matrix mechanics influence diverse cellular functions, yet surprisingly little is known about the mechanical properties of their constituent collagen proteins. In particular, network-forming collagen IV, an integral component of basement membranes, has been far less studied than fibril-forming collagens. A key feature of collagen IV is the presence of interruptions in the triple-helix-defining (Gly-X-Y) sequence along its collagenous domain. Here, we used atomic force microscopy to determine the impact of sequence heterogeneity on the local flexibility of collagen IV and of the fibril-forming collagen III. Our extracted flexibility profile of collagen IV reveals that it possesses highly heterogeneous mechanics, ranging from semiflexible regions as found for fibril-forming collagens to a lengthy region of high flexibility toward its N-terminus. A simple model in which flexibility is dictated only by the presence of interruptions fit the extracted profile reasonably well, providing insight into the alignment of chains and demonstrating that interruptions, particularly when coinciding in multiple chains, significantly enhance local flexibility. To a lesser extent, sequence variations within the triple helix lead to variable flexibility, as seen along the continuously triple-helical collagen III. We found this fibril-forming collagen to possess a high-flexibility region around its matrix-metalloprotease binding site, suggesting a unique mechanical fingerprint of this region that is key for matrix remodeling. Surprisingly, proline content did not correlate with local flexibility in either collagen type. We also found that physiologically relevant changes in pH and chloride concentration did not alter the flexibility of collagen IV, indicating such environmental changes are unlikely to control its compaction during secretion. Although extracellular chloride ions play a role in triggering collagen IV network formation, they do not appear to modulate the structure of its collagenous domain.
Collapse
Affiliation(s)
- Alaa Al-Shaer
- Department of Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Aaron Lyons
- Department of Physics, Burnaby, British Columbia, Canada
| | - Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biochemistry, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee; Department of Cell and Developmental Biology, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Nashville, Tennessee; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Nashville, Tennessee; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biochemistry, Nashville, Tennessee
| | - Nancy R Forde
- Department of Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada; Department of Physics, Burnaby, British Columbia, Canada; Department of Chemistry, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
8
|
Fiani B, Jarrah R, Shields J, Sekhon M. Enhanced biomaterials: systematic review of alternatives to supplement spine fusion including silicon nitride, bioactive glass, amino peptide bone graft, and tantalum. Neurosurg Focus 2021; 50:E10. [PMID: 34062502 DOI: 10.3171/2021.3.focus201044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spinal fusions are among the most common and effective spinal surgical practices; however, the current model presents some cost and safety concerns within the patient population. Therefore, enhanced biomaterials have been presented to be an innovative yet underutilized tool to supplement the success of spinal fusion surgery. Herein, the authors discuss these biomaterials, their compositions, clinical outcomes, and cost analysis through a systematic review of the literature to date. METHODS This systematic review was conducted using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria and guidelines. Article selection was performed using the PubMed electronic bibliographic databases. The search yielded 1168 articles that were assessed and filtered for relevance by the four authors. Following the screening of titles and abstracts, 62 articles were deemed significant enough for final selection. RESULTS To date, silicon nitride, bioactive glass, amino peptide bone grafts, and tantalum are all biomaterials that could have significant roles in supporting spinal fusion. Their unique compositions allow them to be biocompatible in the spine, and their mechanisms of action stimulate osteoblast formation and support fusion success. Moreover, these biomaterials also present positive clinical and cost outcomes that support their application in spinal procedures. However, further studies with longer follow-ups are necessary to fully understand these biomaterials prior to their incorporation in mainstream spinal practice. CONCLUSIONS The combination of their positive clinical outcomes, biocompatibility, and cost-effectiveness makes these biomaterials valuable, innovative, and effective treatment modalities that could revolutionize the current model of spinal fusion.
Collapse
Affiliation(s)
- Brian Fiani
- 1Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California
| | - Ryan Jarrah
- 2College of Arts and Sciences, University of Michigan-Flint
| | - Jennifer Shields
- 3College of Human Medicine, Michigan State University, East Lansing; and
| | - Manraj Sekhon
- 4William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| |
Collapse
|
9
|
Bullock G, Atkinson J, Gentile P, Hatton P, Miller C. Osteogenic Peptides and Attachment Methods Determine Tissue Regeneration in Modified Bone Graft Substitutes. J Funct Biomater 2021; 12:22. [PMID: 33807267 PMCID: PMC8103284 DOI: 10.3390/jfb12020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023] Open
Abstract
The inclusion of biofunctional molecules with synthetic bone graft substitutes has the potential to enhance tissue regeneration during treatment of traumatic bone injuries. The clinical use of growth factors has though been associated with complications, some serious. The use of smaller, active peptides has the potential to overcome these problems and provide a cost-effective, safe route for the manufacture of enhanced bone graft substitutes. This review considers the design of peptide-enhanced bone graft substitutes, and how peptide selection and attachment method determine clinical efficacy. It was determined that covalent attachment may reduce the known risks associated with growth factor-loaded bone graft substitutes, providing a predictable tissue response and greater clinical efficacy. Peptide choice was found to be critical, but even within recognised families of biologically active peptides, the configurations that appeared to most closely mimic the biological molecules involved in natural bone healing processes were most potent. It was concluded that rational, evidence-based design of peptide-enhanced bone graft substitutes offers a pathway to clinical maturity in this highly promising field.
Collapse
Affiliation(s)
- George Bullock
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Joss Atkinson
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Newcastle upon Tyne NE1 7RU, UK;
| | - Paul Hatton
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Cheryl Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| |
Collapse
|
10
|
Zhang W, Ling C, Liu H, Zhang A, Mao L, Wang J, Chao J, Backman LJ, Yao Q, Chen J. Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. CHEMICAL ENGINEERING JOURNAL 2020; 396:125232. [DOI: 10.1016/j.cej.2020.125232] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
11
|
Mohanram Y, Zhang J, Tsiridis E, Yang XB. Comparing bone tissue engineering efficacy of HDPSCs, HBMSCs on 3D biomimetic ABM-P-15 scaffolds in vitro and in vivo. Cytotechnology 2020; 72:715-730. [PMID: 32820463 PMCID: PMC7548016 DOI: 10.1007/s10616-020-00414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.
Collapse
Affiliation(s)
- Yamuna Mohanram
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Jingying Zhang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.,The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, 54124, Thessaloniki, Greece
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
12
|
Turner PR, Murray E, McAdam CJ, McConnell MA, Cabral JD. Peptide Chitosan/Dextran Core/Shell Vascularized 3D Constructs for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32328-32339. [PMID: 32597164 DOI: 10.1021/acsami.0c07212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) bioprinting has emerged to create novel cell-based therapies for regenerative medicine applications. Vascularized networks within engineered constructs are required, and toward this end, we report a promising strategy using core-shell (c/s) extrusion 3D-bioprinting technology that employs biomimetic biomaterials to construct regenerative, prevascularized scaffolds for wound care. A custom-designed cell-responsive bioink consisting of a 13% (w/v) cell-laden gelatin methacryloyl (GelMA) shell surrounding a peptide-functionalized, succinylated chitosan (C)/dextran aldehyde (D) cell-laden core was successfully bioprinted resulting in organized microdesigns exhibiting excellent cell viability and subsequent vessel formation. Our templating strategy takes advantage of GelMA's intrinsic thermoreversible properties of low degree of acryloyl functionalization used in combination with a lightly, chemically cross-linked peptide-CD core to serve as temporal structural supports that stabilize during extrusion onto a cooled platform. Mechanical integrity was further strengthened layer-by-layer via GelMA UV photo-cross-linking. We report the first example of GelMA used in combination with a peptide-CD bioink to c/s 3D-bioprint regenerative, prevascularized constructs for wound care. Particular cell adhesion and proteolytic peptide-CD functionalized pair combinations, P15/MMP-2 and P15/cRGD, were found to significantly increase growth of human bone-marrow-derived mesenchymal stems cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs). The constructs delivered two cell types: hBMSCs in the shell bioink and HUVECs within the core bioink. Cord-like, natural microvascularization was shown with endothelial cell marker expression as confirmed by immunofluorescence (IF) staining exhibiting tubelike structures. In addition, in vitro skin wound healing activity of the construct showed a ∼twofold rate of wound closure. Overall, c/s 3D-bioprinted, peptide-CD/GelMA constructs provided the appropriate microenvironment for in vitro stem and endothelial cell viability, delivery, and differentiation. We foresee these custom constructs as representing a fundamental step toward engineering larger scale regenerative, prevascularized tissues.
Collapse
Affiliation(s)
- Paul R Turner
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Eoin Murray
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - C John McAdam
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Michelle A McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Jaydee D Cabral
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
- Department of Food Science, Centre of Bioengineering & Nanomedicine, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
13
|
Fu L, Omi M, Sun M, Cheng B, Mao G, Liu T, Mendonça G, Averick SE, Mishina Y, Matyjaszewski K. Covalent Attachment of P15 Peptide to Ti Alloy Surface Modified with Polymer to Enhance Osseointegration of Implants. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38531-38536. [PMID: 31599570 PMCID: PMC6993989 DOI: 10.1021/acsami.9b14651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Titanium (Ti) and its alloys are used in orthopedic and dental implants due to their excellent physical properties and biocompatibility. Although Ti exhibits superior osteoconductive properties compared to those of polymer-based implants, improved bone-on growth properties are required for enhanced surgical outcomes and improved recovery surgical interventions. Herein, we demonstrate a novel surface modification strategy to enhance the osteoconductivity of Ti surfaces through the grafting-from procedure of a reactive copolymer via surface-initiated atom transfer radical polymerization (SI-ATRP). Then, postpolymerization conjugation of the P15 peptide, an osteoblast binding motif, was successfully carried out. Subsequent in vitro studies revealed that the surface modification promoted osteoblast attachment on the Ti discs at 6 and 24 h. Moreover, mineral matrix deposition by osteoblasts was greater for the surface-modified Ti than for plain Ti and P15 randomly absorbed onto the Ti surface. These results suggest that the strategy for postpolymerization incorporation of P15 onto a Ti surface with a polymer interface may provide improved osseointegration outcomes, leading to enhanced quality of life for patients.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maiko Omi
- Department of Biologic and Materials Sciences & Prothodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Boyle Cheng
- Neuroscience Disruptive Research Lab, Allegheny Health Network, 320 East North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Gordon Mao
- Neuroscience Disruptive Research Lab, Allegheny Health Network, 320 East North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prothodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Saadyah E. Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network, 320 East North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prothodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Arnold PM, Sasso RC, Janssen ME, Fehlings MG, Heary RF, Vaccaro AR, Kopjar B. i-Factor™ Bone Graft vs Autograft in Anterior Cervical Discectomy and Fusion: 2-Year Follow-up of the Randomized Single-Blinded Food and Drug Administration Investigational Device Exemption Study. Neurosurgery 2019; 83:377-384. [PMID: 28945914 DOI: 10.1093/neuros/nyx432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/09/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND i-Factor™ Bone Graft (Cerapedics Inc, Westminster, Colorado) is a composite bone substitute material consisting of P-15 synthetic collagen fragment adsorbed onto anorganic bone mineral suspended in an inert biocompatible hydrogel carrier. A pivotal, noninferiority, US FDA Investigational Device Exemption study demonstrated the benefits of i-Factor™ compared to local autograft bone in single-level anterior cervical discectomy and fusion at 1-yr postoperative. OBJECTIVE To report 2-yr follow-up. METHODS Subjects randomly received either autograft (n = 154) or i-Factor™ (n = 165) in a cortical ring allograft and followed using radiological, clinical, and patient-reported outcomes. RESULTS At 2 yr, the fusion rate was 97.30% and 94.44% in i-Factor™ and autograft subjects, respectively (P = .2513), and neurological success rate was 94.87% (i-Factor™) and 93.79% (autograft; P = .7869). Neck Disability Index improved 28.30 (i-Factor™) and 26.95 (autograft; P = .1448); Visual Analog Scale arm pain improved 5.43 (i-Factor™) and 4.97 (autograft) (p = .2763); Visual Analog Scale neck pain improved 4.78 (i-Factor™) and 4.41 (autograft; P = .1652), Short Form-36 (SF-36v2) Physical Component Score improved 10.23 (i-Factor™) and 10.18 (autograft; P = .4507), and SF36v2 Mental Component Score improved 7.88 (i-FactorTM) and 7.53 (autograft; P = .9872). The composite endpoint of overall success (fusion, Neck Disability Index improvement >15, neurological success, and absence of re-operations) was greater in i-Factor™ subjects compared to autograft subjects (69.83% and 56.35%, respectively, P = .0302). Twelve (7.45%) i-Factor™ subjects and 16 (10.53%) autograft subjects underwent re-operation (P = .3411). There were no allergic reactions associated with i-Factor™. CONCLUSION Use of i-Factor™ in anterior cervical discectomy and fusion is effective and safe, and results in similar outcomes compared to local autograft bone at 2 yr following surgery.
Collapse
Affiliation(s)
- Paul M Arnold
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Michael G Fehlings
- Department of Neurosurgery, University of Toronto, The Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Robert F Heary
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Alexander R Vaccaro
- Rothman Institute Orthopaedics, Thomas Jefferson University Hospital, Philadelphia Pennsylvania
| | - Branko Kopjar
- Department of Health Services, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Axelsen MG, Overgaard S, Jespersen SM, Ding M. Comparison of synthetic bone graft ABM/P-15 and allograft on uninstrumented posterior lumbar spine fusion in sheep. J Orthop Surg Res 2019; 14:2. [PMID: 30606209 PMCID: PMC6318885 DOI: 10.1186/s13018-018-1042-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Spinal fusion is a commonly used procedure in spinal surgery. To ensure stable fusion, bone graft materials are used. ABM/P-15 (commercial name i-Factor™ Flex) is an available synthetic bone graft material that has CE approval in Europe. This peptide has been shown to improve bone formation when used in devices with fixation or on bone defects. However, the lack of external stability and large graft size make posterolateral lumbar fusion (PLF) a most challenging grafting procedure. This prospective randomized study was designed to evaluate early spinal fusion rates using an anorganic bovine-derived hydroxyapatite matrix (ABM) combined with a synthetic 15 amino acid sequence (P-15)-ABM/P-15 bone graft, and compared with allograft in an uninstrumented PLF model in sheep. The objective of this study was to assess fusion rates when using ABM/P-15 in uninstrumented posterolateral fusion in sheep. METHODS Twelve Texas/Gotland mixed breed sheep underwent open PLF at 2 levels L2/L3 and L4/L5 without fixation instruments. The levels were randomized so that sheep received an ABM graft either with or without P15 coating. Sheep were euthanized after 4.5 months and levels were harvested and evaluated with a micro-CT scanner and qualitative histology. Fusion rates were assessed by 2D sections and 3D reconstruction images and fusion was defined as intertransverse bridging. RESULTS There was 68% fusion rate in the allograft group and an extensive migration of graft material was noticed with a fusion rate of just 37% in the ABM/P-15 group. Qualitative histology showed positive osteointegration of the material and good correlation to scanning results. CONCLUSIONS In this PLF fusion model, ABM/P15 demonstrated the ability to migrate when lacking external stability. Due to this migration, reported fusion rates were significantly lower than in the allograft group. The use of ABM/P15 as i-Factor™ Flex may be limited to devices with fixation and bone defects.
Collapse
Affiliation(s)
- Martin G Axelsen
- Department of Orthopedic Surgery & Traumatology, Orthopaedic Research Laboratory, Odense University Hospital, J.B. Winsloewsvej 15, 3rd floor, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark
| | - Søren Overgaard
- Department of Orthopedic Surgery & Traumatology, Orthopaedic Research Laboratory, Odense University Hospital, J.B. Winsloewsvej 15, 3rd floor, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark
| | - Stig M Jespersen
- Department of Orthopedic Surgery & Traumatology, Orthopaedic Research Laboratory, Odense University Hospital, J.B. Winsloewsvej 15, 3rd floor, 5000, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark
| | - Ming Ding
- Department of Orthopedic Surgery & Traumatology, Orthopaedic Research Laboratory, Odense University Hospital, J.B. Winsloewsvej 15, 3rd floor, 5000, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
16
|
Abjornson C, Brecevich A, Callanan T, Dowe C, Cammisa FP, Lorio MP. ISASS Recommendations and Coverage Criteria for Bone Graft Substitutes used in Spinal Surgery. Int J Spine Surg 2018; 12:757-771. [PMID: 30619681 DOI: 10.14444/5095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autologous bone graft remains the gold standard by which bone graft substitutes are compared in spine fusion surgery. The utilization of bone graft substitutes, either as (1) an extender for spinal fusion constructs or (2) an alternative to minimize morbidity while maximizing outcomes, is changing. Moreover, current procedures technology (CPT) code 20939 became effective in 2018 defining bone marrow aspirate for bone grafting, spine surgery only. Changes in the complex landscape of grafting materials have prompted ISASS to provide category guidance for bone graft substitutes by comparing and contrasting US regulatory pathways, mechanisms of action, and supportive clinical evidence for these bone grafting materials.
Collapse
|
17
|
Wang G, Man Z, Xin H, Li Y, Wu C, Sun S. Enhanced adhesion and proliferation of bone marrow mesenchymal stem cells on β‑tricalcium phosphate modified by an affinity peptide. Mol Med Rep 2018; 19:375-381. [PMID: 30431109 PMCID: PMC6297790 DOI: 10.3892/mmr.2018.9655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are often used in orthopedic tissue engineering, and bone marrow-derived mesenchymal stem cells (BMSCs) are currently considered the gold standard. One of the most important issues in MSC-based tissue engineering therapy is the low number of MSCs in pathological tissues. Achieving efficient recruitment of MSCs to defective or damaged tissues in vivo has been a difficult hurdle. The aim of the present study was to construct a biomaterial that can effectively recruit BMSCs to facilitate the repair of pathological tissues. So functional β-tricalcium phosphate (β-TCP) was synthesized using the BMSC affinity peptide DPIYALSWSGMA (DPI) adsorbed onto β-TCP through an adsorption/freeze-drying strategy. C57BL/6 mouse-derived BMSCs were seeded onto the DPI peptide-modified β-TCP (β-TCP-DPI); in vitro experiments demonstrated that β-TCP-DPI enhanced BMSC adhesion and proliferation compared with unmodified β-TCP. Results from the present study indicated that functional β-TCP may be used as an ideal scaffold in tissue engineering and in regenerative medicine.
Collapse
Affiliation(s)
- Guozong Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hua Xin
- Department of Neurology, People's Hospital of Rizhao, Rizhao, Shandong 222000, P.R. China
| | - Yi Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changshun Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
18
|
Oxborrow N, Sundarapandian R. Heterotopic ossification following use of i-Factor for spinal fusion in Mucopolysaccharidosis 1: a case report. J Surg Case Rep 2018; 2018:rjy120. [PMID: 29977512 PMCID: PMC6007486 DOI: 10.1093/jscr/rjy120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Mucopolysaccharidosis is a rare group of genetic disorder which results in a complex of anomalies involving various systems. In Mucopolysaccharidosis 1 progressive thoracolumbar kyphosis is a common presentation which can result in instability and neurological deficit. Posterior spinal surgery is performed to correct deformity and obtain spinal fusion. Peptide enhanced bone graft substitute (i-FactorTM) is relatively a new component with proven efficacy to obtain early spinal fusion. An 8-year-old child with progressive high lumbar kyphosis due to Mucopolysaccharidosis 1 was admitted for Posterior spinal fusion with i-Factor bone graft substitute. Postoperatively patient had serous discharge from the wound which settled without intervention. A month after the surgery spinal radiographs revealed heterotopic ossification at the distal end of spinal construct in the paraspinal region. Patient remained asymptomatic and clinically well.
Collapse
Affiliation(s)
- Neil Oxborrow
- Royal Manchester Children's Hospital, Oxford Road, Manchester, UK
| | | |
Collapse
|
19
|
Shayegan M, Altindal T, Kiefl E, Forde NR. Intact Telopeptides Enhance Interactions between Collagens. Biophys J 2017; 111:2404-2416. [PMID: 27926842 DOI: 10.1016/j.bpj.2016.10.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023] Open
Abstract
Collagen is the fundamental structural component of a wide range of connective tissues and of the extracellular matrix. It undergoes self-assembly from individual triple-helical proteins into well-ordered fibrils, a process that is key to tissue development and homeostasis, and to processes such as wound healing. Nucleation of this assembly is known to be slowed considerably by pepsin removal of short nonhelical regions that flank collagen's triple helix, known as telopeptides. Using optical tweezers to perform microrheology measurements, we explored the changes in viscoelasticity of solutions of collagen with and without intact telopeptides. Our experiments reveal that intact telopeptides contribute a significant frequency-dependent enhancement of the complex shear modulus. An analytical model of polymers associating to establish chemical equilibrium among higher-order species shows trends in G' and G″ consistent with our experimental observations, including a concentration-dependent crossover in G″/c around 300 Hz. This work suggests that telopeptides facilitate transient intermolecular interactions between collagen proteins, even in the acidic conditions used here.
Collapse
Affiliation(s)
- Marjan Shayegan
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Evan Kiefl
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nancy R Forde
- Department of Chemistry, Simon Fraser University, Burnaby, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Department of Physics, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
20
|
Yang W, Li L, Su G, Zhang Z, Cao Y, Li X, Shi Y, Zhang Q. A collagen telopeptide binding peptide shows potential in aiding collagen bundle formation and fibril orientation. Biomater Sci 2017. [DOI: 10.1039/c6bm00574h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double-armed CTBP-PEG-CTBP derivative of a collagen telopeptide binding peptide (CTBP), shows potential in aiding collagen bundle formation and fibril orientation by interacting with fibrils.
Collapse
Affiliation(s)
- Wenyu Yang
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Lin Li
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Guanghao Su
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Zhe Zhang
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Yiting Cao
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Xuemin Li
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| | - Yanping Shi
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin
- PR China
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material of Tianjin
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Tianjin
| |
Collapse
|
21
|
Wang Z, Chen L, Wang Y, Chen X, Zhang P. Improved Cell Adhesion and Osteogenesis of op-HA/PLGA Composite by Poly(dopamine)-Assisted Immobilization of Collagen Mimetic Peptide and Osteogenic Growth Peptide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26559-26569. [PMID: 27649958 DOI: 10.1021/acsami.6b08733] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A nanocomposite of poly(lactide-co-glycolide) (PLGA) and hydroxyapatite (HA) with a different grafting ratio of l-lactic acid oligomer (op-HA) showed better interface compatibility, mineralization, and osteogenetic abilities. However, surface modification of the composite is crucial to improve the osteointegration for bone regeneration. In this study, a biomimetic process via poly(dopamine) coating was utilized to prepare functional substrate surfaces with immobilized bioactive peptides that efficiently regulate the osteogenic differentiation of preosteoblasts (MC3T3-E1). Our study demonstrated that incorporation of collagen mimetic peptide significantly enhanced cell adhesion and proliferation. The immobilization of osteogenic growth peptide induced the osteodifferentiation of cells, as indicated by the alkaline phosphate activity test, quantitative real-time polymerase chain reaction analysis, and immunofluorescence staining. The mineralization on the peptide-modified substrates was also enhanced greatly. Findings from this study revealed that this biofunctionalized layer on op-HA/PLGA substrate improved mineralization and osteogenic differentiation. In conclusion, the surface modification strategy with bioactive peptides shows potential to enhance the osteointegration of bone implants.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | - Li Chen
- School of Pharmaceutical Sciences, Jilin University , Changchun 130021, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, PR China
| |
Collapse
|
22
|
Efficacy of i-Factor Bone Graft versus Autograft in Anterior Cervical Discectomy and Fusion: Results of the Prospective, Randomized, Single-blinded Food and Drug Administration Investigational Device Exemption Study. Spine (Phila Pa 1976) 2016; 41:1075-1083. [PMID: 26825787 DOI: 10.1097/brs.0000000000001466] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective, randomized, controlled, parallel, single-blinded noninferiority multicenter pivotal FDA IDE trial. OBJECTIVE The objective of this study was to investigate efficacy and safety of i-Factor Bone Graft (i-Factor) compared with local autograft in single-level anterior cervical discectomy and fusion (ACDF) for cervical radiculopathy. SUMMARY OF BACKGROUND DATA i-Factor is a composite bone substitute material consisting of the P-15 synthetic collagen fragment adsorbed onto anorganic bone mineral and suspended in an inert biocompatible hydrogel carrier. P-15 has demonstrated bone healing efficacy in dental, orthopedic, and nonhuman applications. METHODS Patients randomly received either autograft (N = 154) or i-Factor (N = 165) in a cortical ring allograft. Study success was defined as noninferiority in fusion, Neck Disability Index (NDI), and Neurological Success endpoints, and similar adverse events profile at 12 months. RESULTS At 12 months (follow-up rate 87%), both i-Factor and autograft subjects demonstrated a high fusion rate (88.97% and 85.82%, respectively, noninferiority P = 0.0004), significant improvements in NDI (28.75 and 27.40, respectively, noninferiority P < 0.0001), and high Neurological Success rate (93.71% and 93.01%, respectively, noninferiority P < 0.0001). There was no difference in the rate of adverse events (83.64% and 82.47% in the i-Factor and autograft groups, respectively, P = 0.8814). Overall success rate consisting of fusion, NDI, Neurological Success and Safety Success was higher in i-Factor subjects than in autograft subjects (68.75% and 56.94%, respectively, P = 0.0382). Improvements in VAS pain and SF-36v2 scores were clinically relevant and similar between the groups. A high proportion of patients reported good or excellent Odom outcomes (81.4% in both groups). CONCLUSION i-Factor has met all four FDA mandated noninferiority success criteria and has demonstrated safety and efficacy in single-level ACDF for cervical radiculopathy. i-Factor and autograft groups demonstrated significant postsurgical improvement and high fusion rates. LEVEL OF EVIDENCE 1.
Collapse
|
23
|
Tonniges JR, Albert B, Calomeni EP, Roy S, Lee J, Mo X, Cole SE, Agarwal G. Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:599-611. [PMID: 27329311 PMCID: PMC5174982 DOI: 10.1017/s1431927616000787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson's trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.
Collapse
Affiliation(s)
- Jeffrey R. Tonniges
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Albert
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
| | - Edward P. Calomeni
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Shuvro Roy
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Joan Lee
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Susan E. Cole
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Gunjan Agarwal
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
- David Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Schmitt CM, Koepple M, Moest T, Neumann K, Weisel T, Schlegel KA. In vivo evaluation of biofunctionalized implant surfaces with a synthetic peptide (P-15) and its impact on osseointegration. A preclinical animal study. Clin Oral Implants Res 2015; 27:1339-1348. [PMID: 26567087 DOI: 10.1111/clr.12723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The overall aim of the study was to investigate a biofunctionalized implant surface with electrochemically deposition of hydroxyapatite and the synthetic peptide (P-15) and its effect on osseointegration. MATERIAL AND METHODS Three modified implant types of ANKYLOS® C/X implants were used; (1) machined implants used as negative control (M, n = 20), (2) implants with the FRIADENT® plus surface (grit blasted and acid-etched) used as positive control (P, n = 20), and (3) implants with a biomimetic surface consisting of hydroxyapatite and the synthetic 15 aminoacids containing peptide P-15 (BP, n = 40). The implants were randomly inserted in the mandibles of 10 beagle dogs following 4 months after tooth extraction (P1-P4). Three animals were sacrificed 2 and 7 days after implant insertion, respectively, and four animals were sacrificed 6 months post implant insertion. Bone-to-implant contacts (BICs) were analyzed via histomorphometrical analyses at five different region of interests (ROIs); two at the middle part on either side of the implant (ROI 1/4), two at the apical part of the implant at each side (ROI 2/3), and one at the tip of the implant (ROI 5). RESULTS All implant surfaces showed a high level of osseointegration and osteoconductivity. The cumulative implant survival rate (CSR) was 93.8%, 100% in the M, 85% in the P, and 95% in the BP group. No statistical difference in BICs at ROI 1/4, 2/3, and 5 could be shown between implant types following 2 and 7 days of healing. BIC values increased in all groups over time. After 6 months of healing the BP group showed superiority in BIC in ROI 2/3 (73.2 ± 15.6%) compared to the P (48.3 ± 10.6%) and M group (66.3 ± 30.2%) with a significant difference between BP and P (P = 0.002). CONCLUSION It is hypothesized, that the surface biofunctionalization improves peri-implant bone formation and remodeling, leading to an increased bone-to implant contact. However, within the limitations of the study set-up no benefit in the early phase of osseointegration could be established for dental implants with P-15 containing surface in this study.
Collapse
Affiliation(s)
- Christian M Schmitt
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Markus Koepple
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Moest
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Konrad Neumann
- Institute of Medical Biometrics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Karl Andreas Schlegel
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
25
|
Nonhoff J, Moest T, Schmitt CM, Weisel T, Bauer S, Schlegel KA. Establishment of a new pull-out strength testing method to quantify early osseointegration-An experimental pilot study. J Craniomaxillofac Surg 2015; 43:1966-73. [PMID: 26616405 DOI: 10.1016/j.jcms.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The animal study aims to evaluate a new experimental model for measuring sole the influence of the surface characteristics independent from implant macro-design on the level of osseointegration by registering the pull-out strength needed for removal of experimental devices with different surfaces from artificial defects. MATERIAL AND METHODS Seventy-two test bodies (36 with the FRIADENT(®) plus surface, 36 with the P15/HAp biofunctionalized surface) were inserted in six adult domestic pigs with artificial calvarial defects. The experimental devices were designed to fit in the defects leaving a gap between the test body and the local bone. After 21 days of healing, the animals were sacrificed and the test bodies were pulled out with a standardised reproducible pull-out device measuring the pull-out strength. The pull-out strength for both groups was compared. RESULTS Twenty-one days after insertion a mean force of 412 ± 142 N for the P15/HAp group and 183 ± 105 N for the FRIADENT(®) plus group was measured for the removal of the specimens from the calvarial bone. The difference between the groups was statistically significant (p < 0.0001). CONCLUSION The experimental set-up seems to be a suitable method when measuring the impact of implant surfaces on the early stage of osseointegration.
Collapse
Affiliation(s)
- J Nonhoff
- DENTSPLY Implants Manufacturing GmbH, Mannheim, Germany
| | - T Moest
- Department of Oral and Maxillofacial Surgery, University of Erlangen, Nuremberg, Erlangen, Germany.
| | - Christian Martin Schmitt
- Department of Oral and Maxillofacial Surgery, University of Erlangen, Nuremberg, Erlangen, Germany
| | - T Weisel
- DENTSPLY Implants Manufacturing GmbH, Mannheim, Germany
| | - S Bauer
- DENTSPLY Implants Manufacturing GmbH, Mannheim, Germany
| | - K A Schlegel
- Department of Oral and Maxillofacial Surgery, University of Erlangen, Nuremberg, Erlangen, Germany
| |
Collapse
|
26
|
Choi AH, Ben-Nissan B. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging. Nanomedicine (Lond) 2015; 10:2249-61. [PMID: 26119630 DOI: 10.2217/nnm.15.57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of materials have been applied as implant coatings and as tissue regeneration materials. Calcium phosphate holds a special consideration, due to its chemical similarity to human bone and, most importantly, its dissolution characteristics, which allow for bone growth and regeneration. The applications of molecular and nanoscale-based biological materials have been and will continue to play an ever increasing role in enhancing and improving the osseointegration of dental and orthopedic implants. More recently, extensive research efforts have been focused on the development and applications of fluorescent nanoparticles and nanocoatings for in vivo imaging and diagnostics as well as devising methods of adding luminescent or fluorescent capabilities to enhance the in vivo functionality of calcium phosphate-based biomedical materials.
Collapse
Affiliation(s)
- Andy H Choi
- Faculty of Science, University of Technology, Sydney, NSW, Australia
| | - Besim Ben-Nissan
- Faculty of Science, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
27
|
Li X, Contreras-Garcia A, LoVetri K, Yakandawala N, Wertheimer MR, De Crescenzo G, Hoemann CD. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces. J Biomed Mater Res A 2015; 103:3736-46. [DOI: 10.1002/jbm.a.35511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Xian Li
- Department of Chemical Engineering; École Polytechnique; Montréal Quebec Canada H3C 3A7
- Biomedical Sciences and Technology Research Group/Groupe de Recherche Sciences et Technologies Biomedicales (GRSTB), École Polytechnique; Montréal Quebec Canada H3C 3A7
| | | | - Karen LoVetri
- Kane Biotech Inc.; 162-196 Innovation Drive Winnipeg Manitoba Canada R3T 2N2
| | | | - Michael R. Wertheimer
- Department of Engineering Physics; École Polytechnique; Montréal Quebec Canada H3C 3A7
| | - Gregory De Crescenzo
- Department of Chemical Engineering; École Polytechnique; Montréal Quebec Canada H3C 3A7
- Biomedical Sciences and Technology Research Group/Groupe de Recherche Sciences et Technologies Biomedicales (GRSTB), École Polytechnique; Montréal Quebec Canada H3C 3A7
- Institute of Biomedical Engineering, École Polytechnique; Montréal Quebec Canada H3C 3A7
| | - Caroline D. Hoemann
- Department of Chemical Engineering; École Polytechnique; Montréal Quebec Canada H3C 3A7
- Biomedical Sciences and Technology Research Group/Groupe de Recherche Sciences et Technologies Biomedicales (GRSTB), École Polytechnique; Montréal Quebec Canada H3C 3A7
- Institute of Biomedical Engineering, École Polytechnique; Montréal Quebec Canada H3C 3A7
| |
Collapse
|
28
|
Emam HA, Behiri G, El-Alaily M, Sharawy M. The efficacy of a tissue-engineered xenograft in conjunction with sodium hyaluronate carrier in maxillary sinus augmentation: a clinical study. Int J Oral Maxillofac Surg 2015; 44:1287-94. [PMID: 25998934 DOI: 10.1016/j.ijom.2015.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 11/28/2022]
Abstract
PepGen P-15 Putty comprises anorganic bovine bone matrix (ABM) coupled with a synthetic cell-binding peptide, suspended in a sodium hyaluronate carrier. The P-15 portion exhibits a similar structure and properties to the cell-binding region of type I collagen. This study was performed to evaluate ABM/P-15 putty as the sole graft in sinus augmentation. Ten patients for whom both a sinus augmentation and two implants were indicated in the posterior maxilla were enrolled. Bone cores were harvested at 8 and 16 weeks, followed by placement of one implant at 8 weeks and the second at 16 weeks. Twenty collected bone cores were evaluated histologically and by micro-computed tomography. Results showed a significant increase (P<0.05) in bone mineral density at 8 weeks (0.70±0.13g/cm(3)) and 16 weeks (0.97±0.08g/cm(3)) in the graft compared to native (control) bone (0.04±0.02g/cm(3)). There was no significant difference (P>0.05) in the percentage bone volume at the two time intervals (PBV 21.14±4.56 at 8 weeks and 26.33±5.60 at 16 weeks). The average increase in bone height at 16 weeks was 10.55±0.53mm. It is concluded that PepGen P-15 Putty is capable of conducting and accelerating new bone formation and can successfully support dental implants.
Collapse
Affiliation(s)
- H A Emam
- Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State University, OH, USA.
| | - G Behiri
- Oral and Maxillofacial Surgery, Cairo University, Cairo, Egypt
| | - M El-Alaily
- Private Practice, IMMPRO Dental (Implant-Prosthodontics), Cairo, Egypt
| | - M Sharawy
- Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University, GA, USA
| |
Collapse
|
29
|
Banerjee P, Madhu S, Chandra Babu NK, Shanthi C. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:338-347. [PMID: 25686958 DOI: 10.1016/j.msec.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/01/2014] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
Abstract
Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10mM of CaCl2, 5mM of Na2HPO4, 100mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal-protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth.
Collapse
Affiliation(s)
- Pradipta Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - S Madhu
- School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India
| | - N K Chandra Babu
- Tannery Division, CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - C Shanthi
- School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
30
|
Lauweryns P, Raskin Y. Prospective analysis of a new bone graft in lumbar interbody fusion: results of a 2- year prospective clinical and radiological study. Int J Spine Surg 2015; 9:14444-2002. [PMID: 25709887 PMCID: PMC4337192 DOI: 10.14444/2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background This study examined the efficacy and safety of bone graft material ABM/P-15 (iFACTOR) for use in posterior lumbar interbody fusion. ABM/P-15 has been used safely for more than a decade in dental applications. Methods Forty patients underwent PLIF surgery, with each patient as control. Assessments up to 24 months included radiographs, CT scan, VAS, and ODI. Primary success criteria were fusion and safety. Results Intra-cage bridging bone occurred earlier with ABM/P-15 than autograft (97.73% vs. 59.09% at 6 months). On average pain decreased 29 points and function improved 43 points. Radio dense material outside the disk space occurred more frequently with ABM/P-15 than autograft, without clinical consequence. Conclusions This study suggests that ABM/P-15 has equal or greater efficacy at 6 and 12 months. Pain improvements exceeded success criteria at all time points. Functional improvement exceeded success criteria at all time points. Clinical Relevance This study explores the safety and efficacy of an osteobiologic peptide enhanced bone graft material as a viable alternative to autograft and its attendant risks.
Collapse
Affiliation(s)
| | - Yannic Raskin
- Orthopaedic Surgery, Sint-Trudo ZiekenHuis, Sint- Truiden, Belgium
| |
Collapse
|
31
|
Mobbs RJ, Maharaj M, Rao PJ. Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite. J Neurosurg Spine 2014; 21:867-76. [DOI: 10.3171/2014.9.spine131151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Despite limited availability and the morbidity associated with autologous iliac crest bone graft (ICBG), its use in anterior lumbar interbody fusion (ALIF) procedures remains the gold standard to achieve arthrodesis. The search for alternative grafts yielding comparable or superior fusion outcomes with fewer complications continues. In particular, i-FACTOR, a novel bone graft substitute composed of anorganic bone matrix (ABM) with P-15 small peptide, is one example currently used widely in the dental community. Although preclinical studies have documented its usefulness, the role of i-FACTOR in ALIF procedures remains unknown.
The authors' goal was to determine the safety and efficacy of i-FACTOR bone graft composite used in patients who underwent ALIF by evaluating fusion rates and clinical outcomes.
Methods
A nonblinded cohort of patients who were all referred to a single surgeon's practice was prospectively studied. One hundred ten patients with degenerative spinal disease underwent single or multilevel ALIF using the ABM/P-15 bone graft composite with a mean of 24 months (minimum 15 months) of follow-up were enrolled in the study. Patient's clinical outcomes were assessed using the Oswestry Disability Index for low-back pain, the 12-Item Short Form Health Survey, Odom's criteria, and a visual analog scale for pain. Fine-cut CT scans were used to evaluate the progression to fusion.
Results
All patients who received i-FACTOR demonstrated radiographic evidence of bony induction and early incorporation of bone graft. At a mean of 24 months of follow-up (range 15–43 months), 97.5%, 81%, and 100% of patients, respectively, who had undergone single-, double-, and triple-level surgery exhibited fusion at all treated levels. The clinical outcomes demonstrated a statistically significant (p < 0.05) difference between preoperative and postoperative Oswestry Disability Index, 12-Item Short Form Health Survey, and visual analog scores.
Conclusions
The use of i-FACTOR bone graft substitute demonstrates promising results for facilitating successful fusion and improving clinical outcomes in patients who undergo ALIF surgery for degenerative spinal pathologies.
Collapse
Affiliation(s)
- Ralph J. Mobbs
- 1NeuroSpineClinic, Prince of Wales Private Hospital; and
- 2Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Monish Maharaj
- 2Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Prashanth J. Rao
- 1NeuroSpineClinic, Prince of Wales Private Hospital; and
- 2Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
32
|
Ding M, Andreasen CM, Dencker ML, Jensen AE, Theilgaard N, Overgaard S. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep. J Biomed Mater Res A 2014; 103:1357-65. [PMID: 25045068 DOI: 10.1002/jbm.a.35281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 06/12/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022]
Abstract
Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices.
Collapse
Affiliation(s)
- Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery & Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Interstitial collagen mechanical and biological properties are altered by proteases that catalyze the hydrolysis of the collagen triple-helical structure. Collagenolysis is critical in development and homeostasis but also contributes to numerous pathologies. Mammalian collagenolytic enzymes include matrix metalloproteinases, cathepsin K, and neutrophil elastase, and a variety of invertebrates and pathogens possess collagenolytic enzymes. Components of the mechanism of action for the collagenolytic enzyme MMP-1 have been defined experimentally, and insights into other collagenolytic mechanisms have been provided. Ancillary biomolecules may modulate the action of collagenolytic enzymes.
Collapse
Affiliation(s)
- Gregg B Fields
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|
34
|
Choi H, Park NJ, Jamiyandorj O, Hong MH, Oh S, Park YB, Kim S. Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with synthetic cell binding peptide sequences. J Periodontal Implant Sci 2012. [PMID: 23185697 PMCID: PMC3498301 DOI: 10.5051/jpis.2012.42.5.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purpose The aim of this study was to evaluate the improvement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with synthetic cell-binding peptide sequences in a standardized rabbit sinus model. Methods Standardized 6-mm diameter defects were created bilaterally on the maxillary sinus of ten male New Zealand white rabbits, receiving BCP bone substitute coated with synthetic cell binding peptide sequences on one side (experimental group) and BCP bone substitute without coating (control group) on the other side. Histologic and histomorphometric analysis of bone formation was carried out after a healing period of 4 or 8 weeks. Results Histological analysis revealed signs of new bone formation in both experimental groups (4- and 8-week healing groups) with a statistically significant increase in bone formation in the 4-week healing group compared to the control group. However, no statistically significant difference in bone formation was found between the 8-week healing group and the control group. Conclusions This study found that BCP bone substitute coated with synthetic cell-binding peptide sequences enhanced osteoinductive potential in a standardized rabbit sinus model and its effectiveness was greater in the 4-week healing group than in the 8-week healing group.
Collapse
Affiliation(s)
- Hyunmin Choi
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapiro I, Freeman T. Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J Orthop Res 2012; 30:1626-33. [PMID: 22504956 DOI: 10.1002/jor.22116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/15/2012] [Indexed: 02/04/2023]
Abstract
P15, a synthetic 15 amino acid peptide, mimics the cell-binding domain within the alpha-1 chain of human collagen is being tested in clinical trials to determine if it enhances bone formation in spinal fusions. We hypothesize that covalent attachment of P15 to titanium implants may also serve to promote osseointegration. To test this hypothesis, we measured osteoblast and mesenchymal cell adhesion, proliferation, and maturation on P15 tethered to a titanium (Ti-P15) surface. P15 peptide was covalently bonded to titanium alloy surfaces and incubated with osteoblast like cells. Cell toxicity, adhesion, spreading, and differentiation was then evaluated. Real-time quantitative PCR, Western blot analysis, and fluorescent immunohistochemistry was performed to measure osteoblast gene expression and differentiation. There was no evidence of toxicity. Significant increases in early cell attachment, spreading, and proliferation were observed on the Ti-P15 surface. Increased filapodial attachments, α(2) integrin expression, and phosphorylated focal adhesion kinase immunostaining indicated activation of integrin signaling pathways. qRT-PCR analysis indicated there was significant increase in osteogenic differentiation markers in cells grown on Ti-P15 compared to control-Ti. Western blotting confirmed these findings. Surface modification of titanium with P15 significantly increased cell attachment, spreading, osteogenic gene expression, and differentiation. Results of this study suggest that Ti-P15 has the potential to safely enhance bone formation and promote osseointegration of titanium implants.
Collapse
Affiliation(s)
- Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nagel L, Budke C, Dreyer A, Koop T, Sewald N. Antifreeze glycopeptide diastereomers. Beilstein J Org Chem 2012; 8:1657-67. [PMID: 23209499 PMCID: PMC3510999 DOI: 10.3762/bjoc.8.190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/28/2012] [Indexed: 01/09/2023] Open
Abstract
Antifreeze glycopeptides (AFGPs) are a special class of biological antifreeze agents, which possess the property to inhibit ice growth in the body fluids of arctic and antarctic fish and, thus, enable life under these harsh conditions. AFGPs are composed of 4-55 tripeptide units -Ala-Ala-Thr- glycosylated at the threonine side chains. Despite the structural homology among all the fish species, divergence regarding the composition of the amino acids occurs in peptides from natural sources. Although AFGPs were discovered in the early 1960s, the adsorption mechanism of these macromolecules to the surface of the ice crystals has not yet been fully elucidated. Two AFGP diastereomers containing different amino acid configurations were synthesized to study the influence of amino acid stereochemistry on conformation and antifreeze activity. For this purpose, peptides containing monosaccharide-substituted allo-L- and D-threonine building blocks were assembled by solid-phase peptide synthesis (SPPS). The retro-inverso AFGP analogue contained all amino acids in D-configuration, while the allo-L-diastereomer was composed of L-amino acids, like native AFGPs, with replacement of L-threonine by its allo-L-diastereomer. Both glycopeptides were analyzed regarding their conformational properties, by circular dichroism (CD), and their ability to inhibit ice recrystallization in microphysical experiments.
Collapse
Affiliation(s)
- Lilly Nagel
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Carsten Budke
- Physical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Axel Dreyer
- Physical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Thomas Koop
- Physical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
37
|
Khashu H, Vandana KL. Clinical and radiographic evaluation of human periodontal osseous defect (mandibular grade II furcation) treated with PepGen P-15 and a bioresorbable membrane (Atrisorb). J Indian Soc Periodontol 2012; 16:569-76. [PMID: 23493651 PMCID: PMC3590729 DOI: 10.4103/0972-124x.106917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/30/2012] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The various treatment modalities available to treat furcation involvement either maintain the existing furcation or increases access to furcation or leads to elimination of furcation (root resection, bicuspidization etc). Newer treatment modalities include regenerative procedures like placement of bone graft and organic or synthetic membranes. In this study we have evaluated the use of a new xenograft based tissue engineered bone material which provides both the inorganic and organic component; individually and in conjunction with a synthetic bioresorbable material. MATERIALS AND METHODS 6 patients with 18 mandibular grade 2 furcations were selected after the completion of initial phase in all the patients. Selected sites were divided into control and experimental groups randomly and were treated by split mouth design. The control sites were treated with flap debridement and placement of ABM graft, whereas the experimental site received flap debridement, ABM graft and a synthetic bioresorbable membrane. RESULTS All the parameters recorded showed significant reduction from baseline to 9 months in both the experimental and control group. When compared in between the control and experimental group, all the parameters showed marginally better results in the control group, although none of them were clinically significant. CONCLUSION The results of this study suggest that the use of ABM along with a bioresorbable membrane and without membrane is both beneficial for the treatment of grade 2 furcation. On the cost benefit basis, the bone graft alone seems to be a better choice for regenerative treatment of furcation involvement.
Collapse
Affiliation(s)
- Himanshu Khashu
- Department of Periodontics and Oral Implantology, Sudha Rustagi College of Dental Sciences and Research. Faridabad, Haryana, India
| | - K. L. Vandana
- Department of Periodontics, College of Dental Sciences, Davangere, Karnataka, India
| |
Collapse
|
38
|
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112:4507-40. [PMID: 22621236 DOI: 10.1021/cr3000169] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | |
Collapse
|
39
|
Li C, Hill A, Imran M. In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:875-91. [PMID: 16128294 DOI: 10.1163/1568562054255754] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to evaluate the effectiveness of P15 cell-binding peptide treated ePTFE vascular grafts in vitro and in vivo. The P15 peptide was covalently immobilized onto ePTFE vascular grafts by an atmospheric plasma coating method. In vitro cell growth properties were studied using primary human umbilical vein endothelial cells (HUVECs) and primary human umbilical artery smooth muscle cells (HUASMCs). X-ray photoelectron spectroscopy and amino-acid analysis were used to analyze the surface characteristics of the peptide treated and untreated grafts. The cell growth study showed that the P15 peptide effectively promoted the adhesion and proliferation of endothelial cells. 700% more endothelial cells were proliferated on the P15-treated ePTFE grafts compared to the untreated ePTFE controls. In contrast, the P15 peptide was significantly less effective for promoting the adhesion and proliferation of smooth muscle cells than endothelial cells; only about 100% more smooth muscle cells proliferated on the P15-treated samples compared to the untreated control samples. The sheep model was used in the in vivo study. The amount of neointimal hyperplasia present at the arterial and venous sides of the anastomosis and the degree of endothelialization on the luminal surface of the grafts were assessed. Four P15-treated grafts and two control grafts were implanted as arteriovenous grafts between the femoral artery and vein or the carotid artery and jugular vein in two sheep (n = 6). The in vivo study showed that the thickness of the neointimal hyperplasia of untreated grafts was 3-times thicker than that of P15-treated grafts (P < 0.05) at the venous side of the anastomosis. P15-treated grafts also had a higher degree of endothelialization on the graft lumen.
Collapse
Affiliation(s)
- Cheng Li
- InCube, Inc., 1390 Willow Road, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
40
|
Yu HS, Noh WC, Park JW, Lee JM, Yang DJ, Park KB, Suh JY. Comparative study on the cellular activities of osteoblast-like cells and new bone formation of anorganic bone mineral coated with tetra-cell adhesion molecules and synthetic cell binding peptide. J Periodontal Implant Sci 2011; 41:293-301. [PMID: 22324007 PMCID: PMC3259238 DOI: 10.5051/jpis.2011.41.6.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/22/2011] [Indexed: 11/08/2022] Open
Abstract
Purpose We have previously reported that tetra-cell adhesion molecule (T-CAM) markedly enhanced the differentiation of osteoblast-like cells grown on anorganic bone mineral (ABM). T-CAM comprises recombinant peptides containing the Arg-Gly-Asp (RGD) sequence in the tenth type III domain, Pro-His-Ser-Arg-Asn (PHSRN) sequence in the ninth type III domain of fibronectin (FN), and the Glu-Pro-Asp-Ilu-Met (EPDIM) and Tyr-His (YH) sequence in the fourth fas-1 domain of βig-h3. Therefore, the purpose of this study was to evaluate the cellular activity of osteoblast-like cells and the new bone formation on ABM coated with T-CAM, while comparing the results with those of synthetic cell binding peptide (PepGen P-15). Methods To analyze the cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, andto analyze gene expression, northernblot was performed. Mineral nodule formations were evaluated using alizarin red stain. The new bone formations of each group were evaluated using histologic observation and histomorphometrc analysis. Results Expression of alkaline phosphatase mRNA was similar in all groups on days 10 and 20. The highest expression of osteopontin mRNA was observed in the group cultured with ABM/P-15, followed by those with ABM/T-CAM and ABM on days 20 and 30. Little difference was seen in the level of expression of collagen type I mRNA on the ABM, ABM/T-CAM, and ABM/P-15 cultured on day 20. There were similar growth and proliferation patterns for the ABM/T-CAM and ABM/P-15. The halo of red stain consistent with Ca2+ deposition was wider and denser around ABM/T-CAM and ABM/P-15 particles than around the ABM particles. The ABM/T-CAM group seemed to have bone forming bioactivity similar to that of ABM/P-15. A complete bony bridge was seen in two thirds of the defects in the ABM/T-CAM and ABM/P-15 groups. Conclusions ABM/T-CAM, which seemed to have bone forming bioactivity similar to ABM/P-15, was considered to serve as effective tissue-engineered bone graft material.
Collapse
Affiliation(s)
- Hyeon-Seok Yu
- Department of Periodontology, Kyungpook National University School of Dentistry, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Galler KM, D'Souza RN, Hartgerink JD, Schmalz G. Scaffolds for dental pulp tissue engineering. Adv Dent Res 2011; 23:333-9. [PMID: 21677088 DOI: 10.1177/0022034511405326] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For tissue engineering strategies, the choice of an appropriate scaffold is the first and certainly a crucial step. A vast variety of biomaterials is available: natural or synthetic polymers, extracellular matrix, self-assembling systems, hydrogels, or bioceramics. Each material offers a unique chemistry, composition and structure, degradation profile, and possibility for modification. The role of the scaffold has changed from passive carrier toward a bioactive matrix, which can induce a desired cellular behavior. Tailor-made materials for specific applications can be created. Recent approaches to generate dental pulp rely on established materials, such as collagen, polyester, chitosan, or hydroxyapatite. Results after transplantation show soft connective tissue formation and newly generated dentin. For dentin-pulp-complex engineering, aspects including vascularization, cell-matrix interactions, growth-factor incorporation, matrix degradation, mineralization, and contamination control should be considered. Self-assembling peptide hydrogels are an example of a smart material that can be modified to create customized matrices. Rational design of the peptide sequence allows for control of material stiffness, induction of mineral nucleation, or introduction of antibacterial activity. Cellular responses can be evoked by the incorporation of cell adhesion motifs, enzyme-cleavable sites, and suitable growth factors. The combination of inductive scaffold materials with stem cells might optimize the approaches for dentin-pulp complex regeneration.
Collapse
Affiliation(s)
- K M Galler
- University of Regensburg, Department of Restorative Dentistry and Periodontology, Germany.
| | | | | | | |
Collapse
|
42
|
Bhatnagar RS, Qian JJ, Wedrychowska A, Smith N. Construction of Biomimetic Environments with A Synthetic Peptide Analogue of Collagen. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-530-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe flow of chemical and mechanical signals among cells, and between cells and their environment plays a crucial role in cell differentiation and morphogenesis. In tissues, type I collagen serves as the template for cell anchorage and migration, and it mediates the flux of regulatory signals via highly specific receptors. Cells respond to mechanical cues by secreting growth factors and remodeling their surrounding matrix in an exquisitely orchestrated spatial and temporal program of matrix turnover and organization. Cellular tractional forces contribute to the organization and orientation of the newly synthesized matrix, establishing the template for subsequent morphogenesis. The junction between cells and collagen plays a key role in cell differentiation, morphogenesis and tissue remodeling. An optimal biomimetic environment would emulate this pathway for the exchange of stimuli. To achieve this goal, we have constructed templates which place cells in apposition to P-15, a synthetic peptide ligand for collagen receptors. These environments prompted 3-D colony formation, induced increased osteogenic differentiation, and the deposition of highly oriented and organized matrix by human dermal and gingival fibroblasts and by osteoblast like HOS cells. These observations support our concept for biomimetic environments for tissue engineering.
Collapse
|
43
|
Shekaran A, García AJ. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 2010; 96:261-72. [PMID: 21105174 DOI: 10.1002/jbm.a.32979] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 01/12/2023]
Abstract
Limited osseointegration of current orthopedic biomaterials contributes to the failure of implants such as arthroplasties, bone screws, and bone grafts, which present a large socioeconomic cost within the United States. These implant failures underscore the need for biomimetic approaches that modulate host cell-implant material responses to enhance implant osseointegration and bone formation. Bioinspired strategies have included functionalizing implants with extracellular matrix (ECM) proteins or ECM-derived peptides or protein fragments, which engage integrins and direct osteoblast adhesion and differentiation. This review discusses (1) bone ECM composition and key integrins implicated in osteogenic differentiation, (2) the use of implants functionalized with ECM-mimetic peptides/protein fragments, and (3) growth factor-derived peptides to promote the mechanical fixation of implants to bone and to enhance bone healing within large defects.
Collapse
Affiliation(s)
- Asha Shekaran
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
44
|
Lutz R, Srour S, Nonhoff J, Weisel T, Damien CJ, Schlegel KA. Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin Oral Implants Res 2010; 21:726-34. [PMID: 20636727 DOI: 10.1111/j.1600-0501.2009.01904.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The early stages of peri-implant bone formation play an essential role in the osseointegration and long-term success of dental implants. By incorporating bioactive coatings, this biofunctionalization of implant surfaces may enhance the attachment of the implant to the surrounding bone and stimulate bone regeneration. MATERIAL AND METHODS To demonstrate faster osseointegration, the surfaces of dental implants were grit-blasted and acid-etched. They were then coated with hydroxyapatite (HA) and experimental implants were further coated with a biomimetic active peptide (P-15) in one of two concentrations. These biofunctionalized samples and controls with no peptide were placed in the forehead region of 12 adult pigs. Six animals were evaluated for a period of 14 or 30 days. RESULTS Histomorphometric analysis demonstrated that the implants with the high concentration of P-15 had significantly higher percentage of bone-to-implant contact (BIC) at 14 (P=0.018) and 30 (P=0.015) days compared with the other groups. Both concentrations of P-15 showed increased peri-implant bone density compared to the control group at 30 days. CONCLUSION Biofunctionalization of the implant surface with a biomimetic active peptide leads to significantly increased BIC rates at 14 and 30 days and higher peri-implant bone density at 30 days.
Collapse
Affiliation(s)
- R Lutz
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Lindley EM, Guerra FA, Krauser JT, Matos SM, Burger EL, Patel VV. Small peptide (P-15) bone substitute efficacy in a rabbit cancellous bone model. J Biomed Mater Res B Appl Biomater 2010; 94:463-468. [PMID: 20578227 DOI: 10.1002/jbm.b.31676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
P-15 is a synthetic 15-amino acid residue identical to the cell binding domain of type I collagen. P-15 can be adsorbed onto anorganic bovine bone mineral (ABM) and will enhance cell attachment and subsequent cell activation. Although ABM/P-15 has been studied as a bone graft substitute in the oral cavity, its use in orthopedic models has been limited. Thus, this study investigated the efficacy of ABM/P-15 treatment in a rabbit model of long bone cancellous healing. Defects were created in the distal femurs and proximal medial tibiae of rabbits and were filled with either ABMP/P-15 suspended in hydrogel, ABM alone suspended in hydrogel, hydrogel carrier alone, or no graft material. Rabbits were sacrificed at 1, 2, 4, or 8 weeks postsurgery, and the femurs and tibiae were harvested. Histomorphometric analyses indicated that defects treated with ABM/P-15 had significantly larger areas of new bone formation than the other three treatments at 2 and 8 weeks postsurgery. ABM/P-15 treated defects also had significantly more bone growth than defects left empty or filled with ABM alone at 4 weeks postsurgery. Furthermore, histological examination did not reveal acute inflammatory infiltrate cells in any of the treatment conditions. These results are consistent with the findings of ABM/P-15 use in human oral-maxillofacial studies and in large animal spine fusion models.
Collapse
Affiliation(s)
- Emily M Lindley
- The Spine Center, Department of Orthopedics, University of Colorado, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
46
|
Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:2156-63. [PMID: 20694847 DOI: 10.1007/s00586-010-1546-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 06/15/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
Abstract
A prospective, randomized study was performed in an ovine model to compare the efficacy of an anorganic bovine-derived hydroxyapatite matrix combined with a synthetic 15 amino acid residue (ABM/P-15) in facilitating lumbar interbody fusion when compared with autogenous bone harvested from the iliac crest. P-15 is a biomimetic to the cell-binding site of Type-I collagen for bone-forming cells. When combined with ABM, it creates the necessary scaffold to initiate cell invasion, binding, and subsequent osteogenesis. In this study, six adult ewes underwent anterior-lateral interbody fusion at L3/L4 and L4/L5 using PEEK interbody rings filled with autogenous bone at one level and ABM/P-15 at the other level and no additional instrumentation. Clinical CT scans were obtained at 3 and 6 months; micro-CT scans and histomorphometry analyses were performed after euthanization at 6 months. Clinical CT scan analysis showed that all autograft and ABM/P-15 treated levels had radiographically fused outside of the rings at the 3-month study time point. Although the clinical CT scans of the autograft treatment group showed significantly better fusion within the PEEK rings than ABM/P-15 at 3 months, micro-CT scans, clinical CT scans, and histomorphometric analyses showed there were no statistical differences between the two treatment groups at 6 months. Thus, ABM/P-15 was as successful as autogenous bone graft in producing lumbar spinal fusion in an ovine model, and it should be further evaluated in clinical studies.
Collapse
|
47
|
Galler KM, D'Souza RN, Hartgerink JD. Biomaterials and their potential applications for dental tissue engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01207f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK, Bellis SL. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 2009; 30:1898-909. [PMID: 19157536 DOI: 10.1016/j.biomaterials.2008.12.053] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/08/2023]
Abstract
Integrin-binding peptides increase cell adhesion to naive hydroxyapatite (HA), however, in the body, HA becomes rapidly modified by protein adsorption. Previously we reported that, when combined with an adsorbed protein layer, RGD peptides interfered with cell adhesion to HA. In the current study we evaluated mesenchymal stem cell (MSC) interactions with HA disks coated with the collagen-mimetic peptides, DGEA, P15 and GFOGER. MSCs adhered equally well to disks coated with DGEA, P15, or collagen I, and all three substrates, but not GFOGER, supported greater cell adhesion than uncoated HA. When peptide-coated disks were overcoated with proteins from serum or the tibial microenvironment, collagen mimetics did not inhibit MSC adhesion, as was observed with RGD, however neither did they enhance adhesion. Given that activation of collagen-selective integrins stimulates osteoblastic differentiation, we monitored osteocalcin secretion and alkaline phosphatase activity from MSCs adherent to DGEA or P15-coated disks. Both of these osteoblastic markers were upregulated by DGEA and P15, in the presence and absence of differentiation-inducing media. Finally, bone formation on HA tibial implants was increased by the collagen mimetics. Collectively these results suggest that collagen-mimetic peptides improve osseointegration of HA, most probably by stimulating osteoblastic differentiation, rather than adhesion, of MSCs.
Collapse
Affiliation(s)
- Kristin M Hennessy
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Trombelli L, Farina R. Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 2008; 35:117-35. [DOI: 10.1111/j.1600-051x.2008.01265.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
This article examines each class of bone grafting material based on some of the studies in each of the following categories: safety, animal research, periodontal and maxillofacial applications, skeletal grafting, and attempts to qualify the efficacy of each class of material. The article also examines some of the research being done in "tissue engineering" to get a sense of the future of bone grafting.
Collapse
Affiliation(s)
- Harry V Precheur
- Department of Oral and Maxillofacial Surgery and Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| |
Collapse
|