1
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
2
|
Li C, Zhao J, Cheng K, Ge Y, Wu Q, Ye Y, Xu G, Zhang Z, Zheng W, Zhang X, Zhou X, Pielak G, Liu M. Magnetic Resonance Spectroscopy as a Tool for Assessing Macromolecular Structure and Function in Living Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:157-182. [PMID: 28301750 DOI: 10.1146/annurev-anchem-061516-045237] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Investigating the structure, modification, interaction, and function of biomolecules in their native cellular environment leads to physiologically relevant knowledge about their mechanisms, which will benefit drug discovery and design. In recent years, nuclear and electron magnetic resonance (NMR) spectroscopy has emerged as a useful tool for elucidating the structure and function of biomacromolecules, including proteins, nucleic acids, and carbohydrates in living cells at atomic resolution. In this review, we summarize the progress and future of in-cell NMR as it is applied to proteins, nucleic acids, and carbohydrates.
Collapse
Affiliation(s)
- Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Wenwen Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| | - Gary Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; ,
| |
Collapse
|
3
|
Nakamura S, Fujimoto K. Photo-cross-linking using trifluorothymidine and 3-cyanovinylcarbazole induced a large shifted (19)F MR signal. Chem Commun (Camb) 2016; 51:11765-8. [PMID: 26027537 DOI: 10.1039/c5cc02972d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photo-cross-linking of trifluorothymidine ((TF)T) using 3-cyanovinylcarbazole ((CNV)K) clearly shifted its (19)F nuclear magnetic resonance (NMR) signal 8 ppm. This (CNV)K mediated ultrafast photo-cross-linking-induced shift can be utilized for miRNA detection by hybridization chain reaction (HCR) to detect 10 nM of a target in a sequence-specific manner.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- Materials Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan.
| | | |
Collapse
|
4
|
Sicilia G, Davis AL, Spain SG, Magnusson JP, Boase NRB, Thurecht KJ, Alexander C. Synthesis of 19F nucleic acid–polymer conjugates as real-time MRI probes of biorecognition. Polym Chem 2016. [DOI: 10.1039/c5py01883h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficacy of novel 19F nucleic acid–polymer conjugates as sensitive and selective in vitro reporters of DNA binding events is demonstrated through a number of rapid-acquisition MR sequences.
Collapse
Affiliation(s)
| | | | | | | | - Nathan R. B. Boase
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- Centre for Advanced Imaging
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- Centre for Advanced Imaging
| | | |
Collapse
|
5
|
Zhao C, Bachu R, Popović M, Devany M, Brenowitz M, Schlatterer JC, Greenbaum NL. Conformational heterogeneity of the protein-free human spliceosomal U2-U6 snRNA complex. RNA (NEW YORK, N.Y.) 2013; 19:561-73. [PMID: 23426875 PMCID: PMC3677266 DOI: 10.1261/rna.038265.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 05/24/2023]
Abstract
The complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, (19)F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and (19)F NMR for the complex in the absence of Mg(2+) are consistent with formation of a four-helix junction structure as a predominant conformation. However, (19)F NMR data also identify a lesser fraction (up to 14% at 25°C) of a three-helix conformation. Based upon this distribution, the calculated ΔG for inter-conversion to the four-helix structure from the three-helix structure is approximately -4.6 kJ/mol. In the presence of 5 mM Mg(2+), the fraction of the three-helix conformation increased to ∼17% and the Stokes radius, measured by analytical ultracentrifugation, decreased by 2%, suggesting a slight shift to an alternative conformation. NMR measurements demonstrated that addition of an intron fragment to the U2-U6 snRNA complex results in displacement of U6 snRNA from the region of Helix III immediately 5' of the ACAGAGA sequence of U6 snRNA, which may facilitate binding of the segment of the intron adjacent to the 5' splice site to the ACAGAGA sequence. Taken together, these observations indicate conformational heterogeneity in the protein-free human U2-U6 snRNA complex consistent with a model in which the RNA has sufficient conformational flexibility to facilitate inter-conversion between steps of splicing in situ.
Collapse
Affiliation(s)
- Caijie Zhao
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Ravichandra Bachu
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Milena Popović
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Matthew Devany
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jörg C. Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
6
|
Puffer B, Kreutz C, Rieder U, Ebert MO, Konrat R, Micura R. 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy. Nucleic Acids Res 2010; 37:7728-40. [PMID: 19843610 PMCID: PMC2794194 DOI: 10.1093/nar/gkp862] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
19F NMR spectroscopy has proved to be a valuable tool to monitor functionally important conformational transitions of nucleic acids. Here, we present a systematic investigation on the application of 5-fluoro pyrimidines to probe DNA and RNA secondary structures. Oligonucleotides with the propensity to adapt secondary structure equilibria were chosen as model systems and analyzed by 1D 19F and 1H NMR spectroscopy. A comparison with the unmodified analogs revealed that the equilibrium characteristics of the bistable DNA and RNA oligonucleotides were hardly affected upon fluorine substitution at C5 of pyrimidines. This observation was in accordance with UV spectroscopic melting experiments which demonstrated that single 5-fluoro substitutions in double helices lead to comparable thermodynamic stabilities. Thus, 5-fluoro pyrimidine labeling of DNA and RNA can be reliably applied for NMR based nucleic acid secondary structure evaluation. Furthermore, we developed a facile synthetic route towards 5-fluoro cytidine phosphoramidites that enables their convenient site-specific incorporation into oligonucleotides by solid-phase synthesis.
Collapse
Affiliation(s)
- Barbara Puffer
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland and Max Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
7
|
Spitale RC, Heller MG, Pelly AJ, Wedekind JE. Efficient syntheses of 5'-deoxy-5'-fluoroguanosine and -inosine. J Org Chem 2007; 72:8551-4. [PMID: 17902696 PMCID: PMC2546599 DOI: 10.1021/jo7015778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substitution of oxygen with a weak hydrogen bond acceptor such as fluorine provides a single-atom modification that can have grave effects on the chemical and medicinal properties of nucleoside analogues. To that end, we present a simple and high-yielding method for the novel synthesis of 5'-deoxy-5'-fluoroguanosine and 5'-deoxy-5'-fluoroinosine utilizing an intramolecular electron-withdrawing approach. The properties of the resulting modified nucleosides, as well as the halogenated intermediates, are notable for their similarity to nucleoside analogues used in the treatment of cancer, as well as enzyme inhibitors designed to target parasitic protozoa.
Collapse
Affiliation(s)
- Robert C. Spitale
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| | - Moriah G. Heller
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue Box 712, Rochester New York 14642
| | - Amanda J. Pelly
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue Box 712, Rochester New York 14642
| | - Joseph E. Wedekind
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue Box 712, Rochester New York 14642
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| |
Collapse
|
8
|
Kreutz C, Kählig H, Konrat R, Micura R. A General Approach for the Identification of Site-Specific RNA Binders by19F NMR Spectroscopy: Proof of Concept. Angew Chem Int Ed Engl 2006; 45:3450-3. [PMID: 16622887 DOI: 10.1002/anie.200504174] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Christoph Kreutz
- Leopold Franzens University, Institute of Organic Chemistry, Center for Molecular Biosciences, Innrain 52a, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
9
|
Kreutz C, Kählig H, Konrat R, Micura R. Ein allgemeiner Ansatz zur Identifizierung ortsspezifisch bindender RNA-Liganden mittels19F-NMR-Spektroskopie – Bestätigung des Konzepts. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Olejniczak M, Gdaniec Z, Fischer A, Grabarkiewicz T, Bielecki L, Adamiak RW. The bulge region of HIV-1 TAR RNA binds metal ions in solution. Nucleic Acids Res 2002; 30:4241-9. [PMID: 12364603 PMCID: PMC140541 DOI: 10.1093/nar/gkf541] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binding of Mg2+, Ca2+ and Co(NH3)6(3+) ions to the HIV-1 TAR RNA in solution was analysed by 19F NMR spectroscopy, metal ion-induced RNA cleavages and Brownian dynamics (BD) simulations. Chemically synthesised 29mer oligoribonucleotides of the TAR sequence labelled with 5-fluorouridine (FU) were used for 19F NMR-monitored metal ion titration. The chemical shift changes of fluorine resonances FU-23, FU-25 and FU-40 upon titration with Mg2+ and Ca2+ ions indicated specific, although weak, binding at the bulge region with the dissociation constants (K(d)) of 0.9 +/- 0.6 and 2.7 +/- 1.7 mM, respectively. Argininamide, inducing largest (19)F chemical shifts changes at FU-23, was used as a reference ligand (K(d) = 0.3 +/- 0.1 mM). In the Pb2+-induced TAR RNA cleavage experiment, strong and selective cleavage of the C24-U25 phosphodiester bond was observed, while Mg2+ and Ca2+ induced cuts at all 3-nt residues of the bulge. The inhibition of Pb2+-specific TAR cleavage by di- and trivalent metal ions revealed a binding specificity [in the order Co(NH3)6(3+) > Mg2+ > Ca2+] at the bulge site. A BD simulation search of potential magnesium ion sites within the NMR structure of HIV-1 TAR RNA was conducted on a set of 20 conformers (PDB code 1ANR). For most cases, the bulge region was targeted by magnesium cations.
Collapse
Affiliation(s)
- Mikołaj Olejniczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | | | | | | | | |
Collapse
|
11
|
Hammann C, Norman DG, Lilley DM. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR. Proc Natl Acad Sci U S A 2001; 98:5503-8. [PMID: 11331743 PMCID: PMC33242 DOI: 10.1073/pnas.091097498] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used (19)F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of (19)F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg(2+). The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg(2+) with an association constant in the range of 100 to 500 M(-1), depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range.
Collapse
Affiliation(s)
- C Hammann
- Cancer Research Campaign Nucleic Acid Structure Research Group, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, United Kingdom
| | | | | |
Collapse
|