1
|
Reghunandanan K, T P A, Krishnan N, K M D, Prasad R, Nelson-Sathi S, Chandramohanadas R. Search for novel Plasmodium falciparum PfATP4 inhibitors from the MMV Pandemic Response Box through a virtual screening approach. J Biomol Struct Dyn 2024; 42:6200-6211. [PMID: 37424150 DOI: 10.1080/07391102.2023.2232459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
Owing to its life cycle involving multiple hosts and species-specific biological complexities, a vaccine against Plasmodium, the causative agent of Malaria remains elusive. This makes chemotherapy the only viable means to address the clinical manifestations and spread of this deadly disease. However, rapid surge in antimalarial resistance poses significant challenges to our efforts to eliminate Malaria since the best drug available to-date; Artemisinin and its combinations are also rapidly losing efficacy. Sodium ATPase (PfATP4) of Plasmodium has been recently explored as a suitable target for new antimalarials such as Cipargamin. Prior studies showed that multiple compounds from the Medicines for Malaria Venture (MMV) chemical libraries were efficient PfATP4 inhibitors. In this context, we undertook a structure- based virtual screening approach combined to Molecular Dynamic (MD) simulations to evaluate whether new molecules with binding affinity towards PfATP4 could be identified from the Pandemic Response Box (PRB), a 400-compound library of small molecules launched in 2019 by MMV. Our analysis identified new molecules from the PRB library that showed affinity for distinct binding sites including the previously known G358 site, several of which are clinically used anti-bacterial (MMV1634383, MMV1634402), antiviral (MMV010036, MMV394033) or antifungal (MMV1634494) agents. Therefore, this study highlights the possibility of exploiting PRB molecules against Malaria through abrogation of PfATP4 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Keerthy Reghunandanan
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| | - Akhila T P
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nandini Krishnan
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| | - Darsana K M
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| | - Roshny Prasad
- DBT-Rajiv Gandhi Centre for Biotechnology, Bioinformatics Laboratory, Thiruvananthapuram, India
| | - Shijulal Nelson-Sathi
- DBT-Rajiv Gandhi Centre for Biotechnology, Bioinformatics Laboratory, Thiruvananthapuram, India
| | - Rajesh Chandramohanadas
- DBT-Rajiv Gandhi Centre for Biotechnology, Red Cell Diseases Laboratory, Thiruvananthapuram, India
| |
Collapse
|
2
|
Malani M, Hiremath MS, Sharma S, Jhunjhunwala M, Gayen S, Hota C, Nirmal J. Interaction of systemic drugs causing ocular toxicity with organic cation transporter: an artificial intelligence prediction. J Biomol Struct Dyn 2024; 42:5207-5218. [PMID: 37340665 DOI: 10.1080/07391102.2023.2226717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Chronic disease patients (cancer, arthritis, cardiovascular diseases) undergo long-term systemic drug treatment. Membrane transporters in ocular barriers could falsely recognize these drugs and allow their trafficking into the eye from systemic circulation. Hence, despite their pharmacological activity, these drugs accumulate and cause toxicity at the non-target site, such as the eye. Since around 40% of clinically used drugs are organic cation in nature, it is essential to understand the role of organic cation transporter (OCT1) in ocular barriers to facilitate the entry of systemic drugs into the eye. We applied machine learning techniques and computer simulation models (molecular dynamics and metadynamics) in the current study to predict the potential OCT1 substrates. Artificial intelligence models were developed using a training dataset of a known substrates and non-substrates of OCT1 and predicted the potential OCT1 substrates from various systemic drugs causing ocular toxicity. Computer simulation studies was performed by developing the OCT1 homology model. Molecular dynamic simulations equilibrated the docked protein-ligand complex. And metadynamics revealed the movement of substrates across the transporter with minimum free energy near the binding pocket. The machine learning model showed an accuracy of about 80% and predicted the potential substrates for OCT1 among systemic drugs causing ocular toxicity - not known earlier, such as cyclophosphamide, bupivacaine, bortezomib, sulphanilamide, tosufloxacin, topiramate, and many more. However, further invitro and invivo studies are required to confirm these predictions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Malani
- Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Manthan S Hiremath
- Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Surbhi Sharma
- Department of Computer Science and Information Systems (CSIS), Birla Institute of Technology & Science-Pilani, Hyderabad, Telangana, India
| | - Manisha Jhunjhunwala
- Department of Computer Science and Information Systems (CSIS), Birla Institute of Technology & Science-Pilani, Hyderabad, Telangana, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Chittaranjan Hota
- Department of Computer Science and Information Systems (CSIS), Birla Institute of Technology & Science-Pilani, Hyderabad, Telangana, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide-Mcl1 Complexes. Biomolecules 2020; 10:biom10081114. [PMID: 32731448 PMCID: PMC7463671 DOI: 10.3390/biom10081114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.
Collapse
|
4
|
Marimuthu P, Razzokov J, Eshonqulov G. Disruption of conserved polar interactions causes a sequential release of Bim mutants from the canonical binding groove of Mcl1. Int J Biol Macromol 2020; 158:364-374. [PMID: 32376253 DOI: 10.1016/j.ijbiomac.2020.04.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Mcl1 is an important anti-apoptotic member of the Bcl2 family proteins that are upregulated in several cancer malignancies. The canonical binding groove (CBG) located at the surface of Mcl1 exhibits a critical role in binding partners selectively via the BH3-domain of pro-apoptotic Bcl2 family members that trigger the downregulation of Mcl1 function. There are several crystal structures of point-mutated pro-apoptotic Bim peptides in complex with Mcl1. However, the mechanistic effects of such point-mutations towards peptide binding and complex stability still remain unexplored. Here, the effects of the reported point mutations in Bim peptides and their binding mechanisms to Mcl1 were computationally evaluated using atomistic-level steered molecular dynamics (SMD) simulations. A range of external-forces and constant-velocities were applied to the Bim peptides to uncover the mechanistic basis of peptide dissociation from the CBG of Mcl1. Although the peptides showed similarities in their dissociation pathways, the peak rupture forces varied significantly. According to simulations results, the disruption of the conserved polar contacts at the complex interface causes a sequential release of the peptides from the CBG of Mcl1. Overall, the results obtained from the current study may provide valuable insights for the development of novel anti-cancer peptide-inhibitors that can downregulate Mcl1's function.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL), Biochemistry and Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Gofur Eshonqulov
- Department of Physics, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
| |
Collapse
|
5
|
Li T, Cui Y, Wu B. Molecular dynamics investigations of structural and functional changes in Bcl-2 induced by the novel antagonist BDA-366. J Biomol Struct Dyn 2018; 37:2527-2537. [DOI: 10.1080/07391102.2018.1491424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, P. R. China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
6
|
Marimuthu P, Singaravelu K. Unraveling the molecular mechanism of benzothiophene and benzofuran scaffold-merged compounds binding to anti-apoptotic Myeloid cell leukemia 1. J Biomol Struct Dyn 2018; 37:1992-2003. [DOI: 10.1080/07391102.2018.1474805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Parthiban Marimuthu
- Faculty of Science and Engineering, Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku, Finland
| | - Kalaimathy Singaravelu
- Department of Information Technology, Turku Centre for Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Marimuthu P, Singaravelu K. Prediction of Hot Spots at Myeloid Cell Leukemia-1-Inhibitor Interface Using Energy Estimation and Alanine Scanning Mutagenesis. Biochemistry 2018; 57:1249-1261. [PMID: 29345906 PMCID: PMC6203182 DOI: 10.1021/acs.biochem.7b01048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Myeloid
cell leukemia 1 (Mcl1) is an antiapoptotic protein that
plays central role in apoptosis regulation. Also, Mcl1 has the potency
to resist apoptotic cues resulting in up-regulation and cancer cell
protection. A molecular probe that has the potential to specifically
target Mcl1 and thereby provoke its down-regulatory activity is very
essential. The aim of the current study is to probe the internal conformational
dynamics of protein motions and potential binding mechanism in response
to a series of picomolar range Mcl1 inhibitors using explicit-solvent
molecular dynamics (MD) simulations. Subsequently, domain cross-correlation
and principal component analysis was performed on the snapshots obtained
from the MD simulations. Our results showed significant differences
in the internal conformational dynamics of Mcl1 with respect to binding
affinity values of inhibitors. Further, the binding free energy estimation,
using three different samples, was performed on the MD simulations
and revealed that the predicted energies (ΔGmmgbsa) were in good correlation with the experimental
values (ΔGexpt). Also, the energies
obtained using all sampling models were efficiently ranked. Subsequently,
the decomposition energy analysis highlighted the major energy-contributing
residues at the Mcl1 binding pocket. Computational alanine scanning
performed on high energy-contributing residues predicted the hot spot
residues. The dihedral angle analysis using MD snapshots on the predicted
hot spot residue exhibited consistency in side chain conformational
motion that ultimately led to strong binding affinity values. The
findings from the present study might provide valuable guidelines
for the design of novel Mcl1 inhibitors that might significantly improve
the specificity for new-generation chemotherapeutic agents.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL), Faculty of Science and Engineering, Biochemistry, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland.,Department of Biology, Albany State University , 504 College Dr., Albany, Georgia, United States
| | | |
Collapse
|
8
|
Marimuthu P, Balasubramanian PK, Singaravelu K. Deciphering the crucial molecular properties of a series of Benzothiazole Hydrazone inhibitors that targets anti-apoptotic Bcl-xL protein. J Biomol Struct Dyn 2017; 36:2654-2667. [DOI: 10.1080/07391102.2017.1365771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Parthiban Marimuthu
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku FI-20520, Finland
- Department of Biology, Albany State University, 504 College Drive, Albany, GA, USA
| | - Pavithra K. Balasubramanian
- Department of Biomedical Sciences, College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 61452, Republic of Korea
| | | |
Collapse
|
9
|
Marimuthu P, Singaravelu K. Deciphering the crucial residues involved in heterodimerization of Bak peptide and anti-apoptotic proteins for apoptosis. J Biomol Struct Dyn 2017; 36:1637-1648. [PMID: 28511583 DOI: 10.1080/07391102.2017.1331863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- a Structural Bioinformatics Laboratory (SBL), Faculty of Science and Engineering, Biochemistry , Åbo Akademi University , Turku , FI , 20520 , Finland.,b Department of Biology , Albany State University , 504 College Drive, Albany , GA , USA
| | - Kalaimathy Singaravelu
- c Department of Information Technology , University of Turku , Turku , FI , 20520 , Finland
| |
Collapse
|
10
|
Karami M, Jalali C, Mirzaie S. Combined virtual screening, MMPBSA, molecular docking and dynamics studies against deadly anthrax: An in silico effort to inhibit Bacillus anthracis nucleoside hydrolase. J Theor Biol 2017; 420:180-189. [DOI: 10.1016/j.jtbi.2017.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
11
|
Rosas-Trigueros JL. The importance of evolutionarily conserved C-terminal basic residues for the stability of proapoptotic Bax protein. FEBS Open Bio 2016; 6:976-986. [PMID: 27761357 PMCID: PMC5055034 DOI: 10.1002/2211-5463.12096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/08/2022] Open
Abstract
Bax is a protein that promotes apoptosis (a form of cell death). The atomistic details of the mechanism by which Bax is activated during apoptosis remain a subject of debate. C‐terminal basic residues in the sequence of Bax show remarkable conservation across a variety of species. The role of these charged residues in the stability of Bax was investigated by submitting substituted mutants to molecular dynamics simulations at high temperatures. Mutation of either or both K189 and K190 led to dramatic changes in helical content, radius of gyration, proximity of the C terminus to the core of the protein, exposure of the BH3 domain, and bundling of the core. These results suggest a critical role of positively charged residues close to the C terminus in the structural stability of Bax.
Collapse
Affiliation(s)
- Jorge L Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos SEPI de la ESCOM del Instituto Politécnico Nacional México DF México
| |
Collapse
|
12
|
Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation. Sci Rep 2016; 6:29502. [PMID: 27381287 PMCID: PMC4933972 DOI: 10.1038/srep29502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 11/27/2022] Open
Abstract
Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.
Collapse
|
13
|
Kuznetsov A, Kivi R, Järv J. Computational modeling of acrylodan-labeled cAMP dependent protein kinase catalytic subunit unfolding. Comput Biol Chem 2016; 61:197-201. [PMID: 26896699 DOI: 10.1016/j.compbiolchem.2016.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/11/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Structure of the cAMP-dependent protein kinase catalytic subunit, where the asparagine residue 326 was replaced with acrylodan-cystein conjugate to implement this fluorescence reporter group into the enzyme, was modeled by molecular dynamics (MD) method and the positioning of the dye molecule in protein structure was characterized at temperatures 300K, 500K and 700K. It was found that the acrylodan moiety, which fluorescence is very sensitive to solvating properties of its microenvironment, was located on the surface of the native protein at 300K that enabled its partial solvation with water. At high temperatures the protein structure significantly changed, as the secondary and tertiary structure elements were unfolded and these changes were sensitively reflected in positioning of the dye molecule. At 700K complete unfolding of the protein occurred and the reporter group was entirely expelled into water. However, at 500K an intermediate of the protein unfolding process was formed, where the fluorescence reporter group was directed towards the protein interior and buried in the core of the formed molten globule state. This different positioning of the reporter group was in agreement with the two different shifts of emission spectrum of the covalently bound acrylodan, observed in the unfolding process of the protein.
Collapse
Affiliation(s)
- Aleksei Kuznetsov
- Institute of Chemistry, University of Tartu, 14A Ravila Str., 50411 Tartu, Estonia
| | - Rait Kivi
- Institute of Chemistry, University of Tartu, 14A Ravila Str., 50411 Tartu, Estonia
| | - Jaak Järv
- Institute of Chemistry, University of Tartu, 14A Ravila Str., 50411 Tartu, Estonia.
| |
Collapse
|
14
|
Affiliation(s)
- Zhenyan Jiang
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, 91058Germany
| | - Hansi Zhang
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, 91058Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, 91058Germany
| |
Collapse
|
15
|
Guo Z, Thorarensen A, Che J, Xing L. Target the More Druggable Protein States in a Highly Dynamic Protein--Protein Interaction System. J Chem Inf Model 2015; 56:35-45. [PMID: 26650754 DOI: 10.1021/acs.jcim.5b00503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proteins of the Bcl-2 family play key roles in the regulation of programmed cell death by controlling the integrity of the outer mitochondrial membrane and the initiation of the apoptosis process. We performed extensive molecular dynamics simulations to investigate the conformational flexibility of the Bcl-xL protein in both the apo and holo (with Bad peptide and ABT-737) states. The accelerated molecular dynamics method implemented in Amber 14 was used to produce broader conformational sampling of 200 ns simulations. The pocket mining method based on the variational implicit-solvent model tracks the dynamic evolution of the ligand binding site with a druggability score characterizing the maximal affinity achievable by a drug-like molecule. Major movements were observed around the α3-helical domain and the loop region connecting the α1 and α2 helices, reshaping the ligand interaction in the BH3 binding groove. Starting with the apo crystal structure, which is recognized as "closed" and undruggable, the BH3 groove transitioned between the "open" and "closed" states during equilibrium simulation. Further analysis revealed a small percentage of the trajectory frames (∼10%) with a moderate degree of druggability that mimic the ligand-bound states. The ability to attain and detect by computer simulation the most suitable conformational states for ligand binding in advance of compound synthesis and crystal structure solution is of immense value to the application and success of structure-based drug design.
Collapse
Affiliation(s)
- Zuojun Guo
- Worldwide Medicinal Chemistry, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| | - Atli Thorarensen
- Worldwide Medicinal Chemistry, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| | - Jianwei Che
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Li Xing
- Worldwide Medicinal Chemistry, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Selvaraj C, Priya RB, Lee JK, Singh SK. Mechanistic insights of SrtA–LPXTG blockers targeting the transpeptidase mechanism in Streptococcus mutans. RSC Adv 2015. [DOI: 10.1039/c5ra12869b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The SrtA–LPXTG interaction plays a key role in transpeptidation reaction, cell wall and biofilm formations. This study explains the blocking of LEU interactions with SrtA will results as SrtA inhibitors through MD simulation and energy calculations methods.
Collapse
Affiliation(s)
| | - Ramanathan Bharathi Priya
- Department of Bioinformatics
- Computer Aided Drug Design and Molecular Modeling Lab
- Alagappa University
- Karaikudi-630003
- India
| | - Jung-Kul Lee
- Department of Chemical Engineering
- Konkuk University
- Seoul
- Korea
| | - Sanjeev Kumar Singh
- Department of Bioinformatics
- Computer Aided Drug Design and Molecular Modeling Lab
- Alagappa University
- Karaikudi-630003
- India
| |
Collapse
|
17
|
Zhao RN, Fan S, Han JG, Liu G. Molecular dynamics study of segment peptides of Bax, Bim, and Mcl-1 BH3 domain of the apoptosis-regulating proteins bound to the anti-apoptotic Mcl-1 protein. J Biomol Struct Dyn 2014; 33:1067-81. [PMID: 24865469 DOI: 10.1080/07391102.2014.929028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mcl-1 has emerged as a potential therapeutic target in the treatment of several malignancies. Peptides representing BH3 region of pro-apoptotic proteins have been shown to bind the hydrophobic cleft of anti-apoptotic Mcl-1 and this segment is responsible for modulating the apoptotic pathways in living cells. Understanding the molecular basis of protein-peptide interaction is required to develop potent inhibitors specific for Mcl-1. Molecular dynamics simulations were performed for Mcl-1 in complex with three different BH3 peptides derived from Mcl-1, Bax, and Bim. Accordingly, the calculated binding free energies using MM-PBSA method are obtained and comparison with the experimentally determined binding free energies is made. The interactions involving two conserved charged residues (Aspi, and Arg/Lysi-4) and three upstream conserved hydrophobic residues (Leui-5, Ile/Vali-2, and Glyi-1, respectively) of BH3 peptides play the important roles in the structural stability of the complexes. The calculated results exhibit that the interactions of Bim BH3 peptides to Mcl-1 is stronger than the complex with Bax 19BH3 peptides. The hydrophobic residues (position i - 9, i - 8 and i + 2) of BH3 peptides can be involved in their inhibitory specificity. The calculated results can be used for designing more effective MCL-1 inhibitors.
Collapse
Affiliation(s)
- Run-Ning Zhao
- a Institute of Applied Mathematics and Physics , Shanghai Dianji University , Shanghai 201306 , P.R. China
| | | | | | | |
Collapse
|
18
|
Sahoo BR, Maharana J, Patra MC, Bhoi GK, Lenka SK, Dubey PK, Goyal S, Dehury B, Pradhan SK. Structural and dynamic investigation of bovine folate receptor alpha (FOLR1), and role of ultra-high temperature processing on conformational and thermodynamic characteristics of FOLR1-folate complex. Colloids Surf B Biointerfaces 2014; 121:307-18. [PMID: 25023142 DOI: 10.1016/j.colsurfb.2014.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/12/2014] [Accepted: 05/17/2014] [Indexed: 01/12/2023]
Abstract
The folate receptor alpha (FOLR1) present in milk has widely been studied to investigate the effects of pasteurization, ultra-high temperature (UHT) processing and fermentation on net folate concentration. However, the folate binding mechanism with FOLR1, and effect of temperature on FOLR1-folate complex is poorly explored till now in bovine milk which is a chief resource of folate. Despite of enormous importance of folic acid and the routine intake of bovine milk, folic acid deficiency diseases are common in human race. To understand the folate deficiency in milk after processing, in absence of experimental structure, 3D model of bovine FOLR1 (bvFOLR1) was built followed by 40ns molecular dynamics (MD) simulation. The folate and its derivatives binding sites in bvFOLR1 were anticipated by molecular docking using AutoDock 4.2. Essential MD studies suggested the presence of a longer signal peptide (22 residues) and a short propeptide (7 residues) at the C-terminus that may cleaved during post-translational modification. MD analysis of bvFOLR1-folate complex at 298, 323, 353, 373 and 408K followed by binding energy (BE) calculation showed maximum binding affinity at ∼353K. However, at 373K and UHT (408K), the folate BE is significantly decreased with substantial conformational alteration. Heating at UHT followed by cooling within 298-408K range demoed no structural reformation with temperature reduction, and the folate was displaced from the active site. This study presented the disintegration of folate from bvFOLR1 during high temperature processing and revealed a lower folate concentration in UHT milk and dairy products.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751001, India; Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka Prefecture, 5650871, Japan.
| | - Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751001, India; Biotechnology Laboratory, Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Mahesh Chandra Patra
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751001, India; Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India
| | - Gopal Krushna Bhoi
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751001, India
| | - Santosh Kumar Lenka
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751001, India
| | - Praveen Kumar Dubey
- Immunology Frontier Research Centre, Osaka University, Osaka Prefecture, 5650871, Japan
| | - Shubham Goyal
- RIKEN Center for Life Science Technologies, Yokohama, 2300045, Japan
| | - Budheswar Dehury
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, 751001, India
| |
Collapse
|
19
|
Han E, Lee H. Effect of the structural difference between Bax-α5 and Bcl-xL-α5 on their interactions with lipid bilayers. Phys Chem Chem Phys 2014; 16:981-8. [DOI: 10.1039/c3cp53486c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Coimbra JT, Sousa SF, Fernandes PA, Rangel M, Ramos MJ. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. J Biomol Struct Dyn 2013; 32:88-103. [DOI: 10.1080/07391102.2012.750250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
John S, Thangapandian S, Lee KW. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies. J Biomol Struct Dyn 2012; 29:921-36. [PMID: 22292952 DOI: 10.1080/07391102.2012.10507419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.
Collapse
Affiliation(s)
- Shalini John
- Division of Applied Life Science_(BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC) Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju 660-701, Republic of Korea
| | | | | |
Collapse
|
22
|
Matos KS, da Cunha EF, da Silva Gonçalves A, Wilter A, Kuča K, França TC, Ramalho TC. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: can mouse data provide new insights into humans? J Biomol Struct Dyn 2012; 30:546-58. [DOI: 10.1080/07391102.2012.687521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Zhang Z, Liu M, Li B, Wang Y, Yue J, Liang L, Sun J. Exploring the mechanism of a regulatory SNP of KLK3 by molecular dynamics simulation. J Biomol Struct Dyn 2012; 31:426-40. [PMID: 22877366 DOI: 10.1080/07391102.2012.703067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SNP -158G>A of KLK3 has been validated as a regulatory SNP (rSNP) by molecular biology assays, but the mechanism of how it affects the binding of an androgen receptor (AR) homodimer with DNA is unclear. In the current study, molecular dynamics simulation was adopted to explain its inner cause. Based on a recent review), three types of intermolecular forces were analyzed, and the differences among them were compared between complexes containing -158 A:T and -158 G:C. Extra hydrophobic contacts caused by the methyl group on the mutated thymine were the most crucial factor to the regulatory effect of this rSNP. Further analysis concerning the relative motion of the two recognition helixes of the AR homodimer indicated that the hydrophobic interactions between the recognition helix B and the major groove containing -158 A:T changed that helix's motion greatly from swaying in a plane at free state to vibrating slightly around an equilibrium position. A relatively full explanation on the occurrence of rSNP -158G>A is presented here.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang ZJ, Si YX, Oh S, Yang JM, Yin SJ, Park YD, Lee J, Qian GY. The effect of fucoidan on tyrosinase: computational molecular dynamics integrating inhibition kinetics. J Biomol Struct Dyn 2012; 30:460-73. [PMID: 22694253 DOI: 10.1080/07391102.2012.682211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucoidan is a complex sulfated polysaccharide extracted from brown seaweed and has a wide variety of biological activities. In this study, we investigated the inhibitory effect of fucoidan on tyrosinase via a combination of inhibition kinetics and computational simulations. Fucoidan reversibly inhibited tyrosinase in a mixed-type manner. Time-interval kinetics showed that the inhibition was processed as first order with biphasic processes. For further insight, we simulated dockings with various sizes of molecular models (monomer to decamer) of fucoidan and showed that the best binding energy change results were obtained from the pentamer (-1.89 kcal/mol) and the hexamer (-1.97 kcal/mol) models of AutoDock Vina. The molecular dynamics simulation confirmed the binding mechanisms between tyrosinase and fucoidan and suggested that fucoidan mostly interacts with several residues including copper ions located in the active site. Our study suggests that fucoidan might be a potential natural antipigment agent.
Collapse
Affiliation(s)
- Zhi-Jiang Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Majumder R, Roy S, Thakur AR. Analysis of Delta–Notch interaction by molecular modeling and molecular dynamic simulation studies. J Biomol Struct Dyn 2012; 30:13-29. [DOI: 10.1080/07391102.2012.674184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Thangapandian S, John S, Lee KW. Molecular Dynamics Simulation Study Explaining Inhibitor Selectivity in Different Class of Histone Deacetylases. J Biomol Struct Dyn 2012; 29:677-98. [DOI: 10.1080/07391102.2012.10507409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Hamza A, Wei NN, Johnson-Scalise T, Naftolin F, Cho H, Zhan CG. Unveiling the Unfolding Pathway of F5F8D Disorder-Associated D81H/V100D Mutant of MCFD2viaMultiple Molecular Dynamics Simulations. J Biomol Struct Dyn 2012; 29:699-714. [DOI: 10.1080/07391102.2012.10507410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Ramakrishnan V, Jagannathan S, Shaikh AR, Rajagopalan R. Dynamic and Structural Changes in the Minimally Restructuring EcoRI Bound to a Minimally Mutated DNA Chain. J Biomol Struct Dyn 2012; 29:743-56. [DOI: 10.1080/073911012010525020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Cao Z, Liu L, Wang J. Why the OPLS-AA Force Field Cannot Produce the β-Hairpin Structure of H1 Peptide in Solution When Comparing with the GROMOS 43A1 Force Field? J Biomol Struct Dyn 2011; 29:527-39. [DOI: 10.1080/07391102.2011.10507403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Rosas-Trigueros JL, Correa-Basurto J, Benítez-Cardoza CG, Zamorano-Carrillo A. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures. Protein Sci 2011; 20:2035-46. [PMID: 21936009 DOI: 10.1002/pro.740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 01/05/2023]
Abstract
Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment.
Collapse
Affiliation(s)
- Jorge Luis Rosas-Trigueros
- SEPI de la ESCOM del Instituto Politécnico Nacional, Juan de Dios Bátiz y Miguel Othón de Mendizábal s/n, México DF, México
| | | | | | | |
Collapse
|
31
|
Serikov R, Petyuk V, Vorobijev Y, Koval V, Fedorova O, Vlassov V, Zenkova M. Mechanism of antisense oligonucleotide interaction with natural RNAs. J Biomol Struct Dyn 2011; 29:27-50. [PMID: 21696224 DOI: 10.1080/073911011010524987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligonucleotides find several numbers of applications: as diagnostic probes, RT and PCR primers and antisense agents due to their ability of forming specific interactions with complementary nucleotide sequences within nucleic acids. These interactions are strongly affected by accessibility of the target sequence in the RNA structure. In the present work the mechanism of invasion of RNA structure by oligonucleotide was investigated using a model system: yeast tRNA(Phe) and oligonucleotides complementary to the 3'-part of this molecule. Kinetics of interaction of oligonucleotides with in vitro transcript of yeast tRNAPhe was studied using stopped-flow technique with fluorescence quenching detection, 5'-DABCYL labeled oligonucleotide was hybridized with 3'-fluorescein labeled tRNA(Phe). The results evidence for a four-step invasion process of the oligonucleotide-RNA complex formation. The process is initiated by formation of transition complexes with nucleotides in the T-loop and ACCA sequence. This complex formation is followed by RNA unfolding and formation of an extended heteroduplex with the oligonucleotide via strand displacement process. Computer modeling of oligonucleotide-tRNA(Phe) interaction revealed potential factors that could favor transition complexes formation and confirmed the proposed mechanism, showing the oligonucleotide to be a molecular "wedge". Our data evidence that oligonucleotide invasion into structured RNA is initiated by loop-single strand interactions, similar to the initial step of the antisense RNA-RNA interactions. The obtained results can be used for choosing efficient oligonucleotide probes.
Collapse
Affiliation(s)
- R Serikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
32
|
Jurkowski W, Kułaga T, Roterman I. Geometric parameters defining the structure of proteins--relation to early-stage folding step. J Biomol Struct Dyn 2011; 29:79-104. [PMID: 21696227 DOI: 10.1080/07391102.2011.10507376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two geometrical parameters describing the structure of a polypeptide: V-dihedral angle between two sequential peptide bond planes and R-radius of curvature are used for structural classification of polypeptide structure in proteins. The relation between these two parameters was the basis for the definition of the conformational sub-space for early-stage structural forms. The cluster analysis of V and lnR, applied to the selected proteins of well-defined secondary structure (according to DSSP classification) and to proteins without any introductory classified analysis, revealed that several of the discriminated groups of proteins agree with the assumed model of early-stage conformational sub-space. This analysis shows that protein structures may be represented in VR space instead of Phi, Psi angles space, thus lowering the conformational space dimensionality. The VR model allows classification of traditional secondary structure elements as well as different Random Coil motifs, which broadens the range of recognized structural categories (compared to standard secondary structure elements).
Collapse
Affiliation(s)
- W Jurkowski
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Department of Bioinformatics and Telemedicine, Lazarza 16, 31-530 Krakow, Poland
| | | | | |
Collapse
|
33
|
Dey R, Chen L. In search of allosteric modulators of a7-nAChR by solvent density guided virtual screening. J Biomol Struct Dyn 2011; 28:695-715. [PMID: 21294583 DOI: 10.1080/07391102.2011.10508600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR) are pentameric ligand gated ion channels whose activity can be modulated by endogenous neurotransmitters as well as by synthetic ligands that bind the same or distinct sites from the natural ligand. The subtype of α7 nAChR has been considered as a potenial therapeutic target for Alzheimer's disease, schizophrenia and other neurological and psychiatric disorders. Here we have developed a homology model of α7 nAChR based on two high resolution crystal structures with Brookhaven Protein Data Bank (PDB) codes 2QC1 and 2WN9 for threading on one monomer and then for building a pentamer, respectively. A number of small molecule binding sites are identified using Pocket Finder (J. An, M. Tortov, and R. Abagyan, Molecular & Cellular Proteomics, 4.6, 752-761 (2005)) of Internal Coordinate Mechanics (ICM). Remarkably, these computer-identified sites match perfectly with ordered solvent densities found in the high-resolution crystal structure of α1 nAChR, suggesting that the surface cavities in the α7 nAChR model are likely binding sites of small molecules. A high throughput virtual screening by flexible ligand docking of 5008 small molecule compounds was performed at three potential allosteric modulator (AM) binding sites of α7 nAChR using Molsoft ICM software (R. Abagyan, M. Tortov and D. Kuznetsov, J Comput Chem 15, 488-506, (1994)). Some experimentally verified allosteric modulators of α7 like CCMI comp-6, LY 7082101, 5-HI, TQS, PNU-120596, genistein, and NS-1738 ranked among top 100 compounds, while the rest of the compounds in the list could guide further search for new allosteric modulators.
Collapse
Affiliation(s)
- Raja Dey
- Molecular and Computational Biology, Department of Biological Sciences,University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
34
|
Semighini EP, Resende JA, de Andrade P, Morais PAB, Carvalho I, Taft CA, Silva CHTP. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes. J Biomol Struct Dyn 2011; 28:787-96. [PMID: 21294589 DOI: 10.1080/07391102.2011.10508606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Collapse
Affiliation(s)
- Evandro P Semighini
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe, s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Chang TT, Sun MF, Chen HY, Tsai FJ, Fisher M, Lin JG, Chen CYC. Screening from the world's largest TCM database against H1N1 virus. J Biomol Struct Dyn 2011; 28:773-86. [PMID: 21294588 DOI: 10.1080/07391102.2011.10508605] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The swine influenza virus (H1N1) 2009 pandemic highlights the importance of having effective anti-viral strategies. Recently, oseltamivir (Tamiflu) resistant influenza viruses are identified; which further emphasizes the urgency in developing new antiviral agents. In influenza virus replication cycle, viral surface glycoprotein, hemagglutinin, is responsible for viral entry into host cells. Hence, a potentially effective antiviral strategy is to inhibit viral entry mechanism. To develop novel antiviral agent that inhibits viral entry, we analyzed 20,000 traditional Chinese medicine (TCM) ingredients in hemagglutinin subtype H1 sialic acid binding site found on H1N1 virus. We then performed molecular dynamics simulations to investigate receptor-ligand interaction of the candidates obtained from docking. Here, we report three TCM derivatives that have high binding affinities to H1 sialic acid binding site residues based on structure-based calculations. The top three derivatives, xylopine_2, rosmaricine_14 and rosmaricine_15, all have an amine group that interact with Glu83 and a pyridinium group that interact with Asp103. Molecular dynamics simulations show that these derivatives form strong hydrogen bonding with Glu83 but interact transiently with Asp103. We therefore suggest that an enhanced hemagglutinin inhibitor, based on our scaffold, should be designed to bind both Glu83 and Asp103 with high affinity.
Collapse
Affiliation(s)
- Tung-Ti Chang
- Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu X, Su J, Chen W, Wang C. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation. J Biomol Struct Dyn 2011; 28:717-27. [PMID: 21294584 DOI: 10.1080/07391102.2011.10508601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The thermo-stability and unfolding behaviors of a small hyperthermophilic protein Sso7d as well as its single-point mutation F31A are studied by molecular dynamics simulation at temperatures of 300 K, 371 K and 500 K. Simulations at 300 K show that the F31A mutant displays a much larger flexibility than the wild type, which implies that the mutation obviously decreases the protein's stability. In the simulations at 371 K, although larger fluctuations were observed, both of these two maintain their stable conformations. High temperature simulations at 500 K suggest that the unfolding of these two proteins evolves along different pathways. For the wild-type protein, the C-terminal alpha-helix is melted at the early unfolding stage, whereas it is destroyed much later in the unfolding process of the F31A mutant. The results also show that the mutant unfolds much faster than its parent protein. The deeply buried aromatic cluster in the F31A mutant dissociates quickly relative to the wild-type protein at high temperature. Besides, it is found that the triple-stranded antiparallel β-sheet in the wild-type protein plays an important role in maintaining the stability of the entire structure.
Collapse
Affiliation(s)
- Xianjin Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | |
Collapse
|
37
|
Majumder R, Roy S, Thakur AR. Molecular Modeling and Molecular Dynamics Simulation Studies of Delta-Notch Complex. J Biomol Struct Dyn 2011; 29:297-310. [DOI: 10.1080/07391102.2011.10507386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Behmard E, Abdolmaleki P, Asadabadi EB, Jahandideh S. Prevalent Mutations of Human Prion Protein: A Molecular Modeling and Molecular Dynamics Study. J Biomol Struct Dyn 2011; 29:379-89. [DOI: 10.1080/07391102.2011.10507392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Oliveira AA, Rennó MN, de Matos CAS, Bertuzzi MD, Ramalho TC, Fraga CA, França TCC. Molecular Modeling Studies ofYersinia pestisDihydrofolate Reductase. J Biomol Struct Dyn 2011; 29:351-67. [DOI: 10.1080/07391102.2011.10507390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Jani V, Sonavane UB, Joshi R. Microsecond scale replica exchange molecular dynamic simulation of villin headpiece: an insight into the folding landscape. J Biomol Struct Dyn 2011; 28:845-60. [PMID: 21469746 DOI: 10.1080/07391102.2011.10508612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Reaching the experimental time scale of millisecond is a grand challenge for protein folding simulations. The development of advanced Molecular Dynamics techniques like Replica Exchange Molecular Dynamics (REMD) makes it possible to reach these experimental timescales. In this study, an attempt has been made to reach the multi microsecond simulation time scale by carrying out folding simulations on a three helix bundle protein, Villin, by combining REMD and Amber United Atom model. Twenty replicas having different temperatures ranging from 295 K to 390 K were simulated for 1.5 µs each. The lowest Root Mean Square Deviation (RMSD) structure of 2.5 Å was obtained with respect to native structure (PDB code 1VII), with all the helices formed. The folding population landscapes were built using segment-wise RMSD and Principal Components as reaction coordinates. These analyses suggest the two-stage folding for Villin. The combination of REMD and Amber United Atom model may be useful to understand the folding mechanism of various fast folding proteins.
Collapse
Affiliation(s)
- Vinod Jani
- Bioinformatics Team, Scientific and Engineering Computing Group, Centre for Development of Advanced Computing, Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India
| | | | | |
Collapse
|
41
|
Su JG, Xu XJ, Li CH, Chen WZ, Wang CX. An Analysis of the Influence of Protein Intrinsic Dynamical Properties on its Thermal Unfolding Behavior. J Biomol Struct Dyn 2011; 29:105-21. [DOI: 10.1080/07391102.2011.10507377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
Chang KW, Tsai TY, Chen KC, Yang SC, Huang HJ, Chang TT, Sun MF, Chen HY, Tsai FJ, Chen CYC. iSMART: An Integrated Cloud Computing Web Server for Traditional Chinese Medicine for Online Virtual Screening,de novoEvolution and Drug Design. J Biomol Struct Dyn 2011; 29:243-50. [DOI: 10.1080/073911011010524988] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Purohit R, Rajendran V, Sethumadhavan R. Studies on Adaptability of Binding Residues Flap Region of TMC-114 Resistance HIV-1 Protease Mutants. J Biomol Struct Dyn 2011; 29:137-52. [DOI: 10.1080/07391102.2011.10507379] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Chang TT, Sun MF, Chen HY, Tsai FJ, Chen CYC. Drug design for hemagglutinin: Screening and molecular dynamics from traditional Chinese medicine database. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2010.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Sun MF, Chang TT, Chang KW, Huang HJ, Chen HY, Tsai FJ, Lin JG, Chen CYC. Blocking the DNA Repair System by Traditional Chinese Medicine? J Biomol Struct Dyn 2011; 28:895-906. [DOI: 10.1080/07391102.2011.10508616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Solov'eva TF, Likhatskaya GN, Khomenko VA, Stenkova AM, Kim NY, Portnyagina OY, Novikova OD, Trifonov EV, Nurminski EA, Isaeva MP. A novel OmpY porin from Yersinia pseudotuberculosis: structure, channel-forming activity and trimer thermal stability. J Biomol Struct Dyn 2011; 28:517-33. [PMID: 21142221 DOI: 10.1080/07391102.2011.10508592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A novel OmpY porin was predicted based on the Yersinia pseudotuberculosis genome analysis. Whereas it has the different genomic annotation such as "outer membrane protein N" (ABS46310.1) in str. IP 31758 or "outer membrane protein C2, porin" (YP_070481.1) in str. IP32953, it might be warranted to rename the OmpN/OmpC2 to OmpY, "outer membrane protein Y", where letter "Y" pertained to Yersinia. Both phylogenetic analysis and genomic localization clearly support that the OmpY porin belongs to a new group of general bacterial porins. The recombinant OmpY protein with its signal sequence was overexpressed in porin-deficient Escherichia coli strain. The mature rOmpY was shown to insert into outer membrane as a trimer. The OmpY porin, isolated from the outer membrane, was studied employing spectroscopic, electrophoretic and bilayer lipid membranes techniques. The far UV CD spectrum of rOmpY was essentially identical to that of Y. pseudotuberculosis OmpF. The near UV CD spectrum of rOmpY was weaker and smoother than that of OmpF. The rOmpY single-channel conductance was 180 ± 20 pS in 0.1 M NaCl and was lower than that of the OmpF porin. As was shown by electrophoretic and bilayer lipid membrane experiments, the rOmpY trimers were less thermostable than the OmpF trimers. The porins differed in the trimer-monomer transition temperature by about 20°C. The three-dimensional structural models of the Y. pseudotuberculosis OmpY and OmpF trimers were generated and the intra- and intermonomeric interactions stabilizing the porins were investigated. The difference in the thermal stability of OmpY and OmpF trimers was established to correlate with the difference in intermonomeric polar contacts.
Collapse
Affiliation(s)
- T F Solov'eva
- Pacific Institute of Bioorganic Chemistry FEBRAS, prospect 100-let Vladivostoku 159, Vladivostok 690022, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin CH, Chang TT, Sun MF, Chen HY, Tsai FJ, Chang KL, Fisher M, Chen CYC. Potent inhibitor design against H1N1 swine influenza: structure-based and molecular dynamics analysis for M2 inhibitors from traditional Chinese medicine database. J Biomol Struct Dyn 2011; 28:471-82. [PMID: 21142218 DOI: 10.1080/07391102.2011.10508589] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The rapid spread of influenza virus subtype H1N1 poses a great threat to million lives worldwide. To search for new anti-influenza compounds, we performed molecular docking and molecular dynamics simulation to identify potential traditional Chinese medicine (TCM) constituents that could block influenza M2 channel activity. Quinic acid, genipin, syringic acid, cucurbitine, fagarine, and methyl isoferulate all have extremely well docking results as compared to control amantadine. Further de novo drug design suggests that derivatives of genipin and methyl isoferulate could have enhanced binding affinity towards M2 channel. Selected molecular dynamics simulations of M2-derivative complexes show stable hydrogen bond interactions between the derivatives and M2 residues, Ser10 and Ala9. To our best knowledge, this is the first study on the anti-viral activity of the above listed TCM compounds.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou ZL, Zhao JH, Liu HL, Wu JW, Liu KT, Chuang CK, Tsai WB, Ho Y. The Possible Structural Models for Polyglutamine Aggregation: A Molecular Dynamics Simulations Study. J Biomol Struct Dyn 2011; 28:743-58. [DOI: 10.1080/07391102.2011.10508603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Olmez EO, Alakent B. Alpha7 Helix Plays an Important Role in the Conformational Stability of PTP1B. J Biomol Struct Dyn 2011; 28:675-93. [DOI: 10.1080/07391102.2011.10508599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Roy S, Thakur AR. Two models of Smad4 and Hoxa9 Complex are Proposed: Structural and Interactional Perspective. J Biomol Struct Dyn 2011; 28:729-42. [DOI: 10.1080/07391102.2011.10508602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|