1
|
Jin Y, Wu Q, Yang K, Xu Q, Bian Y, Qi MH, Zhu B, Ren GB, Hong M. A novel anion replaced gemini surfactant: Investigation on the primary interaction between gemini surfactant and BSA. Colloids Surf B Biointerfaces 2024; 247:114434. [PMID: 39644745 DOI: 10.1016/j.colsurfb.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Gemini surfactants (GS) could serve as the drug carrier agents for the delivery of macromolecules due to the excellent properties and tuneable structures. Little attention has been paid to the impact of counterion change on GS and the interaction between GS and protein. In this work, ibuprofen (Ibu) replaced quaternary ammonium ion GS (GS-Ibu) with the hydrophobic chain length of 8, 10, 12, 14 and 16 carbon atoms were prepared for the first-time using extraction technology. The prepared GS-Ibu has stronger electrostatic interaction compared to traditional gemini surfactants with bromide anions (GS-Br). GS were further incubated with the model macromolecule, bovine serum albumin (BSA), to form BSA/GS complexes. The colloid stability of BSA could be affected by the concentration of GS, the length of hydrophobic chain and the type of anion. GS-Ibu exhibited better ability to prevent BSA from aggregating based the result of PAGE test. The molecular level change of BSA after the introduction of GS was first reflected by UV-Visible absorption spectrum. CD spectrum results further revealed that the primary interaction leading to the change in the secondary structure of BSA is electrostatic interaction. Molecular docking and molecular dynamic simulations confirmed the presence of hydrophobic and electrostatic interaction between BSA and GS. In conclusion, the anion replaced GS could be a promising strategy to stabilize the proteins.
Collapse
Affiliation(s)
- Yuhao Jin
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Qi Wu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Ke Yang
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Qianlin Xu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yizhen Bian
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Ming-Hui Qi
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Guo-Bin Ren
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Minghuang Hong
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Bhat AR, Patel R. Exploring the binding mechanism and esterase-like activity of human serum albumin with levofloxacin and its choline based conjugates: A biophysical approach. Int J Biol Macromol 2024; 274:133011. [PMID: 38852730 DOI: 10.1016/j.ijbiomac.2024.133011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) effectively binds to compounds having different molecular weight and thus facilitates their distribution in the living organisms. Thus, the binding interactions between a potential antibacterial drug (levofloxacin) and synthesized choline based levofloxacinate conjugates with HSA have been explored. The binding efficacy and mechanism were explored by utilizing different spectroscopic techniques; UV-Visible, steady state fluorescence, time resolved fluorescence and esterase-like activity. The interactions between the ligands and protein were electrostatic as well as hydrophobic in nature. The influence of different ligands having different alkyl chain shows quenching of the fluorescence emission of HSA. The spontaneous binding/quenching of HSA with ligands was static in nature, validated by steady state and time resolved fluorescence spectroscopy. Also, the impact of these ligands on the conformation of the native HSA structure was evaluated by using circular dichroism spectroscopy. In combination to the structural change study, the native protein functionality was observed (in terms of 'esterase-like activity') which has been found to be on lower side due to ligand binding. Further, we have performed the reverse study to check the impact of HSA on the fluorescent fluoroquinolone drug. The current study may prove helpful in elucidating the chemico-biological interactions which may prove useful in the pharmaceuticals, pharmacology, and different biochemistry fields.
Collapse
Affiliation(s)
- Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
3
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Hadidi S. A binuclear Cu(I)-phosphine complex as a specific HSA site I binder: synthesis, X-ray structure determination, and a comprehensive HSA interaction analysis. J Biomol Struct Dyn 2023; 41:7616-7626. [PMID: 36120938 DOI: 10.1080/07391102.2022.2123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
In this research, we present a method for synthesis and a detailed description of geometry characterization of a novel binuclear Cu(I) phosphine complex, along with analysis of its interaction with HSA using spectroscopic and simulation methods. The Cu atoms are coordinated in a tetrahedral geometry, which results in coordination by two nitrogen atoms from the N,N'-(ethane-1,2-diyl)bis(1-(pyridin-2-yl)methanimine ligand (L), a chloride, and a PPh3. The complex binding constant to HSA in a biochemical environment was determined to be ∼106, which is indicative of a strong interaction. The fluorescence of HSA is significantly quenched by binding to the complex via a static mechanism, whereas the microenvironment of the tryptophan residue remains unchanged. A spontaneous binding process was indicated by a negative value for ΔG. Thermodynamic signatures reflect the dominance of hydrophobic forces during the interaction. The site marker competitive experiment combined with docking simulation analysis revealed the closeness position of the complex binding site to warfarin location in specific ligand site I of HSA. The information generated in the present study would be valuable to understand the interaction mechanistic and pharmacological behavior of Cu(I) complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Sultana R, Ali A, Twala C, Mehandi R, Rana M, Yameen D, Abid M, Rahisuddin. Synthesis, spectral characterization of pyrazole derived Schiff base analogs: molecular dynamic simulation, antibacterial and DNA binding studies. J Biomol Struct Dyn 2023; 41:13724-13751. [PMID: 36826451 DOI: 10.1080/07391102.2023.2179541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We have synthesized the pyrazole-bearing Schiff base derivatives (5a-5e) and (6a-6h) then the structural confirmation was supported by various spectral analyses. The antibacterial activity of all analogs was screened against bacterial strains Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonieae and Pseudomonas aeruginosa. In comparison to the reference drug ciprofloxacin, the lead analogs 5c and 6c showed potent activity, with MIC values of 64 µg/mL against E. coli and B. subtilis. Compound 5c showed a moderate effect with a MIC value of 128 µg/mL against B. subtilis, P. aeruginosa and K. pneumonieae, while compound 6c was against E. coli and P. aeruginosa. Furthermore, the compounds 5c and 6c displayed groove binding mode towards CT-DNA by absorption, emission, competitive fluorescence studies using EtBr, CD and time-resolved fluorescence studies. Thermodynamic parameters of analogs 5c and 6c with CT-DNA were also calculated at 298, 303 and 308K temperatures by UV-visible spectroscopy. The molecular docking studies give the docking score for all compounds with PDB codes: 1BNA and 2XCT. The MD simulation study of analogs 5c and 6c was also carried out. The pharmacokinetic and ADME properties were calculated for all of the synthesized analogs (5a-5e) and (6a-6h).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razia Sultana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumer Science, University of South Africa, Florida, South Africa
| | - Rabiya Mehandi
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Daraksha Yameen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Saraswat J, Kumar S, Alzahrani KA, Malik MA, Patel R. Experimental and Computational Characterisation of the Molecular Interactions between 1‐Butyl‐1‐methyl‐pyrrolidin‐1‐ium bis(trifluoromethanesulphonyl)imide and Human Serum Albumin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juhi Saraswat
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi 110025 India
| | - Shiv Kumar
- Department of Chemistry Kalindi College University of Delhi New Delhi 110008 India
| | - Khalid Ahmed Alzahrani
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
7
|
Sun S, Wang X, Lin R, Wang K. Deciphering the functional mechanism of zinc ions of PARP1 binding with single strand breaks and double strand breaks. RSC Adv 2022; 12:19029-19039. [PMID: 35865614 PMCID: PMC9240923 DOI: 10.1039/d2ra02683j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Poly(ADP-ribose)polymerase 1 (PARP1) is a key target for the treatment of cancer-related diseases, and plays an important role in biological processes such as DNA repair, regulating a variety of metabolic and signal transduction processes. Understanding the dynamic binding mechanisms between each domain of PARP1 and DNA is of great significance to deepen the understanding on the function of PARP1 and to facilitate the design of inhibitors. Herein, strategies such as classical molecular dynamics simulation, conformational analysis, binding free energy calculation and energy decomposition were used to shed light on the binding mechanisms of different DNA binding domains (DBDs, including ZnF1, ZnF2 and ZnF3) in PARP1 with DNA and on the influences of zinc ions on the binding process. On one hand, during binding with DNA, ZnF2 tends to expand its space to identify the DNA damage sites and ZnF1/ZnF2 recognizes the interfaces on both sides of DNA damage rather than one side during the process of DNA repair. More importantly, the stable secondary structure of L2 of ZnF2 (PRO146 to MET153) is the key conformational change for ZnF1 and ZnF2 to recognize DNA damage. Meanwhile, ZnF3 has little effect on the binding mechanisms of PARP1. On the other hand, for the structural differences of DBD domains, zinc ions in ZnF1 and ZnF2 (Zn1 and Zn2) have an impact not only on the conformational changes of PARP1, but also on the conformational changes brought by the interaction of double strand breaks (DSB) and single strand breaks (SSB). And meanwhile, Zn3 also has little effect on ZnF3 for the system of ZnF3/DSB. The findings presented in this work deepen the understanding on the functional mechanism of PARP1 and provide a theoretical basis for further study on the interaction between different inhibitors and DBD domains to design more potential inhibitors. Poly(ADP-ribose)polymerase 1 (PARP1) is a key target for treatment of cancer-related diseases. Detailed structural changes DBD in PARP1 during the binding process with DNA were investigated and the dynamic conformational differences of DBD caused by zinc ions were revealed.![]()
Collapse
Affiliation(s)
- Shuya Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road Guangzhou 510006 China
| | - Xin Wang
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering Guangzhou 510000 P. R. China
| | - Rongfeng Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine No. 232, Waihuan East Road Guangzhou 510006 China
| | - Kai Wang
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering Guangzhou 510000 P. R. China .,Abinitio Technology Company, Ltd Guangzhou 510640 P. R. China
| |
Collapse
|
8
|
|
9
|
Chen H, Chen J, Wan D, Zhang H, Mao C, Wang R. Self‐assembly of gemini amphiphiles with symmetrical tails in selective solvent. POLYM INT 2022. [DOI: 10.1002/pi.6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongrui Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University Nanjing 210023 China
| | - Jianfa Chen
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Daihong Wan
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Huikun Zhang
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Chengli Mao
- Shanghai Space Propulsion Technology Research Institute Shanghai 201100 China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
10
|
Ali A, Hasan P, Irfan M, Uddin A, Khan A, Saraswat J, Maguire R, Kavanagh K, Patel R, Joshi MC, Azam A, Mohsin M, Haque QMR, Abid M. Development of Oxadiazole-Sulfonamide-Based Compounds as Potential Antibacterial Agents. ACS OMEGA 2021; 6:27798-27813. [PMID: 34722980 PMCID: PMC8552329 DOI: 10.1021/acsomega.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
In this work, substituted 1,2,4-oxadiazoles (OX1-OX27) were screened against five bacterial strains, identified to be OX7 and OX11 as growth inhibitors with minimum inhibitory concentration (MIC) values of 31.25 and 15.75 μg/mL, respectively. The growth inhibitory property of OX7 and OX11 was further validated by disk diffusion, growth curve, and time kill curve assays. Both disrupted biofilm formation with 92-100% reduction examined by the XTT assay were further visualized by scanning electron microscopy analysis. These compounds in combination with ciprofloxacin also exhibit synergy against Escherichia coli cells. With insignificant cytotoxic behavior on HEK293 cells, human red blood cells, and Galleria mellonella larvae, OX11 was tested against 28 multidrug resistant environmental isolates of bacteria and showed inhibition of Kluyvera georgiana and Citrobacter werkmanii strains with 32 and 16 μg/mL MIC values, respectively. The synergistic behavior of OX11 with ampicillin showed many fold reductions in MIC values against K. georgiana and Klebsiella pneumoniae multidrug resistant strains. Further, transmission electron microscopy analysis of OX11-treated E. coli cells showed a significantly damaged cell wall, which resulted in the loss of integrity and cytosolic oozing. OX11 showed significant changes in the secondary structure of human serum albumin (HSA) in the presence of OX11, enhancing HSA stability. Overall, the study provided a suitable core for further synthetic alterations and development as an antibacterial agent.
Collapse
Affiliation(s)
- Asghar Ali
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Phool Hasan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amad Uddin
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ashba Khan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ronan Maguire
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Kevin Kavanagh
- Department
of Biology, Maynooth University, Maynooth, Co. Kildare ABC127 Ireland
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mukesh C. Joshi
- Motilal
Nehru College, University of Delhi, Benito Juarez Marg, South Campus, New Delhi 110021, India
| | - Amir Azam
- Department
of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd. Mohsin
- Metabolic
Engineering Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Qazi Mohd. Rizwanul Haque
- Microbiology
Research Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
11
|
Domínguez SE, Kohn B, Ääritalo T, Damlin P, Scheler U, Kvarnström C. Cationic polythiophene-anionic fullerene pair in water and water-dioxane: studies on hydrogen bonding capabilities, kinetic and thermodynamic properties. Phys Chem Chem Phys 2021; 23:21013-21028. [PMID: 34522930 DOI: 10.1039/d0cp05748g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite the vast array of solution- and solid-state bio-analytical, bioelectronic and optoelectronic applications of cationic polythiophenes (CPTs), the number of studies focused on the role of hydrogen bonding (H-bonding) between these and other molecules is scarce, regardless of whether H-bonding is expected to play an important role in several such applications. Also, despite the advantages of using cosolvents to systematically examine the molecular interactions, there are no such studies for CPTs to our knowledge. This work presents a steady-state UV-vis/fluorescence spectroscopic, kinetic and thermodynamic study on the H-bonding interactions between a water-soluble, cationic-anionic (isothiouronium-tetraphosphonate), polythiophene-fullerene donor-acceptor pair with two-point, charge-assisted H-bonding (CAHB) capabilities, tuned using water or a 1,4-dioxane-water mixture (W-DI). Both solvents generate photoinduced electron transfer (PET), fluorescence resonance energy transfer (FRET), spontaneous binding, H-bonding, ground-state complexing via multiple site binding, formation of micelle-like aggregates and equivalence points at a similar concentration of the quencher. However, in comparison with water, W-DI promotes less-ordered, less packed micellar aggregates, due to hydrophobic desolvation of the H-bond and larger solvent displacement during the PT1-4Fo complexation. This would decrease the extent of charge-transfer and the size of the sphere-of-quenching, mainly by displacements or rotations of the H-bonds, instead of elongations, together with a possible larger extent of diffusion-controlled static quenching. At [4Fo] larger than the equivalence point the micelles formed in water do not have available binding sites due to a tighter aggregation, causing a decrease in the quenching efficiency, while the micelles formed in W-DI start showing larger quenching efficiencies, possibly due to an increase in entropy that overcomes the desolvation of the H-bonding. These results could be useful when analyzing outputs from systems including CPTs with H-bonding capabilities, operating in (or casted from) solvents with clear differences in polarity and/or H-bonding capacity.
Collapse
Affiliation(s)
- Sergio E Domínguez
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| | - Benjamin Kohn
- Leibniz-Institut für, University of Turku, D-01069 Dresden, Germany
| | - Timo Ääritalo
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| | - Pia Damlin
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| | - Ulrich Scheler
- Leibniz-Institut für, University of Turku, D-01069 Dresden, Germany
| | - Carita Kvarnström
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| |
Collapse
|
12
|
Huang M, Huang X, Zuo Y, Yi Z, Liu H. Exploring the toxic effects and mechanism of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) on thyroxine-binding globulin (TBG): Synergy between spectroscopic and computations. LUMINESCENCE 2021; 36:1621-1631. [PMID: 34107557 DOI: 10.1002/bio.4103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
The interaction mechanism between thyroxine-binding globulin (TBG) and three methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was analyzed by steady-state fluorescence, ultraviolet-visible (UV-visible) spectroscopy, circular dichroism (CD), molecular docking and molecular dynamics simulation methods. The results of the molecular docking technique revealed that 2'-MeO-BDE-3, 5-MeO-BDE-47, and 3-MeO-BDE-100 combined with TBG at the active site. The steady-state fluorescence spectra displayed that MeO-PBDEs quenched the endogenous fluorescence of TBG through static quenching mechanism, and complex formation between MeO-PBDEs and TBG was further indicated by UV-vis spectroscopy. The thermodynamic quantities showed that the binding process is spontaneous, and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions, which are consistent with the results of molecular docking to a certain extent. The results of CD confirmed that the secondary structure of TBG was changed after combining with MeO-PBDEs. The dynamic simulation results illustrated that the protein structure is more compact and changes in the secondary structure of TBG after binding to MeO-PBDEs. Additionally, we also utilized the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method to analyze the binding free energy of TBG and MeO-PBDEs. The results suggest that van der Waals force plays an essential role in the combination.
Collapse
Affiliation(s)
- Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yanqiu Zuo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
13
|
Synergistic antimicrobial activity of N-methyl substituted pyrrolidinium-based ionic liquids and melittin against Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 2020; 104:10465-10479. [PMID: 33175246 DOI: 10.1007/s00253-020-10989-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
In pharmaceutical industry, the prodrug approaches and drug-drug conjugates are being now vastly used to optimize the efficacy of the drugs for multipurpose. The combination or conjugation of antimicrobials agents with natural antimicrobials may lead to better synergistic antimicrobial activity. Currently, many publications show the potential of ionic liquids (ILs) as novel antimicrobials and even as active pharmaceutical ingredients. The current study showed the synthesis of novel pyrrolidinium-based ILs (Cx, x = 4, 6, 8, 10, 12) and their antibacterial activity alone and in combination with antimicrobial peptide, melittin (MEL), against clinically relevant microorganism, E. coli and S. aureus. The cytotoxicity of synthesized ILs was administered on HEK 293 cell line using MTT assay. The obtained results showed the dependency of antibacterial activity of ILs on alkyl chain length (C4 < C6 < C8 < C10 < C12). The remarkable improvement in the antibacterial efficiency of MEL was seen with ILs; however, antibacterial effect is more pronounced with IL having large alkyl chain length (C8, C10, and C12) at their minimal concentration with MEL to disrupt the cell membrane. In addition, the binding study and haemocompatibility results showed favourable biocompatibility and stability which could potentially improve its utility for the biomedical field. KEY POINTS: • The combination of melittin and pyrrolidinium-based ILs showed improved antibacterial activity against E. coli and S. aureus which may be used for developing new antibacterial agents. • Moreover, the cytotoxicity and haemocompatibility results showed excellent biocompatibility of the combinations on human cell line and human serum albumin, respectively, which could potentially improve its utility for the biomedical field.
Collapse
|
14
|
Bai N, Gan Y, Li X, Gao S, Yu W, Wang R, Chang J. The role of chlorine atom on the binding between acrylonitrile derivatives and fat mass and obesity‐associated protein. J Mol Recognit 2020; 34:e2880. [DOI: 10.1002/jmr.2880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Ning Bai
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Ya Gan
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Xitong Li
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Shuting Gao
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Wenquan Yu
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Ruiyong Wang
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| | - Junbiao Chang
- Green Catalysis Center, College of Chemistry Zhengzhou University Zhengzhou China
| |
Collapse
|
15
|
Janek T, Mirończuk AM, Rymowicz W, Dobrowolski A. High-yield expression of extracellular lipase from Yarrowia lipolytica and its interactions with lipopeptide biosurfactants: A biophysical approach. Arch Biochem Biophys 2020; 689:108475. [DOI: 10.1016/j.abb.2020.108475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
|
16
|
Investigating the biomolecular interactions between model proteins and glycine betaine surfactant with reference to the stabilization of emulsions and antimicrobial properties. Colloids Surf B Biointerfaces 2020; 194:111226. [PMID: 32623332 DOI: 10.1016/j.colsurfb.2020.111226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Binding effect and interaction of 2-pentadecanoyloxymethyl)trimethylammonium bromide (DMGM-14) with bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were systematically investigated by the fluorescence spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), surface tension analysis, and molecular docking studies. The emulsion properties and particle size distribution of surfactant/protein complexes containing sunflower oil were studied using static light scattering and confocal laser scanning microscopy (CLSM). The fluorescence spectroscopy and ITC analysis confirmed the complexes formation of DMGM-14 with BSA and HEWL which was also verified by surface tension measurements. CD results explained the conformational changes in BSA and HEWL upon DMGM-14 complexation. Molecular docking study provides insight into the binding of DMGM-14 into the specific sites of BSA and HEWL. Besides, the studies drew a detailed picture on the emulsification properties of DMGM-14 with BSA and HEWL. In addition, the in vitro experiment revealed a broad antibacterial spectrum of DMGM-14 and DMGM-14/HEWL complex including activity against Gram-positive and Gram-negative bacteria. In conclusion, the present study revealed that the interaction between DMGM-14 with BSA and HEWL is important for the pharmaceutical, biological, and food products.
Collapse
|
17
|
Arif R, Rana M, Yasmeen S, Amaduddin, Khan MS, Abid M, Khan M, Rahisuddin. Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127905] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Shamsi F, Hasan P, Queen A, Hussain A, Khan P, Zeya B, King HM, Rana S, Garrison J, Alajmi MF, Rizvi MMA, Zahid M, Imtaiyaz Hassan M, Abid M. Synthesis and SAR studies of novel 1,2,4-oxadiazole-sulfonamide based compounds as potential anticancer agents for colorectal cancer therapy. Bioorg Chem 2020; 98:103754. [PMID: 32200329 DOI: 10.1016/j.bioorg.2020.103754] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
A diverse series of 1,2,4-oxadiazoles based substituted compounds were designed, synthesized and evaluated as anticancer agents targeting carbonic anhydrase IX (CAIX). Initial structure-activity analysis suggested that the thiazole/thiophene-sulfonamide conjugates of 1,2,4-oxadiazoles exhibited potent anticancer activities with low μM potencies. Compound OX12 exhibited antiproliferative activity (IC50 = 11.1 µM) along with appreciable inhibition potential for tumor-associated CAIX (IC50 = 4.23 µM) isoform. Therefore, OX12 was structurally optimized and its SAR oriented derivatives (OX17-27) were synthesized and evaluated. This iteration resulted in compound OX27 with an almost two-fold increase in antiproliferative effect (IC50 = 6.0 µM) comparable to the clinical drug doxorubicin and significantly higher potency against CAIX (IC50 = 0.74 µM). Additionally, OX27 treatment decreases the expression of CAIX, induces apoptosis and ROS production, inhibited colony formation and migration of colon cancer cells. Our studies provide preclinical rational for the further optimization of identified OX27 as a suitable lead for the possible treatment of CRC.
Collapse
Affiliation(s)
- Farheen Shamsi
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India; Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Bushra Zeya
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Hannah M King
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | - Jered Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
19
|
Effect of adiphenine hydrochloride on the structure of bovine serum albumin: Spectroscopic and docking study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Aslam J, Lone IH, Radwan NRE, Siddiqui MF, Parveen S, Alnoman RB, Aslam R. Molecular Interaction of Amino Acid-Based Gemini Surfactant with Human Serum Albumin: Tensiometric, Spectroscopic, and Molecular Docking Study. ACS OMEGA 2019; 4:22152-22160. [PMID: 31891097 PMCID: PMC6933778 DOI: 10.1021/acsomega.9b03315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Binding effect and interaction of N,N'-dialkyl cystine based gemini surfactant (GS); 2(C12Cys) with human serum albumin (HSA) were systematically investigated by the techniques such as surface tension measurement, UV-visible spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking studies. The surface tension measurement exhibited that HSA shifted the critical micelle concentration of the 2(C12Cys) GS to the higher side that confirms the complex formation among 2(C12Cys) GS and HSA which was also verified by UV-visible, fluorescence, and CD spectroscopy. Increase in the concentration of 2(C12Cys) GS increases the absorption of the HSA protein but has a reverse effect on the fluorescence intensity. The analysis of UV-visible study with the help of a static quenching method showed that the value acquired for the bimolecular quenching constant (k q) quenches the intrinsic fluorescence of the HSA protein. Synchronous fluorescence spectrometry declared that the induced-binding conformational changes in HSA and CD results explained the variations in the secondary arrangement of the protein in presence of 2(C12Cys) GS. The present study revealed that the interaction between 2(C12Cys) GS and HSA is important for the preparation and properties of medicines. Molecular docking study provides insight into the specific binding site of 2(C12Cys) GS into the sites of HSA.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Irfan Hussain Lone
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Nagi R. E. Radwan
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | | | - Shazia Parveen
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Rua B. Alnoman
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Ruby Aslam
- Corrosion
Research Laboratory, Department of Applied Chemistry, Faculty of Engineering
and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
21
|
Maurya N, Parray ZA, Maurya JK, Islam A, Patel R. Ionic Liquid Green Assembly-Mediated Migration of Piperine from Calf-Thymus DNA: A New Possibility of the Tunable Drug Delivery System. ACS OMEGA 2019; 4:21005-21017. [PMID: 31867492 PMCID: PMC6921251 DOI: 10.1021/acsomega.9b02246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/18/2019] [Indexed: 06/07/2023]
Abstract
Biocompatible surface-active ionic liquid (SAIL) was used first to study the deintercalation process of a well-known natural compound piperine (PIP) as an anticancer drug, obtained from PIP-calf thymus DNA (ctDNA) complex under controlled experimental conditions. In this study, we have been exploring the interaction of PIP in SAIL (1-butyl-3-methylimidazolium octyl sulfate ionic liquid ([C4mim][C8OSO3])), ctDNA, and deintercalation of PIP from the PIP-ctDNA complex through SAIL micelle using various spectroscopic techniques. Absorption, emission, and lifetime decay measurements provide strong evidence of the relocation of PIP molecules from ctDNA to SAIL micelle. Fluorescence quenching and steady-state fluorescence anisotropy were employed to examine the exact location of PIP in different media. Moreover, the surface tension technique was also employed to confirm the release of PIP molecules from the PIP-ctDNA complex in the presence of SAIL. Circular dichroism analysis suggested that SAIL micelle does not perturb the ctDNA structure, which supported the fact that SAIL micelle can be used as a safe vehicle for PIP. Overall, the study highlighted a novel strategy for deintercalation of drug using SAIL because the release of the drug can be controlled over a period by varying the concentration and composition of the SAIL.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research
in Basic Sciences and Protein Research Laboratory, Centre for Interdisciplinary
Research in Basic Sciences, Jamia Millia
Islamia, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research
in Basic Sciences and Protein Research Laboratory, Centre for Interdisciplinary
Research in Basic Sciences, Jamia Millia
Islamia, New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research
in Basic Sciences and Protein Research Laboratory, Centre for Interdisciplinary
Research in Basic Sciences, Jamia Millia
Islamia, New Delhi 110025, India
| | - Asimul Islam
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research
in Basic Sciences and Protein Research Laboratory, Centre for Interdisciplinary
Research in Basic Sciences, Jamia Millia
Islamia, New Delhi 110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research
in Basic Sciences and Protein Research Laboratory, Centre for Interdisciplinary
Research in Basic Sciences, Jamia Millia
Islamia, New Delhi 110025, India
| |
Collapse
|
22
|
Maurya N, Alzahrani KA, Patel R. Probing the Intercalation of Noscapine from Sodium Dodecyl Sulfate Micelles to Calf Thymus Deoxyribose Nucleic Acid: A Mechanistic Approach. ACS OMEGA 2019; 4:15829-15841. [PMID: 31592453 PMCID: PMC6777008 DOI: 10.1021/acsomega.9b01543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 06/07/2023]
Abstract
Noscapine (NOS) is efficient in inhibiting cellular proliferation and induces apoptosis in nonsmall cell, lung, breast, lymphatic, and prostate cancers. The micelle-assisted drug delivery is a well-known phenomenon; however, the proper mechanism is still unclear. Therefore, in the present study, we have shown a mechanistic approach for the delivery of NOS from sodium dodecyl sulfate (SDS) micelles to calf thymus deoxyribose nucleic acid (ctDNA) base-pairs using various spectroscopic techniques. The absorption and emission spectroscopy results revealed that NOS interacts with the SDS micelle and resides in its hydrophobic core. Further, the intercalation of NOS from SDS micelles to ctDNA was also shown by these techniques. The anisotropy and quenching results further confirmed the relocation of NOS from SDS micelles to ctDNA. The CD analysis suggested that SDS micelles do not perturb the structure of ctDNA, which supported that SDS micelles can be used as a safe delivery vehicle for NOS. This work may be helpful for the invention of advanced micelle-based vehicles for the delivery of an anticancer drug to their specific target site.
Collapse
Affiliation(s)
- Neha Maurya
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
23
|
Jahanban-Esfahlan A, Ostadrahimi A, Jahanban-Esfahlan R, Roufegarinejad L, Tabibiazar M, Amarowicz R. Recent developments in the detection of bovine serum albumin. Int J Biol Macromol 2019; 138:602-617. [DOI: 10.1016/j.ijbiomac.2019.07.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022]
|
24
|
Wang W, Gan N, Sun Q, Wu D, Zhao L, Suo Z, Tang P, Li H. Binding properties of sodium glucose co-transporter-2 inhibitor empagliflozin to human serum albumin: spectroscopic methods and computer simulations. J Biomol Struct Dyn 2019; 38:3178-3187. [PMID: 31378154 DOI: 10.1080/07391102.2019.1652688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Empagliflozin is an oral sodium glucose co-transporter-2 inhibitor for type 2 diabetes mellitus. The interaction between empagliflozin and human serum albumin (HSA) was investigated experimentally and theoretically. Fluorescence quenching and time-resolved fluorescence spectroscopy indicated that the quenching mechanism of empagliflozin and HSA was dynamic and that the effective binding constant at body temperature was 3.495 × 103 M-1. Thermodynamic parameters showed that hydrophobic forces were the major binding force in the interaction between empagliflozin and HSA. Circular dichroism, Fourier transform infrared, and 3 D fluorescence spectroscopy revealed that empagliflozin showed a slight change in secondary structure without changing the basic carbon framework of HSA. Site marker displacement experiments revealed that empagliflozin bound to site I of HSA, which was supported by molecular docking. Molecular dynamic simulations indicated that empagliflozin could bind to HSA stably. This study provided insights into the binding mechanism between empagliflozin and HSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Di Wu
- Key Laboratory of Meat Processing of Sichuan, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
The effect of Pseudomonas fluorescens biosurfactant pseudofactin II on the conformational changes of bovine serum albumin: Pharmaceutical and biomedical applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Li Y, Lee JS. Staring at protein-surfactant interactions: Fundamental approaches and comparative evaluation of their combinations - A review. Anal Chim Acta 2019; 1063:18-39. [DOI: 10.1016/j.aca.2019.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
27
|
Maurya N, Maurya JK, Singh UK, Dohare R, Zafaryab M, Moshahid Alam Rizvi M, Kumari M, Patel R. In Vitro Cytotoxicity and Interaction of Noscapine with Human Serum Albumin: Effect on Structure and Esterase Activity of HSA. Mol Pharm 2019; 16:952-966. [DOI: 10.1021/acs.molpharmaceut.8b00864] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Upendra Kumar Singh
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Ravins Dohare
- Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Moshahid Alam Rizvi
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Meena Kumari
- Biophysical Chemistry Laboratory, Department of Chemistry, IIT Delhi, Hauzkhas, New Delhi 110016, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
28
|
Pawar SK, Kalalbandi VKA, Jaldappagari S. Interaction of Indole Derivative with Human Serum Albumin: A Combined Spectroscopic and Molecular Dynamics Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201802466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suma K. Pawar
- Department of ChemistryKarnatak University, Dharwad - 580003 Pavate Nagar
| | | | | |
Collapse
|
29
|
Seal P, Sikdar J, Ghosh N, Biswas P, Haldar R. Exploring the binding dynamics of etoricoxib with human hemoglobin: A spectroscopic, calorimetric, and molecular modeling approach. J Biomol Struct Dyn 2018; 37:3018-3028. [DOI: 10.1080/07391102.2018.1508369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Paromita Seal
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Jyotirmoy Sikdar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Niladri Ghosh
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Payel Biswas
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Rajen Haldar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
30
|
Janek T, Rodrigues LR, Czyżnikowska Ż. Study of metal-lipopeptide complexes and their self-assembly behavior, micelle formation, interaction with bovine serum albumin and biological properties. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin. Colloids Surf B Biointerfaces 2017; 159:750-758. [DOI: 10.1016/j.colsurfb.2017.08.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/05/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
|
33
|
Wang Z, Wang N, Han X, Wang R, Chang J. Interaction of two flavonols with fat mass and obesity-associated protein investigated by fluorescence quenching and molecular docking. J Biomol Struct Dyn 2017; 36:3388-3397. [DOI: 10.1080/07391102.2017.1388287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zechun Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ning Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Xinxin Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ruiyong Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
34
|
Seal P, Sikdar J, Roy A, Haldar R. Binding of ibuprofen to human hemoglobin: elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques. J Biomol Struct Dyn 2017; 36:3137-3154. [DOI: 10.1080/07391102.2017.1384399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Paromita Seal
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Jyotirmoy Sikdar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Amartya Roy
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Rajen Haldar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
35
|
Shamsi A, Ahmed A, Bano B. Probing the interaction of anticancer drug temsirolimus with human serum albumin: molecular docking and spectroscopic insight. J Biomol Struct Dyn 2017; 36:1479-1489. [DOI: 10.1080/07391102.2017.1326320] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anas Shamsi
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Azaj Ahmed
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Bilqees Bano
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
36
|
Shahraki S, Saeidifar M, Shiri F, Heidari A. Synthesis, Characterization, Cytotoxicity and Detailed HSA Interaction of New Zinc(II) Complexes Containing Dithiocarbamate and Heterocyclic N-donor Ligands. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1302972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Ameneh Heidari
- Department of Chemistry, University of Zabol, Zabol, Iran
| |
Collapse
|
37
|
Dohare N, Khan AB, Maurya N, Thakur S, Athar F, Singh P, Patel R. An insight into the binding of aceclofenac with bovine serum albumin at physiological condition: a spectroscopic and computational approach. J Biomol Struct Dyn 2017; 36:398-406. [DOI: 10.1080/07391102.2017.1278722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , New Delhi, India
| | - Abbul Bashar Khan
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , New Delhi, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , New Delhi, India
| | - Sonu Thakur
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , New Delhi, India
| | - Fareeda Athar
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , New Delhi, India
| | - Prashant Singh
- Department of Chemistry, A. R. S. D. College, University of Delhi , Delhi 110021, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , New Delhi, India
| |
Collapse
|
38
|
Zhang YF, Zhou KL, Lou YY, Pan DQ, Shi JH. Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. J Biomol Struct Dyn 2016; 35:3605-3614. [DOI: 10.1080/07391102.2016.1264889] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yin-Fei Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
39
|
Shi JH, Pan DQ, Jiang M, Liu TT, Wang Q. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods. J Biomol Struct Dyn 2016; 35:2211-2223. [DOI: 10.1080/07391102.2016.1213663] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jie-hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Min Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting-Ting Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
40
|
Kumari M, Dohare N, Maurya N, Dohare R, Patel R. Effect of 1-methyl-3-octyleimmidazolium chloride on the stability and activity of lysozyme: a spectroscopic and molecular dynamics studies. J Biomol Struct Dyn 2016; 35:2016-2030. [DOI: 10.1080/07391102.2016.1204946] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meena Kumari
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Ravins Dohare
- Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
41
|
Jattinagoudar LN, Nandibewoor ST, Chimatadar SA. Binding of fexofenadine hydrochloride to bovine serum albumin: structural considerations by spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2016; 35:1200-1214. [DOI: 10.1080/07391102.2016.1183229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Maurya N, Maurya JK, Kumari M, Khan AB, Dohare R, Patel R. Hydrogen bonding-assisted interaction between amitriptyline hydrochloride and hemoglobin: spectroscopic and molecular dynamics studies. J Biomol Struct Dyn 2016; 35:1367-1380. [PMID: 27141981 DOI: 10.1080/07391102.2016.1184184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.
Collapse
Affiliation(s)
- Neha Maurya
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Jitendra Kumar Maurya
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Meena Kumari
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Abbul Bashar Khan
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Ravins Dohare
- b Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Rajan Patel
- a Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia (A Central University) , New Delhi , India
| |
Collapse
|