1
|
Rahman MO, Ahmed SS, Alqahtani AS, Cakilcioğlu U, Akbar MA. Insight into novel inhibitors from Sterculia urens against Cholera via pharmacoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 42:10022-10043. [PMID: 37668010 DOI: 10.1080/07391102.2023.2254841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The underdeveloped countries with large populations are facing a grave global threat in the form of cholera. Vibrio cholerae, the etiologic agent of Cholera has drawn attention recently due to antimicrobial resistance and resulting outbreaks that necessitates establishment of novel medications to counteract virulence and viability of the pathogen. Sterculia urens Roxb. (Malvaceae) is an ethnomedicinally important tree, which harbors a good number of bioactive phytocompounds. In the present study, 53 phytocompounds of S. urens were screened against the promising target ToxT of V. cholerae employing structure-based drug design approach that revealed three lead compounds, viz., 4,4,5,8-Tetramethylchroman-2-ol (-8.2 kcal/mol), Beta-Bisabolol (-8.2 kcal/mol) and Ledol (-8.7 kcal/mol) with satisfactory ADMET properties. Molecular dynamics simulation for 150 ns unveiled notable compactness and structural stability for the lead compounds considering RMSD, RMSF, Rg, MolSA, PSA and protein-ligand contacts parameters. Molecular mechanics-based MM/GBSA binding energy calculation revealed Beta-Bisabolol (-66.74 kcal/mol) to have better scores than 4,4,5,8-Tetramethylchroman-2-ol (-47.42 kcal/mol) and Ledol (-65.79 kcal/mol). Enzymes were mostly found as drug target class, and Nabilone was found as a structurally similar analog for 4,4,5,8-Tetramethylchroman-2-ol. These discoveries could aid in revealing new antibacterial medications targeting ToxT to combat Cholera.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Oliur Rahman
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Uğur Cakilcioğlu
- Department of Botany, Pertek Sakine Genç Vocational School, Munzur University, Tunceli, Pertek, Turkey
| | - Mohammad Ahsanul Akbar
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV, USA
| |
Collapse
|
2
|
Jino Blessy J, Siva Shanmugam NR, Veluraja K, Michael Gromiha M. Investigations on the binding specificity of β-galactoside analogues with human galectin-1 using molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:10094-10105. [PMID: 34219624 DOI: 10.1080/07391102.2021.1939788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galectin-1 (Gal-1) is the first member of galectin family, which has a carbohydrate recognition domain, specifically binds towards β-galactoside containing oligosaccharides. Owing its association with carbohydrates, Gal-1 is involved in many biological processes such as cell signaling, adhesion and pathological pathways such as metastasis, apoptosis and increased tumour cell survival. The development of β-galactoside based inhibitors would help to control the Gal-1 expression. In the current study, we carried out molecular dynamics (MD) simulations to examine the structural and dynamic behaviour Gal-1-thiodigalactoside (TDG), Gal-1-lactobionic acid (LBA) and Gal-1-beta-(1→6)-galactobiose (G16G) complexes. The analysis of glycosidic torsional angles revealed that β-galactoside analogues TDG and LBA have a single binding mode (BM1) whereas G16G has two binding modes (BM1 and BM2) for interacting with Gal-1 protein. We have computed the binding free energies for the complexes Gal-1-TDG, Gal-1-LBA and Gal-1-G16G using MM/PBSA and are -6.45, -6.22 and -3.08 kcal/mol, respectively. This trend agrees well with experiments that the binding of Gal-1 with TDG is stronger than LBA. Further analysis revealed that the interactions due to direct and water-mediated hydrogen bonds play a significant role to the structural stability of the complexes. The result obtained from this study is useful to formulate a set of rules and derive pharmacophore-based features for designing inhibitors against galectin-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Jino Blessy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - N R Siva Shanmugam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - K Veluraja
- PSN college of Engineering and Technology, Tirunelveli, Tamilnadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Navyashree V, Kant K, Kumar A. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: a molecular docking and dynamics approach. J Biomol Struct Dyn 2020; 39:1404-1416. [PMID: 32072856 DOI: 10.1080/07391102.2020.1731603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- V. Navyashree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Kamal Kant
- Department of Pharmaceutical Chemistry, Birla Institute of Technology (B.I.T) Mesra, Ranchi, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| |
Collapse
|
4
|
Roy R, Ghosh B, Kar P. Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS OMEGA 2020; 5:3932-3942. [PMID: 32149220 PMCID: PMC7057322 DOI: 10.1021/acsomega.9b03398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
Cholera is caused by Vibrio cholerae and is an example of a blood-group-dependent disease. Recent studies suggest that the receptor-binding B subunit of the cholera toxin (CT) binds histo-blood group antigens at a secondary binding site. Herein, we studied the conformational dynamics of Lewis Y (LeY) oligosaccharides, H-tetrasaccharides and A-pentasaccharides, in aqueous solution by conducting accelerated molecular dynamics (aMD) simulations. The flexible nature of both oligosaccharides was displayed in aMD simulations. Furthermore, aMD simulations revealed that for both oligosaccharides in the free form, 4C1 and 1C4 puckers were sampled for all but GalNAc monosaccharides, while either the 4C1 (GlcNAc, Gal, GalNAc) or 1C4 (Fuc2, Fuc3) pucker was sampled in the CT-bound forms. In aMD, the complete transition from the 4C1 to 1C4 pucker was sampled for GlcNAc and Gal in both oligosaccharides. Further, we have observed a transition from the open to closed conformer in the case of A-pentasaccharide, while H-tetrasaccharide remains in the open conformation throughout the simulation. Both oligosaccharides adopted an open conformation in the CT binding site. Moreover, we have investigated the molecular basis of recognition of LeY oligosaccharides by the B subunit of the cholera toxin of classical and El Tor biotypes using the molecular mechanics generalized Born surface area (MM/GBSA) scheme. The O blood group determinant, H-tetrasaccharide, exhibits a stronger affinity to both biotypes compared to the A blood group determinant, A-pentasaccharide, which agrees with the experimental data. The difference in binding free energy between O and A blood group determinants mainly arises due to the increased entropic cost and desolvation energy in the case of A-pentasaccharide compared to that of H-tetrasaccharide. Our study also reveals that the terminal Fuc3 contributes most to the binding free energy compared to other carbohydrate residues as it forms multiple hydrogen bonds with CT. Overall, our study might help in designing glycomimetic drugs targeting the cholera toxin.
Collapse
Affiliation(s)
- Rajarshi Roy
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Biplab Ghosh
- High
Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Parimal Kar
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
- E-mail: . Phone: +91 731 2438700 (ext. 550)
| |
Collapse
|
5
|
Sharmila DJS, Blessy JJ, Rapheal VS, Subramanian KS. Molecular dynamics investigations for the prediction of molecular interaction of cauliflower mosaic virus transmission helper component protein complex with Myzus persicae stylet's cuticular protein and its docking studies with annosquamosin-A encapsulated in nano-porous Silica. Virusdisease 2019; 30:413-425. [PMID: 31803809 PMCID: PMC6864000 DOI: 10.1007/s13337-019-00549-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Large numbers of bioactive natural products from plant species such as alkaloids, phenolics, terpenoids etc. are remaining unexplored for their potential as plant protective agents as inhibitors for viral and other pathogenic infections of plant. Myzus aphids are important plant pests and vectors for several plant viruses. Cauliflower mosaic virus (CaMV) belongs to the plant virus family Caulimoviridae which is transmitted "non-circulative" from plant to plant through an interaction with aphid insect vectors. This viral transmission process most likely involves a protein-protein binding interaction between aphid stylet receptor cuticular protein and viral proteins namely, CaMV aphid transmission Helper Component protein and virion associated protein. Aphid stylets are made of cuticle and little is known about the structure of cuticle protein of this insect group. The present study reports the molecular modeling of the structures of Myzus persicae aphid stylet's cuticular protein (MpsCP) and cauliflower mosaic virus aphid transmission Helper component protein (CaMV HCP). Protein-protein docking studies and molecular dynamics simulations are performed to establish the mode of binding of MpsCP with CaMV HCP. Molecular docking and molecular dynamics investigations of terpenoids Annosquamosin-A from Annona squamosa complex with CaMV transmitting aphid M. persicae stylet's cuticular protein revealed their means of interaction perhaps relates to restrain viral binding and transmission. QM/MM optimization of mesoporous silica nanopores composite with Annosquamosin-A for smart and safe delivery of bioactive is carried out to study their electronic parameters such as heat of formation, total energy, electronic energy, Ionization potential, Highest Occupied Molecular Orbital, Lowest Un-occupied Molecular Orbital and energy gaps.
Collapse
Affiliation(s)
- D. Jeya Sundara Sharmila
- Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - J. Jino Blessy
- Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - V. Stephen Rapheal
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu 641049 India
| | - K. S. Subramanian
- Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| |
Collapse
|
6
|
Jia WQ, Liu YY, Feng XY, Xu WR, Cheng XC. Discovery of novel and highly selective PI3Kδ inhibitors based on the p110δ crystal structure. J Biomol Struct Dyn 2019; 38:2499-2508. [PMID: 31232196 DOI: 10.1080/07391102.2019.1635531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiao-Yan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|