1
|
Yu YX, Wang W, Sun HB, Zhang LL, Wang LF, Yin YY. Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:805-831. [PMID: 36322686 DOI: 10.1080/1062936x.2022.2140708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mutations V32I, I50V and I84V in the HIV-1 protease (PR) induce drug resistance towards drug amprenavir (APV). Multiple short molecular dynamics (MSMD) simulations and molecular mechanics generalized Born surface area (MM-GBSA) method were utilized to investigate drug-resistant mechanism of V32I, I50V and I84V towards APV. Dynamic information arising from MSMD simulations suggest that V32I, I50V and I84V highly affect structural flexibility, motion modes and conformational behaviours of two flaps in the PR. Binding free energies calculated by MM-GBSA method suggest that the decrease in binding enthalpy and the increase in binding entropy induced by mutations V32I, I50V and I84V are responsible for drug resistance of the mutated PRs on APV. The energetic contributions of separate residues on binding of APV to the PR show that V32I, I50V and I84V highly disturb the interactions of two flaps with APV and mostly drive the decrease in binding ability of APV to the PR. Thus, the conformational changes of two flaps in the PR caused by V32I, I50V and I84V play key roles in drug resistance of three mutated PR towards APV. This study can provide useful dynamics information for the design of potent inhibitors relieving drug resistance.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
2
|
Sk MF, Jonniya NA, Roy R, Kar P. Phosphorylation-Induced Conformational Dynamics and Inhibition of Janus Kinase 1 by Suppressors of Cytokine Signaling 1. J Phys Chem B 2022; 126:3224-3239. [PMID: 35443129 DOI: 10.1021/acs.jpcb.1c10733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dysfunction of the JAK/STAT (Janus kinase/signal transducers and activators of transcription) pathway results in several pathophysiological conditions, including autoimmune disorders. The negative feedback regulators of the JAK/STAT signaling pathway, suppressors of cytokine signaling (SOCS), act as a natural inhibitor of JAK and inhibit aberrant activity. SOCS1 is the most potent member of the SOCS family, whose kinase inhibitory region targets the substrate-binding groove of JAK with high affinity and blocks the phosphorylation of JAK kinases. Overall, we performed an aggregate of 13 μs molecular dynamics simulations on the activation loop's three different phosphorylation (double and single) states. Results from our simulations show that the single Tyr1034 phosphorylation could stabilize the JAK1/SOCS1 complex as well as the flexible activation segment. The phosphate-binding loop (P-loop) shows conformational variability at dual and single phosphorylated states. Principal component analysis and protein structure network (PSN) analysis reveal that the different phosphorylation states and SOCS1 binding induce intermediate inactive conformations of JAK1, which could be a better target for future JAK1 selective drug design. PSN analysis suggests that the com-pY1034 system is stabilized due to higher values of network hubs than the other two complex systems. Moreover, the binding free energy calculations suggest that pTyr1034 states show a higher affinity toward SOCS1 than the dual and pTyr1035 states. We believe that the mechanistic understanding of JAK1/SOCS1 complexation will aid future studies related to peptide inhibitors based on SOCS1.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
3
|
Indari O, Sk MF, Jakhmola S, Jonniya NA, Jha HC, Kar P. Decoding the Host-Parasite Protein Interactions Involved in Cerebral Malaria Through Glares of Molecular Dynamics Simulations. J Phys Chem B 2022; 126:387-402. [PMID: 34989590 DOI: 10.1021/acs.jpcb.1c07850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria causes millions of deaths every year. The malaria parasite spends a substantial part of its life cycle inside human erythrocytes. Inside erythrocytes, it synthesizes and displays various proteins onto the erythrocyte surface, such as Plasmodium falciparum erythrocytic membrane protein-1 (PfEMP1). This protein contains cysteine-rich interdomain region (CIDR) domains which have many subtypes based on sequence diversity and can cross-talk with host molecules. The CIDRα1.4 subtype can attach host endothelial protein C receptor (EPCR). This interaction facilitates infected erythrocyte adherence to brain endothelium and subsequent development of cerebral malaria. Through molecular dynamics simulations in conjunction with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, we explored the mechanism of interaction in the CIDRα1-EPCR complex. We examined the structural behavior of two CIDRα1 molecules (encoded by HB3-isolate var03-gene and IT4-isolate var07-gene) with EPCR unbound and bound (complex) forms. HB3var03CIDRα1 in apo and complexed with EPCR was comparatively more stable than IT4var07CIDRα1. Both of the complexes adopted two distinct conformational energy states. The hydrophobic residues played a crucial role in the binding of both complexes. For HB3var03CIDRα1-EPCR, the dominant energetic components were total polar interactions, while in IT4var07CIDRα1-EPCR, the primary interaction was van der Waals and nonpolar solvation energy. The study also revealed details such as correlated conformational motions and secondary structure evolution. Further, it elucidated various hotspot residues involved in protein-protein recognition. Overall, our study provides additional information on the structural behavior of CIDR molecules in unbound and receptor-bound states, which will help to design potent inhibitors.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
4
|
Jonniya NA, Zhang J, Kar P. Molecular Mechanism of Inhibiting WNK Binding to OSR1 by Targeting the Allosteric Pocket of the OSR1-CCT Domain with Potential Antihypertensive Inhibitors: An In Silico Study. J Phys Chem B 2021; 125:9115-9129. [PMID: 34369793 DOI: 10.1021/acs.jpcb.1c04672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline-alanine-rich kinase (SPAK) are physiological substrates of the with-no-lysine (WNK) kinase. They are the master regulators of cation Cl- cotransporters that could be targeted for discovering novel antihypertensive agents. Both kinases have a conserved carboxy-terminal (CCT) domain that recognizes a unique peptide motif (Arg-Phe-Xaa-Val) present in their upstream kinases and downstream substrates. Here, we have combined molecular docking with molecular dynamics simulations and free-energy calculations to identify potential inhibitors that can bind to the allosteric pocket of the OSR1-CCT domain and impede its interaction with the WNK peptide. Our study revealed that STOCK1S-14279 and Closantel bound strongly to the allosteric pocket of OSR1 and displaced the WNK peptide from the primary pocket of OSR1. We showed that primarily Arg1004 and Gln1006 of the WNK4-peptide motif were involved in strong H-bond interactions with Glu453 and Arg451 of OSR1. Besides, our study revealed that atoms of Arg1004 were solvent-exposed in cases of STOCK1S-14279 and Closantel, implying that the WNK4 peptide was moved out of the pocket. Overall, the predicted potential inhibitors altogether abolish the OSR1-WNK4-peptide interaction, suggesting their potency as a prospective allosteric inhibitor against OSR1.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, U.K
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
5
|
Sk MF, Jonniya NA, Roy R, Poddar S, Kar P. Computational Investigation of Structural Dynamics of SARS-CoV-2 Methyltransferase-Stimulatory Factor Heterodimer nsp16/nsp10 Bound to the Cofactor SAM. Front Mol Biosci 2020; 7:590165. [PMID: 33330626 PMCID: PMC7732651 DOI: 10.3389/fmolb.2020.590165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
Recently, a highly contagious novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has emerged, posing a global threat to public health. Identifying a potential target and developing vaccines or antiviral drugs is an urgent demand in the absence of approved therapeutic agents. The 5'-capping mechanism of eukaryotic mRNA and some viruses such as coronaviruses (CoVs) are essential for maintaining the RNA stability and protein translation in the virus. SARS-CoV-2 encodes S-adenosyl-L-methionine (SAM) dependent methyltransferase (MTase) enzyme characterized by nsp16 (2'-O-MTase) for generating the capped structure. The present study highlights the binding mechanism of nsp16 and nsp10 to identify the role of nsp10 in MTase activity. Furthermore, we investigated the conformational dynamics and energetics behind the binding of SAM to nsp16 and nsp16/nsp10 heterodimer by employing molecular dynamics simulations in conjunction with the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method. We observed from our simulations that the presence of nsp10 increases the favorable van der Waals and electrostatic interactions between SAM and nsp16. Thus, nsp10 acts as a stimulator for the strong binding of SAM to nsp16. The hydrophobic interactions were predominately identified for the nsp16-nsp10 interactions. Also, the stable hydrogen bonds between Ala83 (nsp16) and Tyr96 (nsp10), and between Gln87 (nsp16) and Leu45 (nsp10) play a vital role in the dimerization of nsp16 and nsp10. Besides, Computational Alanine Scanning (CAS) mutagenesis was performed, which revealed hotspot mutants, namely I40A, V104A, and R86A for the dimer association. Hence, the dimer interface of nsp16/nsp10 could also be a potential target in retarding the 2'-O-MTase activity in SARS-CoV-2. Overall, our study provides a comprehensive understanding of the dynamic and thermodynamic process of binding nsp16 and nsp10 that will contribute to the novel design of peptide inhibitors based on nsp16.
Collapse
Affiliation(s)
| | | | | | | | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa, India
| |
Collapse
|
6
|
Sk MF, Jonniya NA, Kar P. Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5892-5909. [DOI: 10.1080/07391102.2020.1794965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
7
|
Shi S, Sui K, Liu W, Lei Y, Zhang S, Zhang Q. Revealing binding selectivity of ligands toward murine double minute 2 and murine double minute X based on molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2019; 38:5081-5094. [PMID: 31755361 DOI: 10.1080/07391102.2019.1695671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that the interactions of p53 with murine double minute 2 and murine double minute X, namely MDM2 and MDMX, have been significant targets of efficient anti-cancer drug design. In this study, molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations are combined to recognize binding selectivity of three ligands to MDM2 and MDMX. The binding free energies were estimated by using molecular mechanics generalized Born surface area (MM-GBSA) method and the obtained results display that the increase in the binding enthalpy of three ligands to MDM2 relative to MDMX mainly drives the binding selectivity of them toward MDM2 and MDMX. The information obtained from PC analysis shows that the associations of ligands exert important impacts on internal dynamics of MDM2 and MDMX. Meanwhile, the calculations of residue-based free energy decomposition not only identify the hot interaction spots of ligands with MDM2 and MDMX, but also show the residues (L54, M53), (Y67, Y66), (V93, V92), (H96, P95), (I99, I98) and (Y100, Y99) in (MDM2, MDMX) are responsible for most contributions to the binding selectivity of three ligands toward MDM2 and MDMX. It is believed that this work can provide useful information for design of highly selective and dual inhibitors targeting MDM2 and MDMX.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Kai Sui
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Weizhe Liu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Yanzi Lei
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shaolong Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Pavadai E, Bhattarai N, Baral P, Stahelin RV, Chapagain PP, Gerstman BS. Conformational Flexibility of the Protein-Protein Interfaces of the Ebola Virus VP40 Structural Matrix Filament. J Phys Chem B 2019; 123:9045-9053. [PMID: 31576755 DOI: 10.1021/acs.jpcb.9b04674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Ebola virus (EBOV) is a virulent pathogen that causes severe hemorrhagic fever with a high fatality rate in humans. The EBOV transformer protein VP40 plays crucial roles in viral assembly and budding at the plasma membrane of infected cells. One of VP40's roles is to form the long, flexible, pleomorphic filamentous structural matrix for the virus. Each filament contains three unique interfaces: monomer NTD-NTD to form a dimer, dimer-to-dimer NTD-NTD oligomerization to form a hexamer, and end-to-end hexamer CTD-CTD to build the filament. However, the atomic-level details of conformational flexibility of the VP40 filament are still elusive. In this study, we have performed explicit-solvent, all-atom molecular dynamic simulations to explore the conformational flexibility of the three different interface structures of the filament. Using dynamic network analysis and other calculational methods, we find that the CTD-CTD hexamer interface with weak interdomain amino acid communities is the most flexible, and the NTD-NTD oligomer interface with strong interdomain communities is the least flexible. Our study suggests that the high flexibility of the CTD-CTD interface may be essential for the supple bending of the Ebola filovirus, and such flexibility may present a target for molecular interventions to disrupt the Ebola virus functioning.
Collapse
Affiliation(s)
| | | | | | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | | | | |
Collapse
|
9
|
C.S. V, Tamizhselvi R, Munusami P. Exploring the drug resistance mechanism of active site, non-active site mutations and their cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 2019; 37:2608-2626. [DOI: 10.1080/07391102.2018.1492459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Vasavi C.S.
- School of Biosciences and Technology, VIT University, Vellore, India
| | | | - Punnagai Munusami
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| |
Collapse
|
10
|
Andrade-Ochoa S, García-Machorro J, Bello M, Rodríguez-Valdez L, Flores-Sandoval C, Correa-Basurto J. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I. J Biomol Struct Dyn 2017; 36:2312-2330. [DOI: 10.1080/07391102.2017.1352538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- S. Andrade-Ochoa
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomas 11340, Ciudad de México, Mexico
| | - J. García-Machorro
- Laboratorio de Medicina de Conservación, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - L.M. Rodríguez-Valdez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, C.P. 31125, Chihuahua, Chih, Mexico
| | - C.A. Flores-Sandoval
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan 07730, Ciudad de México, Mexico
| | - J. Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| |
Collapse
|
11
|
Sharifi T, Ghayeb Y. A computational study to identify the key residues of peroxisome proliferator-activated receptor gamma in the interactions with its antagonists. J Biomol Struct Dyn 2017; 36:1822-1833. [DOI: 10.1080/07391102.2017.1335618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tayebeh Sharifi
- Department of Chemistry, Isfahan University of Technology , Isfahan, Iran
| | - Yousef Ghayeb
- Department of Chemistry, Isfahan University of Technology , Isfahan, Iran
| |
Collapse
|